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Abstract

We report on a successful experiment of computer-
aided theorem discovery in the area of logic pro-
gramming with answer set semantics. Specifically,
with the help of computers, we discovered exact
conditions that capture the strong equivalence be-
tween a set of a rule and the empty set, a set of a
rule and another set of a rule, a setS of two rules
and a subset ofS with one rule, a set of two rules
and a set of another rule, and a setS of three rules
and a subset ofS with two rules. We prove some
general theorems that can help us verify the correct-
ness of these conditions, and discuss the usefulness
of our results in program simplification.

1 Introduction
This paper makes two contributions. First, it reports on a
successful experiment of computer-aided theorem discovery
in logic programming with answer set semantics. Second, it
contributes to the theory and practice of logic programming
in that the discovered theorems that capture certain classes of
strongly equivalent logic programs are new, non-trivial, and
lead to new program simplification rules that preserve strong
equivalence.

Theorem discovery is a highly creative human process.
Generally speaking, we can divide it into two steps: (i) con-
jecture formulation, and (ii) conjecture verification, and com-
puters can help in both of these two steps. For instance, ma-
chine learning tools can be used in the first step, i.e. in com-
ing up with reasonable conjectures, and automated deduction
tools can be used in the second step, i.e. in verifying the cor-
rectness of these conjectures.

While theorem discovery may make use of learning, these
two tasks are fundamentally different. Theorem discovery
starts with a theory, and aims at findinginteresting con-
sequences of the theory, while learning is mostly about
induction, i.e. it starts with examples/consequences, and
aims at finding a theory that would explain the given exam-
ples/consequences.
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Using computers to discover theorems is an old aspira-
tion. There have been many success stories. For instance,
AM [Lenat, 1979] was reported to be able to come up with
some interesting concepts and theorems in number theory,
and the remarkable system described in[Petkovseket al.,
1996] automates the discovery and proofs of identities, espe-
cially hypergeometric identities involving sums of binomial
coefficients that are important for the analyses of algorithms.
Yet another example where “interesting” theorems can be dis-
covered almost fully automatically is a recent work by Lin
[2004] on discovering state invariants in planning domains.
Lin showed that there are ways to classify potentially inter-
esting constraints according to their syntactic properties, and
these constraints can be easily enumerated for most domains.
Furthermore, for many of these constraints whether they are
invariants can be checked automatically. As a result, the sys-
tem described in[Lin, 2004] could discover many common
invariants in planning domains, and for the logistics domain,
it could even discover a set of “complete” state invariants.

In this paper, we consider the problem of discovering theo-
rems about strongly equivalent logic programs under answer
set semantics.

The notion of strongly equivalent logic programs is inter-
esting for a variety of reasons. For instance, as Lifschitzet
al. [2001] noted, if two sets of rules are strongly equivalent,
then one can be replaced by the other in any logic program re-
gardless of the context. Thus identifying strongly equivalent
sets of rules is a useful exercise that may have applications
in program simplification, and the purpose of this paper is
to discover conditions under which a set of rules is strongly
equivalent to another. It is important that these conditions
need to be computationally effective as in general checking
if two sets of rules are strongly equivalent is coNP-complete
(c.f.[Lin, 2002]).

To discover these conditions, we follow the methodology
of [Lin, 2004] by looking at domains of small sizes first. For
instance, to discover for what kinds of rulesr1 and r2 we
have that{r1} is strongly equivalent to{r2}, we consider
a language with, say three atoms, and enumerate all possible
pairs of rules in this language that are strongly equivalent. We
then conjecture a condition that would capture exactly this set
of pairs of rules, and then try to verify if this conjecture is
true in the general case. In[Lin, 2004], a general theorem
is proved to automate the verification part. We try to do the



same here by proving some general theorems that will make
the verification part easier, almost semi-automatic.

This paper is organized as follows. In the next section, we
briefly review the basic concepts of logic programming under
answer set semantics. Then in section 3 we state in more pre-
cise terms the type of theorems that we want to discover. In
section 4 we prove some general theorems that will help us
prove these theorems, and in section 5, we describe some of
the theorems that we discovered. We then discuss an applica-
tion to logic program simplification in section 6, and finally
we conclude this paper in section 7.

