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Abstract
Beam search reduces the memory consumption of best-
first search at the cost of finding longer paths but its
memory consumption can still exceed the given mem-
ory capacity quickly. We therefore develop BULB (Beam
search Using Limited discrepancy Backtracking), a com-
plete memory-bounded search method that is able to
solve more problem instances of large search problems
than beam search and does so with a reasonable runtime.
At the same time, BULB tends to find shorter paths than
beam search because it is able to use larger beam widths
without running out of memory. We demonstrate these
properties of BULB experimentally for three standard
benchmark domains.

1 Introduction
Best-first search methods, such as A*, do not scale up to
large search problems due to their memory consumption, and
linear-space best first search methods [Korf, 1993] have unac-
ceptable runtimes for large search problems. Beam search re-
duces the memory consumption of best-first search at the cost
of finding longer paths. It uses breadth-first search to build its
search tree but keeps at most the B states at each level of the
search tree with the smallest heuristic values, where the value
of the beam width B is set at the beginning of the search. The
smaller the beam width, the more states beam search prunes
at each step of the search and the less memory it needs to
store each level of the search tree. Unfortunately, more prun-
ing typically increases the probability of pruning states on
short paths from the start state to a goal state and thus often
increases the lengths of the paths found. Excessive pruning
can even prevent one from finding any path. Thus, the beam
width has to be large. Our experiments show, for example,
that beam search with a beam width of 10,000 solves about
eighty percent of random problem instances of the 48-Puzzle.
The average path length found is on average about one order
of magnitude smaller than the one found by variants of WA*
[Pearl, 1985], which are alternatives to beam search that also
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Figure 1: Visualization of Search Methods

reduce the memory consumption of best-first search at the
cost of finding longer paths. We develop BULB (Beam search
Using Limited discrepancy Backtracking) that is able to solve
more problem instances of large search problems than beam
search, and does so with a reasonable runtime. At the same
time, BULB tends to find shorter paths than beam search be-
cause it is able to use larger beam widths without running out
of memory. It behaves like beam search until it exhausts the
memory capacity without finding a path. It then uses lim-
ited discrepancy backtracking to retract its previous pruning
decisions. The choice of a good backtracking strategy is im-
portant since, for example, beam search with chronological
backtracking has unacceptable runtimes.

2 Beam Search
Beam search is any search technique “in which a number of
[...] alternatives (the beam) are examined in parallel. [It] is a
heuristic technique because heuristic rules are used to discard
[prune] non-promising alternatives in order to keep the size



Table 1: Beam Search on the 48-Puzzle
B Path Generated Stored Runtime Problems

Length States States (Seconds) Solved
1 N/A N/A N/A N/A 0 %
5 11,737.12 147,239 58,680 0.090 100 %

10 36,281.64 904,632 362,799 0.601 100 %
50 25,341.44 3,211,244 1,266,902 2.495 86 %

100 12,129.88 3,079,594 1,212,579 2.296 86 %
500 2,302.86 2,899,765 1,148,559 2.205 74 %

1,000 1,337.95 3,346,004 1,331,451 2.822 84 %
5,000 481.30 5,814,061 2,365,603 5.500 86 %

10,000 440.07 10,569,816 4,312,007 11.307 80 %
50,000 N/A N/A N/A N/A 0 %

of the beam as small as possible” [Bisiani, 1987]. We assume
that all actions have a cost of one and study beam-search vari-
ants of breadth-first search in this paper. Their objective is to
reduce the memory consumption of breadth-first search from
exponential to linear in the depth of the search tree, as illus-
trated by the shaded areas of Figure 1 (a) and (b) for breadth-
first search and beam search, respectively. Beam search uses
breadth-first search to build its search tree but splits each level
of the search tree into slices of at most B states, where B is
called the beam width. The number of slices stored in mem-
ory is limited to one at each level. When beam search expands
a level, it generates all successors of the states at the current
level, sorts them in order of increasing heuristic values (from
left to right in the figure), splits them into slices of at most
B states each, and then extends the beam by storing the first
slice only. Beam search terminates when it generates a goal
state or runs out of memory.