2 Logic programming with answer set
semantics

Let L be a propositional language, i.e. a set of atoms. In
this paper we shall consider logic programs with rules of the
following form:

h1; · · · ;hk ← p1, · · · , pm, not pm+1, · · · , not pn (1)

wherehi’s andpi’s are atoms inL. So a logic program here
can have default negation (not ), constraints (whenk = 0),
and disjunctions in the head of its rules. In the following,
if r is a rule of the above form, we writeHdr to denote
the set{h1, ..., hk}, Psr the set{p1, ..., pm}, andNgr the
set {pm+1, ..., pn}. Thus a ruler can also be written as
Hdr ← Psr, not Ngr. The semantics of these programs are
given by answer sets as defined in[Gelfond and Lifschitz,
1991]. To save space, we do not give the definition here.

Two such logic programsP1 andP2 are said to beequiva-
lent if they have the same answer sets, andstrongly equivalent
[Lifschitz et al., 2001] (under the languageL) if for any logic
programP in L, P ∪ P1 andP ∪ P2 are equivalent. For ex-
ample,{a← b} and{a← c} are equivalent, but not strongly
equivalent. It can be shown that{a← not a} and{← not a}
are strongly equivalent.

Lifschitz et al. [2001] showed that checking for strong
equivalence between two logic programs can be done in the
logic of here-and-there, a three-valued non-classical logic
somewhere between classical logic and intuitionistic logic.
Lin [2002] provided a mapping from logic programs to
propositional theories and showed that two logic programs
are strongly equivalent iff their corresponding theories in
propositional logic are equivalent. This result will be used
here both for generating example pairs of strongly equivalent
logic programs, and for verifying a conjecture. We repeat it
here.

Let P1 andP2 be two finite logic programs, andL the set
of atoms in them.
Theorem 1 [Lin, 2002] P1 andP2 are strongly equivalent iff
in propositional logic, the following sentence is valid:

(
∧
p∈L

p ⊃ p′) ⊃ [
∧

r∈P1

δ(r) ≡
∧

r∈P2

δ(r)], (2)

where for eachp ∈ L, p′ is a new atom, and for each ruler
of the form (1),δ(r) is the conjunction of the following two
sentences:

p1 ∧ · · · ∧ pm ∧ ¬p′m+1 ∧ · · · ∧ ¬p′n ⊃ h1 ∨ · · · ∨ hk, (3)

p′1 ∧ · · · ∧ p′m ∧ ¬p′m+1 ∧ · · · ∧ ¬p′n ⊃ h′
1 ∨ · · · ∨ h′

k. (4)

Notice that ifm = n = 0, then the left sides of the implica-
tions in (3) and (4) are considered to betrue, and if k = 0,
then the right sides of the implications in (3) and (4) are con-
sidered to befalse.

3 The problem
As we mentioned above, one possible use of the notion of
strongly equivalent logic programs is in program simplifica-
tion. For instance, given a logic program, for each ruler
in it, we may ask whether it can be deleted without know-
ing what other rules are inP , i.e. whether{r} is strongly
equivalent to the empty set. Or we may ask whether a
rule r in P can be deleted if one knows that another rule
r′ is already inP , i.e. whether{r, r′} is strongly equiva-
lent to {r′}. In general, we may ask the followingk-m-n
question: Is{r1, ..., rk, u1, ..., um} strongly equivalent to
{r1, ..., rk, v1, ..., vn}? Thus our theorem discovery task is
to come up, for a givenk-m-n problem, a computationally
effective condition that holds if and only if the answer to the
k-m-n question is positive.

Now suppose we have such a conditionC, and suppose
that when{r1, ..., rk, u1, ..., um} is strongly equivalent to
{r1, ..., rk, v1, ..., vn}, it is better to replace{u1, ..., um} by
{v1, ..., vn} in the presence ofr1, ..., rk for the purpose of,
say computing the answer sets of a program. One way to use
this result to simplify a given programP is to first choosek
rules inP , and for any otherm rules in it, try to findn rules
so that the conditionC holds, and then replace them rules in
P by the simplern rules.

However, even if checking whetherC holds would take
a negligible constant time, using the above procedure to
simplify a given logic program will be practical only when
k,m, n are all very small or whenk is almost the same as the
number of the rules in the given program, andm andn are
very small. Thus it seems to us that it is worthwhile to solve
thek-m-n problem only whenk,m, n are small. In particu-
lar, in this paper, we shall concentrate on the0-1-0 problem
(whether a rule can always be deleted), the0-1-1 problem
(whether a rule can always be replaced by another one), the
1-1-0 problem (in the presence of a rule, whether another rule
can be deleted), the2-1-0 problem (in the presence of two
rules, whether a rule can always be deleted), and the0-2-1
problem (if a pair of rules can be replaced by a single rule).

An example of theorems that we want to discover about
these problems is as follows:

For any ruler, {r} is strongly equivalent to the
empty set∅ iff (Hdr ∪Ngr) ∩ Psr 6= ∅. (∗)

4 Some General Theorems
In this section, we prove some general theorems that will help
us verify whether an assertion like (∗) above is true.

Let L be a propositional language, i.e. a set of atoms.
From L, construct a first-order languageFL with equality,
two unary predicatesH1 andH2, three unary predicatesHdr,
Psr, andNgr for each logic program ruler in L (we assume
that each rule inL has a unique name), and three unary pred-
icatesXi, Yi, andZi for each positive numberi.



Notice that we have usedHdr, Psr, andNgr to denote sets
of atoms previously, but now we overload them as unary pred-
icates. Naturally, the intended interpretations of these unary
predicates are their respective sets.

Definition 1 Given a setL of atoms, anintended modelof
FL is one whose domain isL, and for each ruler in L, the
unary predicatesPsr, Hdr, andNgr are interpreted by their
corresponding sets of atoms,Psr, Hdr, andNgr, respectively.

Conditions on rules inL, such asPsr ∩ Ngr 6= ∅, will be
expressed by special sentences calledpropertiesin FL.
Definition 2 A sentence ofFL is a property aboutn rules
if it is constructed from equality and predicatesXi, Yi, and
Zi, 1 ≤ i ≤ n. A propertyΦ aboutn rules is true (holds)
on a sequenceP = [r1, ..., rn] of n rules if Φ[P ] is true in
an intended model ofFL, whereΦ[P ] is obtained fromΦ by
replacing eachXi byHdri , Yi byPsri , andZi byNgri .
Notice that sinceΦ[P ] does not mention predicatesXi, Yi,
Zi, H1, andH2, if it is true in one intended model, then it is
true in all intended models.

As we have mentioned above, we are interested in captur-
ing the strong equivalence between two programs by a com-
putationally effective condition. More specifically, for some
smallk, m, andn, we are interested in finding a propertyΦ
aboutk+m+n rules such that for any sequence ofk+m+n
rules,P = [r1, ..., rk, u1, ..., um, v1, ..., vn],

{r1, ..., rk, u1, ..., um} and{r1, ..., rk, v1, ..., vn}
are strongly equivalent if and only ifΦ is true onP . (5)

We shall now prove some general theorems that can help us
verify the above assertion for a class of formulasΦ.

First of all, Theorem 1 can be reformulated inFL as fol-
lows by readingH1(p) as “p holds”, andH2(p) as “p′ holds”:

Theorem 2 P1 and P2 are strongly equivalent inL iff the
following sentence

∀x(H1(x) ⊃ H2(x)) ⊃ [
∧

r∈P1

γ(r) ≡
∧

r∈P2

γ(r)] (6)

is true in all intended models ofFL, whereγ(r) is the con-
junction of the following two sentences:

[∀x(Psr(x) ⊃ H1(x)) ∧ ∀x(Ngr(x) ⊃ ¬H2(x))] ⊃
∃x(Hdr(x) ∧H1(x)), (7)

[∀x(Psr(x) ⊃ H2(x)) ∧ ∀x(Ngr(x) ⊃ ¬H2(x))] ⊃
∃x(Hdr(x) ∧H2(x)). (8)

In first order logic, if a prenex formula of the form∃~x∀~yB
is satisfiable, then it is satisfiable in a structure withn ele-
ments, wheren is the length of~x if it is non-empty, and1
when~x is empty. We can prove a similar result for our first-
order languages and their intended models here.