Table 1 shows experimental results for beam search on the
48-Puzzle with a memory limitation of 6,000,000 states. We
created 50 problem instances with random start configura-
tions in which the goal configuration had the blank in the
upper left corner. We used the Manhattan distance as heuris-
tic function. (We could have used pattern databases instead
[Korf and Taylor, 1996] but did not since we use them later in
this paper in the context of 2 additional benchmark domains.)
The runtime of beam search was always small since it ran out
of memory in seconds. Beam search with a beam width of 1
solved none of the problem instances. This is not surprising
since it is similar to greedy search (gradient descent) and thus
likely to find rather long paths unless it gets stuck in dead
ends because the current state has only successors that are al-
ready in memory, in which case it does not find any path at
all. Beam search with a beam width of 10 solved all of the
problem instances. As the beam width increased, its memory
consumption increased, the average path length of the solved
problem instances decreased, and the number of solved prob-
lem instances eventually decreased. Beam search with beam
width 50,000 solved none of the problem instances. This is
not surprising since beam search with a beam width of infin-
ity is breadth-first search and thus guaranteed to find shortest
paths unless it runs out of memory and then does not find
any path at all, which is likely given the exponential memory
consumption of breadth-first search. Consider beam search
with a large beam width that still solved a substantial number
of problem instances, say beam search with a beam width of
10,000 that solved eighty percent of the problem instances.
The average path length of the solved problem instances was
an order of magnitude smaller than the one reported in [Furcy,

2004] for several variants of WA*.

3 Improving Beam Search
We study how to increase the number of solved problem
instances to one hundred percent while reducing the path
lengths of the solved problem instances. This cannot be
done by varying the beam width since increasing it reduces
the number of solved problem instances while decreasing it
increases the average path length of the solved problem in-
stances. Rather, we notice that many of the unsolved problem
instances are due to misleading heuristic values that prevent
states from being included in the beam. For example, the
goal state G is put into the third slice of the seventh layer in
Figure 1 (b). Beam search thus does not find the goal state
since it visits only the first slice of each layer. Our solution
to this problem is to backtrack and choose a different slice.
Figure 1 (c) shows DB (Depth-first Beam search), our sim-
plest variant of beam search with backtracking. DB behaves
like beam search until it exhausts the memory capacity with-
out finding a path. It then uses chronological backtracking to
purge existing slices and replace them with others. DB, un-
fortunately, has unacceptable runtimes, which we explain as
follows: Chronological backtracking revisits the most recent
decisions first, that is, the decisions close to the bottom of the
search tree. This is problematic since the heuristic values are
usually the more inaccurate the farther a state is away from
the goal state and thus the closer it is to the top of the search
tree. Thus, it is important to revisit decisions close to the
top of the search tree more quickly. We therefore use limited
discrepancy search rather than chronological backtracking to
build a more sophisticated variant of beam search with back-
tracking.

3.1 Original Limited Discrepancy Search
LDS (Limited Discrepancy Search) [Harvey and Ginsberg,
1995] was designed to work on finite binary trees. The suc-
cessors of a state are sorted in order of increasing heuristic
values. Thus, the heuristic values always recommend the left
successor over the right one. Choosing the right successor
against the recommendation of the heuristic values is called
a discrepancy. First, LDS searches the tree greedily, that is,
with no discrepancy. If LDS does not find a goal state, then it
made at least one wrong decision due to misleading heuristic
values. LDS then searches the tree with increasing numbers
of allowed discrepancies. Figure 2 contains the pseudo code
of LDS. The top-level function LDS() repeatedly performs
a limited discrepancy search from the start state (Line 4) by
calling LDSprobe() with an increasing number of allowed dis-
crepancies (Line 6), starting with no discrepancy (Line 2).
Unless the current state is a leaf of the tree (Line 9), LDS-
probe() generates its successors and recursively calls itself on
them. If the maximum number of allowed discrepancies is
zero, then only the sub-tree below the best successor is vis-
ited with no discrepancy allowed (Line 12). Otherwise, the
sub-tree under the worst successor is visited with one less
discrepancy allowed (since one was just consumed, Line 14),
then the sub-tree under the best successor is visited with the
same number of allowed discrepancies (since none was con-