From this and Theorem 2, we can show the following the-
orem which will enable us to automate the verification of the
“if” part of (5) when the propertyΦ is in the prenex format.

Theorem 3 Without loss of generality, supposem ≥ n. If Φ
is a property about k+m+n rules of the form∃~x∀~yQ, where
~x is a tuple ofw variables, andQ a formula that does not
have any quantifiers, then the following two assertions are
equivalent:

(a) For any sequence of k+m+n rules,P =
[r1, ..., rk, u1, ..., um, v1, ..., vn], if Φ is true on P ,
then {r1, ..., rk, u1, ..., um} is strongly equivalent to
{r1, ..., rk, v1, ..., vn}.

(b) (b.1) If n > 0, then for any sequenceP =
[r1, ..., rk, u1, ..., um, v1, ..., vn] of rules with at
most w + 2(k + m) atoms, if Φ is true on P ,
then {r1, ..., rk, u1, ..., um} is strongly equivalent
to {r1, ..., rk, v1, ..., vn}.

(b.2) If n = 0, then for any sequence
P = [r1, ..., rk, u1, ..., um] of rules with
at most K atoms, if Φ is true on P , then
{r1, ..., rk, u1, ..., um} is strongly equivalent to
{r1, ..., rk}, whereK is w +2k if w +2k > 0, and
K = 1 otherwise.

The “only if” part of (5) can often be proved with the help
of the following theorem.

Theorem 4 Let L1 andL2 be two languages, andf a func-
tion from L1 to L2. If P1 and P2 are two programs inL1

that are strongly equivalent, thenf(P1) and f(P2) are two
programs inL2 that are also strongly equivalent. Heref(P )
is obtained fromP by replacing each atomp in it by f(p).
Proof: By Theorem 1 and the fact that in propositional logic,
if ϕ is a tautology, andf a function fromL1 to L2, thenf(ϕ)
is also a tautology, wheref(ϕ) is the formula obtained from
ϕ by replacing each atomp in it by f(p).

For an example of using the theorems in this section for
proving assertions of the form (5), see Section 5.1.

5 Computer aided theorem discovery
Given ak-m-n problem, our strategy for discovering theo-
rems about it is as follows:

1. Choose a small language L;

2. Generate all possible triples

({r1, ..., rk}, {u1, ..., um}, {v1, ..., vn}) (9)

of sets of rules inL such that{r1, ..., rk, u1, ..., um} is
strongly equivalent to{r1, ..., rk, v1, ..., vn} in L;

3. Formulate a conjecture on thek-m-n problem that holds
in the languageL, i.e. a condition that is true for a triple
of the form (9) iff it is generated in Step 2;

4. Verify the correctness of this conjecture in the general
case.

This process may have to be iterated. For instance, a conjec-
ture came up at Step 3 may fail to generalize in Step 4, so
the whole process has to be repeated. Or we may start with
a languageL with, say three atoms but have to increase it to
five or six atoms later on.

Ideally, we would like this process to be automatic. How-
ever, it is difficult to automate Steps 3 and 4 - the number of
possible patterns that we need to examine in order to come
up with a good conjecture in Step 3 is huge, and we do not
have a general theorem that enables us to automate the verifi-
cation part in Step 4: while Theorem 3 enables us to automate



the proof of the sufficient part of the assertion (5) for a class
of formulasΦ, we do not have a similar result for the neces-
sary part. Theorem 4 helps, but it is not fully automatic yet.
Nonetheless, computers play a crucial role in all steps, and
in the following we report some of the theorems discovered
using the above procedure.

5.1 The0-1-0 problem
This problem asks if a given rule is strongly equivalent to the
empty set, thus can always be deleted from any program. We
have the following experimental result:

Lemma 1 If a rule r mentions at most three distinct atoms,
then{r} is strongly equivalent to∅ iff (Hdr∪Ngr)∩Psr 6= ∅.
Using Theorem 4, we can show the following result:

Lemma 2 If there is a ruler of the form (1) such that{r}
is strongly equivalent to∅ and (Hdr ∪ Ngr) ∩ Psr 6= ∅ is
not true, then there is such a rule that mentions at most three
atoms.

Proof: Suppose{r} is strongly equivalent to∅, Hdr ∩Psr =
∅, andPsr ∩ Ngr = ∅. SupposeL is the set of atoms inr,
anda, b, c are three new atoms. Let

f(p) =

{
a p ∈ Hdr

b p ∈ Psr

c otherwise

By Theorem 4,{f(r)} is also strongly equivalent to∅. By
the construction off , we also haveHdf(r) ∩Psf(r) = ∅, and
Psf(r) ∩ Ngf(r) = ∅, and thatf(r) mentions at most three
distinct atoms.

Theorem 5 (The0-1-0 problem) Lemma 1 holds in the gen-
eral case, i.e. without any restriction on the number of atoms
in r.

Proof: We notice that the condition in Lemma 1,(Hdr ∪
Ngr) ∩ Psr 6= ∅, is equivalent to the following property

∃x.(X1(x) ∨ Z1(x)) ∧ Y1(x)

being true on[r]. Thus the “if” part follows from Theorem 3
and Lemma 1. The “only if” part follows from Lemma 1 and
Lemma 2.

The “if” part of the theorem is already well-known, first
proved by Osorioet. al. [2001]. To the best of our knowl-
edge, the “only if” part is new.

We notice here that there is no need to consider the0-n-0
problem forn > 1, because for anyn, {r1, ..., rn} is strongly
equivalent to∅ iff for each1 ≤ i ≤ n, {ri} is strongly equiv-
alent to∅.

5.2 The1-1-0 and the0-1-1 problems
The 1-1-0 problem asks if a rule can always be deleted in
the presence of another rule, and the0-1-1 problem asks if a
rule can always be replaced by another one. We first solve
the1-1-0 problem, and the solution to the0-1-1 problem will
come as a corollary.

We have the following experimental result for the1-1-0
problem:

Lemma 3 For any two rulesr1 andr2 that mentions at most
three atoms,{r1, r2} and{r1} are strongly equivalent iff one
of the following two conditions is true:

1. {r2} is strongly equivalent to∅.
2. Psr1 ⊆ Psr2 , Ngr1 ⊆ Ngr2 , andHdr1 ⊆ Hdr2 ∪Ngr2 .

Lemma 4 If there are two rulesr1 andr2 such that{r1, r2}
and {r2} are strongly equivalent, but none of the two con-
ditions in Lemma 3 hold, then there are two such rules that
mention at most three atoms.

Theorem 6 (The1-1-0 problem) Lemma 3 holds in the gen-
eral case, without any restriction on the number of atoms in
r1 andr2.

Proof: The condition in Lemma 3 is equivalent to the follow-
ing property

[∃x.(X2(x) ∨ Z2(x)) ∧ Y2(x)] ∨
{[∀x.Y1(x) ⊃ Y2(x)] ∧ [∀x.Z1(x) ⊃ Z2(x)] ∧

[∀x.X1(x) ⊃ (X2(x) ∨ Z2(x))]}

being true on[r1, r2]. Thus the “if” part follows from
Theorem 3 and Lemma 3, by noticing that the above property
can be written as∃x∀~y.Q as required by Theorem 3. The
“only if” part follows from Lemma 3 and Lemma 4.

Thus if a ruler2 cannot be deleted on its own but can be
deleted in the presence of another ruler1, then it must be
the case thatr2 is redundant givenr1: if the body ofr2 is
satisfied, then the body ofr1 is satisfied as well; furthermore,
r2 can entail no more than what can be entailed byr1 (Hdr1 ⊆
Hdr2 ∪Ngr2).

Osorio et al. [2001] proved that{r1, r2} and {r1} are
strongly equivalent if eitherPsr1 ∪ Ngr1 = ∅ andHdr1 ⊆
Ngr2 or Psr1 ⊆ Psr2 , Ngr1 ⊆ Ngr2 , andHdr1 ⊆ Hdr2 .
More recently, Eiteret al. [2004] showed that{r1, r2} and
{r1} are strongly equivalent ifr1 s-impliesr2 [Wang and
Zhou, 2005], i.e. if there exists a setA ⊆ Ngr2 such that
Hdr1 ⊆ Hdr2 ∪A, Ngr1 ⊆ Ngr2 \A, andPsr1 ⊆ Psr2 .