1. procedure LDS(sstart , h(.)): path length
2. discrepancies := 0
3. while ( true ) do
4. cost := LDSprobe(sstart , 0, discrepancies , h(.))
5. if ( cost < ∞ ) then return cost
6. discrepancies := discrepancies + 1
7. end while

8. procedure LDSprobe(state, depth , discrepancies , h(.)): path length
9. if ( state is a leaf ) then return ∞

10. else 〈best, second〉 := generateSuccessors(state)
11. if ( (best = sgoal ) or (second = sgoal ) ) then return depth + 1
12. if ( discrepancies = 0 ) then return LDSprobe(best , depth + 1, 0, h(.))
13. else
14. cost := LDSprobe(second , depth + 1, discrepancies − 1, h(.))
15. if ( cost < ∞ ) then return cost
16. return LDSprobe(best , depth + 1, discrepancies , h(.))

Figure 2: Original Limited Discrepancy Search

1. procedure GLDS(sstart , h(.)): pathlength
2. discrepancies := 0; hashtable := {sstart}
3. while ( true ) do
4. pathlength := GLDSprobe(sstart , 0, discrepancies , h(.))
5. if ( pathlength < ∞ ) then return pathlength
6. discrepancies := discrepancies + 1
7. end while

8. procedure GLDSprobe(state, depth , discrepancies , h(.)): path length
9. SET := ∅

10. for each successor s of state do
11. if ( s = sgoal ) then return depth + 1
12. if ( s /∈ hashtable ) then SET := SET ∪ {s}
13. end for
14. if ( SET = ∅ ) then return ∞
15. if ( hashtable has only one empty slot ) then return ∞
16. best := arg min

s∈SET { h(s) }
17. if ( discrepancies = 0 ) then
18. hashtable := hashtable ∪ {best}
19. pathlength := GLDSprobe(best , depth + 1, 0, h(.))
20. else
21. SET := SET\{best}
22. while ( SET 6= ∅ ) do
23. state := arg min

s∈SET { h(s) }
24. SET := SET\{state}
25. hashtable := hashtable ∪ {state}
26. pathlength := GLDSprobe(state, depth + 1, discrepancies − 1,

h(.))
27. hashtable := hashtable\{state}
28. if ( pathlength < ∞ ) then return pathlength
29. end while
30. hashtable := hashtable ∪ {best}
31. pathlength := LDSprobe(best , depth + 1, discrepancies , h(.))
32. hashtable := hashtable\{best}
33. return pathlength

Figure 3: Generalized Limited Discrepancy Search

sumed at the current level by following the heuristic recom-
mendation, Line 16). LDS terminates when it generates the
goal state (Line 11).

3.2 Generalized Limited Discrepancy Search
To apply LDS to beam search, we need to generalize it from
binary trees to arbitrary graphs. First, LDS must be able to
handle branching factors that are nonuniform and larger than
two. Second, LDS must be able to avoid cycles. GLDS (Gen-
eralized Limited Discrepancy Search) addresses the first is-
sue by picking a successor s of a given state with a smallest
heuristic value h(s). Choosing any other successor is counted
as one discrepancy, and the successors are tried from left to
right. GLDS addresses the second issue by performing cy-
cle detection with a hash table and not generating successors
that are already in the hash table. Figure 3 shows the pseudo
code for GLDS. The top-level function GLDS() repeatedly
performs generalized limited discrepancy searches from the
start state (Line 4) by calling GLDSprobe() with an increasing
number of allowed discrepancies (Line 6), starting with no
discrepancy (Line 2). GLDSprobe() performs a generalized

1. procedure BULB(sstart , h(.), B): path length
2. discrepancies := 0; g(sstart) := 0; hashtable := {sstart}
3. while ( true ) do
4. pathlength := BULBprobe( 0, discrepancies , h(.), B)
5. if ( pathlength < ∞ ) then return pathlength
6. discrepancies := discrepancies + 1
7. end while

8. procedure BULBprobe(depth , discrepancies , h(.), B): path length
9. 〈SLICE, value, index〉 := nextSlice(depth , 0, h(.), B)

10. if ( value ≥ 0 ) then return value
11. if ( discrepancies = 0 ) then
12. if ( SLICE = ∅ ) then return ∞
13. pathlength := BULBprobe(depth + 1, 0, h(.), B)
14. for each s in SLICE do hashtable := hashtable\{s} end for
15. return pathlength
16. else
17. if ( SLICE 6= ∅ ) then
18. for each s in SLICE do hashtable := hashtable\{s} end for
19. while ( true ) do
20. 〈SLICE, value, index〉 := nextSlice(depth , index , h(.), B)
21. if ( value ≥ 0 ) then
22. if ( value < ∞ ) then return value
23. else break
24. if ( SLICE = ∅ ) then continue
25. pathlength := BULBprobe(depth +1, discrepancies − 1, h(.), B)
26. for each s in SLICE do hashtable := hashtable\{s} end for
27. if ( pathlength < ∞ ) then return pathlength
28. end while
29. 〈SLICE, value, index〉 := nextSlice(depth , 0, h(.), B)
30. if ( value ≥ 0 ) then return value
31. if ( SLICE = ∅ ) then return ∞
32. pathlength := BULBprobe(depth + 1, discrepancies , h(.), B)
33. for each s in SLICE do hashtable := hashtable\{s} end for
34. return pathlength

35. procedure nextSlice(depth ,index ,h(.),B): 〈 array of states, integer, integer 〉
36. currentlayer := {s ∈ hashtable | g(s) = depth}
37. SUCCS := generateNewSuccessors(currentlayer , h(.))
38. if ( (SUCCS = ∅) or (index = |SUCCS|) ) then return 〈∅, ∞,−1〉
39. if ( sgoal ∈ SUCCS ) return 〈∅, depth + 1, −1〉
40. SLICE := ∅; i := index
41. while ( (i < |SUCCS|) and (|SLICE| < B) ) do
42. if ( SUCCS[i] /∈ hashtable ) then
43. g(SUCCS[i]) := depth; SLICE := SLICE ∪ {SUCCS[i]}
44. hashtable := hashtable ∪ {SUCCS[i]}
45. if ( hashtable is full ) then
46. for each s in SLICE do hashtable := hashtable\{s} end for
47. return 〈∅, ∞,−1〉
48. i := i + 1
49. end while
50. return 〈SLICE, −1, i〉

51. procedure generateNewSuccessors(stateset , h(.)): array of states
52. index := 0
53. for each state in stateset do
54. for each successor s of state do
55. if ( s /∈ hashtable ) then
56. SUCCS[index ] := s; index := index + 1
57. end for
58. end for
59. Sort states in SUCCS in order of increasing h(.)-values
60. return SUCCS

Figure 4: BULB

limited discrepancy search from a given state for a given num-
ber of allowed discrepancies. First, it generates all successors
of the state that are not already in the hash table (Lines 9-13).
It backtracks if the goal state is found (Line 11), there are no
successors (Line 14), or the hash table is full (Line 15). Oth-
erwise, it identifies the best successor as one with a smallest
heuristic value (Line 16). If the number of allowed discrep-
ancies is zero, then GLDSprobe() calls itself on the best suc-
cessor with no allowed discrepancies (Line 19). Otherwise,
GLDSprobe() calls itself repeatedly on the remaining succes-
sors with one less allowed discrepancy (Line 26) and then
calls itself on the best successor with the same number of al-
lowed discrepancies (Line 31).

3.3 BULB
BULB (Beam search Using Limited discrepancy Backtrack-
ing) combines beam search with GLDS. Figure 4 shows the



Table 2: Taxonomy of Search Methods
beam width type of backtracking

none chronological limited discrepancy

1 greedy search guided limited discrepancy search
(gradient descent) depth-first search (LDS/GLDS)

intermediate beam depth-first beam search beam search using limited
values search (DB) discrepancy backtracking (BULB)