As one can see, these are all special cases of the “if” part of
Theorem 6. Our result is actually more general. For instance,
these special cases do not apply to{(c ← b, not c), (←
b, not c)} and{c ← b, not c}, but one can easily show that
these two sets are strongly equivalent using our theorem.

From our solution to the1-1-0 problem, we can derive a
solution to the0-1-1 problem.

Theorem 7 (The0-1-1 problem) For any two rulesr1 and
r2, {r1} and {r2} are strongly equivalent iff one of the fol-
lowing two conditions is true:

1. {r1} and{r2} are both strongly equivalent to∅.
2. Psr1 = Psr2 , Ngr1 = Ngr2 , andHdr1 ∪Ngr1 = Hdr2 ∪

Ngr2 .

Proof: By Theorem 1, it is easy to see that{r1} and{r2}
are strongly equivalent iff{r1, r2} and {r1} are strongly
equivalent and{r1, r2} and{r2} are strongly equivalent.

Thus two rulesr1 andr2 can always be interchanged if ei-
ther both of them can be deleted (strongly equivalent to the



empty set) or they have the same body, and the same conse-
quences when the body is true. For instance,{a← B,not a}
and{← B,not a} are strongly equivalent no matter whatB
is, because the two rules have the same body, and when the
body is true, the same consequence - a contradiction. As an-
other example,{a; b← not a} and{b← not a} are strongly
equivalent because the two rules have the same body, and,
when the body is true, the same consequence,b.

5.3 The2-1-0, 0-2-1, and 0-2-2 problems

The2-1-0 problem asks if a rule can be deleted in the presence
of another two rules, the0-2-1 problem asks if two rules can
be replaced by a single rule, and the0-2-2 problem asks if
two rules can be replaced by another two rules. Similar to
the previous subsection, the solution to the0-2-1 and0-2-2
problems will follow from a solution to the2-1-0 problem.

We have the following experimental result for the2-1-0
problem:

Lemma 5 For any three rulesr1, r2 andr3 that mentions at
most six atoms,{r1, r2, r3} and{r1, r2} are strongly equiva-
lent iff one of the following four conditions is true:

1. {r3} is strongly equivalent to∅.
2. {r1, r3} is strongly equivalent to{r1}.
3. {r2, r3} is strongly equivalent to{r2}.
4. There is an atomp such that:

4.1 p ∈ (Psr1 ∪Psr2)∩ (Hdr1 ∪Hdr2 ∪Ngr1 ∪Ngr2)
4.2 Hdri

\ {p} ⊆ Hdr3 ∪Ngr3 andPsri
\ {p} ⊆ Psr3

andNgri
\ {p} ⊆ Ngr3 , wherei = 1, 2

4.3 If p ∈ Psr1 ∩Ngr2 , thenHdr1 ∩Hdr3 = ∅
4.4 If p ∈ Psr2 ∩Ngr1 , thenHdr2 ∩Hdr3 = ∅

Notice that in principle, given a languageL, every subset
of L can be theHd, Ps, orNg of a rule. Thus when the size of
L is six, there are in principle(26)3 − 1 = 262, 143 possible
rules, and262, 1433 triples of them. Thus at first glance, it
seems that verifying Lemma 5 experimentally using the cur-
rently available computers would be impossible. However,
we can cut the numbers down significantly with the results
that we already have proved. First, we only have to consider
rules that do not have common elements inHd, Ps, andNg: if
eitherHd andPs or Ps andNg have a common element, then
by Theorem 5, this rule can be deleted; ifHd andNg have
common elements, then according to Theorem 7, we obtain
a strongly equivalent rule by deleting the common elements
in Hd. Second, we do not have to consider isomorphic rules:
if there is a one-to-one onto function fromL to L that maps
{r1, r2, r3} to {r′1, r′2, r′3}, then these two sets of rules are
essentially the same except for the names of atoms in them.
By using a certain normal form for triples of rules that avoids
these redundant cases, we ended up with roughly 120 mil-
lion triples of rules to consider for testing Lemma 5, which
took about 10 hours on a Solaris server consisting of 8 Sun
Ultra-SPARC III 900Mhz CPUs with 8GB RAM.