∞
breadth-first breadth-first breadth-first

search search search

pseudo code for BULB. The top-level function BULB() is
basically identical to GLDS(). The function BULBprobe()
performs beam search with generalized limited discrepancy
search for a given number of allowed discrepancies. It first
generates the first slice of the next level (Line 9). If the
slice contains a goal state, the slice is empty, the subtree has
been searched exhaustively, or the hash table (which stores
the beam) is full, then it aborts (Lines 10 and 12). If the num-
ber of allowed discrepancies is zero (Line 11) and the slice is
not empty (Line 12), then BULBProbe() calls itself with no
allowed discrepancies (Line 13), and clears the hash table of
the slice (Line 14). Otherwise, BULBProbe() clears the hash
table of the slice (Line 18), calls itself repeatedly on the re-
maining slices with one less allowed discrepancy (Line 25)
and then calls itself on the best slice with the same number
of allowed discrepancies (Line 32). The function nextSlice()
generates a successor slice for a slice that is already in the
hash table at a given depth. It first locates the given slice
(Line 36), generates all successors of its states (Line 37), and
then locates the slice of the given index within the successors.
It does this by inserting successors into both an empty slice
(Line 43) and the hash table (Line 44), starting with the suc-
cessor at the given index (Line 40), until either B successors
have been inserted into the slice or the end of the layer has
been reached (Line 41). If the hash table is full (Line 45),
then it clears the hash table of the incomplete slice (Line 46)
and aborts (Line 47). The function generateNewSuccessors()
generates the successors s of a given set of states that are
not already in the hash table and sorts them in order of in-
creasing heuristic values h(s). (The successors can contain
duplicates.)

3.4 Properties of BULB
Heuristic search methods that repeatedly fill up and purge
memory can be rather complicated [Chakrabarti et al., 1989;
Russell, 1992; Kaindl and Khorsand, 1994; Zhou and
Hansen, 2002]. In contrast, BULB is relatively simple be-
cause it purges contiguous regions of memory and is only an
approximation algorithm that does not necessarily find short-
est paths. Table 2 shows a taxonomy of search methods.
BULB generalizes beam search to beam search with back-
tracking, limited discrepancy search to beam widths larger
than one, and breadth-first search to beam widths smaller than
infinity.

• The memory consumption of BULB is O(Bd), where
d is the maximum search tree depth. This is achieved
by only storing one slice for each level, which requires
BULB to re-generate all successors of the states of a
slice every time it backtracks. The resulting small mem-
ory consumption allows for deeper searches with wider

beams. (Other linear-space search methods often store
the siblings of states as well, which makes it unnec-
essary to re-generate the successors of states but in-
creases the memory consumption substantially.) BULB
is a memory-bounded search method and thus contin-
ues its search after memory runs out by purging states
from memory, resulting in a complete search method.
This means that BULB finds a path as long as there is
one with a length of the maximum search tree depth or
smaller, which approximately equals M/B, where M
is the memory capacity measured by the maximal num-
ber of states one can store. BULB thus improves on
beam search, which is incomplete, and on breadth-first
search, which is complete but whose maximum search
tree depth approximately equals logb(M), where b is the
average branching factor of the search tree, and can thus
solve only smaller search problems than BULB.

• The runtime of BULB is often small. In fact, BULB
frequently finds a path without any backtracking or with
only a very limited amount of backtracking. It also elim-
inates all cycles (loops) and some transpositions (differ-
ent paths from the start state to a given state), which
are often responsible for the large runtimes of depth-
first search. BULB, as a generalization of breadth-first
search, eliminates all cycles since it never generates
states that are already in the hash table. BULB does not
make any effort at eliminating transpositions. Neverthe-
less, BULB, as a generalization of beam search, elim-
inates some transpositions since it does not re-expand
states that are already in its beam.

4 Experimental Evaluation
We now present an experimental study of BULB in three stan-
dard benchmark domains: the N-Puzzle, the 4-Peg Towers
of Hanoi and the Rubik’s Cube. Note that our figures show
graphs only for search methods that were able to solve all
random problem instances since we are interested in increas-
ing the number of solved problem instances to one hundred
percent. Additional results are reported in [Furcy, 2004].

4.1 N-Puzzle
Our first benchmark domain was the N-Puzzle, as already de-
scribed in the context of Table 1. Beam search solved all
problem instances of small N-Puzzles with a small average
path length and did so in fractions of a second. It is there-
fore not surprising that neither DB nor BULB significantly
improved on beam search for N smaller than 48. The sit-
uation was different for the 48-Puzzle. DB did not signifi-
cantly improve on beam search for the 48-Puzzle either. On
the other hand, BULB was able to solve all problem instances
with a beam width of 10,000 while beam search was only
able to solve all problem instances with beam widths of 10
or smaller. BULB was able to find paths of average length
440 with this beam width while beam search was only able
to find paths of average length 11,737 with beam widths that
allowed it to solve all problem instances (for B = 5, which
is not shown in Table 1). Thus, BULB was able to reduce
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Figure 5: BULB on the 48-Puzzle (B Varies)
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the path length or, synonymously, solution cost by a fac-
tor of about 25. At the same time, the average runtime of
BULB was still on the order of 30 seconds on a Pentium 4
PC clocked at a 2.2 GHz. Figure 5 contains detailed data
points about BULB. Since BULB generates states in exactly
the same order as beam search, the graphs of BULB simply
extend the ones of beam search to larger beam widths. For the
80-Puzzle and a memory capacity of 3,000,000 states, there

Table 3: Beam Search on the Towers of Hanoi
B Path Generated Stored Runtime Problems

Length States States (Seconds) Solved
1 N/A N/A N/A N/A 0 %
5 37,775.12 730,901 188,860 0.306 68 %

10 33,489.26 1,261,982 334,850 0.581 46 %
50 8,468.59 1,619,300 423,103 0.900 68 %

100 4,629.57 1,784,654 462,443 1.012 70 %
500 1,363.59 2,632,408 678,792 1.855 74 %

1,000 831.90 3,196,242 824,784 2.388 58 %
5,000 N/A N/A N/A N/A 0 %

was no beam width that allowed beam search to solve all 50
random problem instances but BULB was able to solve them
for a wide range of beam widths. The smallest average run-
time of BULB with a beam width that solved all problem in-
stances was about 12 seconds. It was obtained with a beam
width of 6 and resulted in an average path length of about
181,000. A larger beam width of 20,000, that still solved
all problem instances, increased its average runtime to about
120 seconds but reduced the average path length to 1,130,
which is less than 5 times the shortest path length. Figure 6
shows that BULB was also able to improve the average path
length of two multi-state commitment search methods for the
48-Puzzle by at least one order of magnitude with an aver-
age runtime of only about 20 seconds. These alternatives to
beam search are MSC-KWA* [Furcy and Koenig, 2005], a
combination of KWA* [Felner et al., 2003] and MSC-WA*
[Kitamura et al., 1998], and MSC-KRTA* [Furcy, 2004], a
combination of KWA* [Felner et al., 2003], MSC-WA* [Ki-
tamura et al., 1998] and RTA* [Korf, 1990].

4.2 Towers of Hanoi
Our second benchmark domain was the 4-Peg Towers of
Hanoi. We created 50 random problem instances with 22
disks in which the goal state had all disks stacked on one
peg. We set the memory capacity to 1,000,000 states and
used a pattern database similar to that of [Felner et al., 2004]
as the heuristic function. Table 3 shows that, similarly to the
48-Puzzle, beam search with large beam widths solved many
problem instances, and the average length of the paths found
was short. However, there was no beam width that allowed
beam search to solve all 50 random problem instances (which
is the reason why Figure 7 contains no graphs for beam
search) but BULB was able to solve them for a wide range
of beam widths. The smallest average runtime of BULB with
a beam width that solved all problem instances was about 1.5
seconds. It was obtained with a beam width of 40 and re-
sulted in an average path length of about 10,000. A larger
beam width of 1,000, that still solved all problem instances,
increased its average runtime to about 7 seconds but reduced
the average path length to about 870. Figure 7 contains de-
tailed data points about BULB.

4.3 Rubik’s Cube
Our third benchmark domain was the Rubik’s Cube. We cre-
ated 50 random problem instances in which the goal state was
the original configuration of the cube. We set the memory ca-
pacity to 1,000,000 states and used the pattern databases from
[Korf, 1997] as the heuristic function. Beam search was only
able to find paths of average length 55.18 with beam widths
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Table 4: Beam Search on the Rubik’s Cube
B Path Generated Stored Runtime Problems

Length States States (Seconds) Solved
10 53,909.26 7,146,960 539,084 14.965 38 %
50 3,882.35 2,570,677 194,036 5.224 98 %

100 1,679.76 2,223,466 167,795 4.349 98 %
500 394.84 2,596,065 196,182 5.168 100 %

1,000 259.80 3,398,726 257,058 6.798 98 %
5,000 78.02 4,895,297 373,602 9.977 100 %

10,000 52.33 6,332,050 486,767 13.087 98 %
50,000 21.40 10,848,794 866,741 23.256 10 %

100,000 N/A N/A N/A N/A 0 %

that allowed it to solve all problem instances (for B = 7, 000,
which is not shown in Table 4), which is similar to the av-
erage path length found by a recent powerful Rubik’s Cube
solver based on macro-operators, even though this Rubik’s
Cube solver uses both a larger number of pattern databases to
build the macro-operators and a post-processing step on the
paths it finds [Hernádvölgyi, 2001]. Beam search solved all
50 problem instances for several beam widths but BULB was
able to solve them for all tested beam widths. BULB with a
beam width of 30,000 solved all problem instances and found
an average path length of 30.14 with an average runtime of
about 40 seconds. This average path length is already smaller
than the one of the Rubik’s Cube solver mentioned above,
even though BULB is a domain-independent search method
without any pre- or post-processing and used only about 120
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Figure 8: BULB on the Rubik’s Cube (B Varies)

MBytes of memory in our experiments (86 MBytes for the
pattern database and 32 MBytes for the hash table). BULB
with a beam width of 40,000 found a path of length 25.78
with an average runtime of about 2 minutes. A larger beam
width of 50,000, that still solved all problem instances, in-
creased its average runtime to about 7 minutes but reduced
the average path length to about 22.74. Figure 8 contains de-
tailed data points about BULB.

5 Related Work
Existing variants of beam search differ from BULB in that
they either 1) use no backtracking at all or 2) use chrono-
logical backtracking. In the first category, diversity beam
search [Shell et al., 1994] deals with imperfect heuristic val-
ues by introducing diversity at all levels of the search tree.
It differs from BULB in that it is incomplete and requires
additional knowledge to measure the level of dissimilarity
among states. Divide-and-conquer beam search [Zhou and
Hansen, 2004] does not store all of the beam in memory. In-
stead, it purges some of its slices from memory and uses a
divide-and-conquer strategy to reconstruct the path after it
finds a goal state, which makes backtracking impossible, at
least on the parts of the beam that have been purged from
memory. In the second category, band search [Chu and Wah,
1992] is the search method most similar to BULB. It differs



from BULB in that it extends beam search with chronological
backtracking and is designed for search trees. It does not de-
tect loops and therefore performs best for small search prob-
lems. Complete anytime beam search [Zhang, 1998] does not
extend beam search but depth-first search. It uses chronologi-
cal backtracking (with a beam width of one) while iteratively
weakening its pruning rule. Like all depth-first search meth-
ods, it performs best on finite trees of shallow depths with
large goal densities (such as travelling salesperson problems),
which are very different from our benchmark domains.

6 Conclusion
In this paper, we developed BULB (Beam search Using Lim-
ited discrepancy Backtracking), a memory-bounded search
method that generalizes beam search to beam search with
backtracking, limited discrepancy search to beam widths
larger than one, and breadth-first search to beam widths
smaller than infinity. BULB makes beam search complete
(provided that there is sufficient memory to store the beam
along a shortest path from the start state to a goal state), tends
to find shorter paths than beam search because it is able to
use larger beam widths without running out of memory, and
can be transformed into an admissible anytime algorithm, for
example, by letting it continue its search after it has found a
path, resulting in an anytime extension of beam search that is
similar in spirit to the anytime extension of WA* described
in [Hansen et al., 1997]. BULB outperformed beam search
and variants of WA* in our experiments, solved all of our
test problems for the 80-Puzzle, and resulted in a state-of-the-
art Rubik’s Cube solver without any pre- or post-processing,
even though it is a domain-independent search method. It is
future work to enhance BULB with more complex variants
of beam search, for example, variants that change the beam
width during the search. It is also future work to enhance
BULB with more complex variants of backtracking, for ex-
ample, variants that give a higher priority to decisions close
to the top of the search tree than decisions close to the bot-
tom of the search tree, variants that use depth-bounded dis-
crepancy search [Walsh, 1997] or variants that calculate the
discrepancies differently.
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