The following lemma is the reason why we need to con-
sider a language with six atoms for this problem.

Lemma 6 If there are three rulesr1,r2 and r3 such that
{r1, r2, r3} and{r1, r2} are strongly equivalent, but none of
the four conditions in Lemma 5 hold, then there are three such
rules that mention at most six atoms.

Theorem 8 (The2-1-0 problem) Lemma 5 holds in the gen-
eral case, without any restriction on the number of atoms in
r1, r2, r3.

The conditions in Lemma 5 (Theorem 8) are rather com-
plex, and the reason why it is difficult to automate Step 3 of
the procedure at the beginning of the section. These condi-
tions capture all possible cases whenr3 is “subsumed” byr1

andr2, and are difficult to describe concisely by words. We
give some examples.

Consider the following three rules:r1: (a2 ← a1), r2:
(a3 ← not a1), and r3: (a3 ← not a2). We have that
{r1, r2, r3} and{r1, r2} are strongly equivalent because the
condition (4) in Lemma 5 holds.

However, if we changer3 into r′3 : a2 ← not a3, then
P1 = {r1, r2, r

′
3} andP2 = {r1, r2} are not strongly equiv-

alent: one could check that condition (4.3) in Lemma 5 does
not hold, and indeed, whileP2 ∪ {a1 ← a2} has a unique
answer set{a3}, P1 ∪ {a1 ← a2} has two answer sets{a3}
and{a1, a2}.

It is also easy to show by Theorem 8 thata3 ← not a2

is “subsumed” by{(a1; a2; a3 ←), (a2; a3 ← a1)}, and
a2; a3 ← is “subsumed” by{(a2 ← a1), (a3 ← not a1)}.

With the results that we have, the following theorem will
yield a solution to the0-2-1 problem.

Theorem 9 (the0-2-1 problem) For any three rulesr1, r2

andr3, {r1, r2} and{r3} are strongly equivalent iff the fol-
lowing three conditions are true:

1. {r1, r2, r3} and{r1, r2} are strongly equivalent.

2. {r1, r3} and{r3} are strongly equivalent.

3. {r2, r3} and{r3} are strongly equivalent.

For example,{(a2 ← a1, not a3), (a1; a2 ← not a3)}
is strongly equivalent to{a2 ← not a3}. While {(←
a2, a3), (← a3, not a2)} is strongly equivalent to{← a3},
{(a1 ← a2, a3), (a1 ← a3, not a2)} is not strongly equiva-
lent to{a1 ← a3}. Similarly, we have the following theorem

Theorem 10 (the0-2-2 problem) For any four rulesr1, r2,
r3, r4, {r1, r2} and {r3, r4} are strongly equivalent iff the
following four conditions are true:

1. {r1, r2, r3} and{r1, r2} are strongly equivalent.

2. {r1, r2, r4} and{r1, r2} are strongly equivalent.

3. {r3, r4, r1} and{r3, r4} are strongly equivalent.

4. {r3, r4, r2} and{r3, r4} are strongly equivalent.

6 Program simplification
We have mentioned that one possible use of the notion of
strongly equivalent logic programs is in simplifying logic
programs: ifP and Q are strongly equivalent, and thatQ
is “simpler” thanP , we can then replaceP in any program
that contains it byQ.



Most answer set programming systems perform some pro-
gram simplifications. However, only Smodels[Niemel̈a et
al., 2000] has a stand-alone front-end called lparse that can
be used to ground and simplify a given logic program. It
seems that lparse simplifies a grounded logic program by
computing first its well-founded model. It does not, how-
ever, perform any program simplification using the notion of
strong equivalence. For instance, lparse-1.0.13, the current
version of lparse, did nothing to the following set of rules:
{(a ← not b), (b ← not a), (a ← a)}. Nor does it replace
the first rule in the following program{(a ← not a), (a ←
not b), (b← not a)} by the constraint← not a.

It is unlikely that anyone would be intentionally writing
rules likea← a or b← a, not a. But these type of rules can
arise as a result of grounding some rules with variables. For
instance, the following is a typical recursive rule used in logic
programming encoding of the Hamiltonian Circuit problem
[Niemel̈a, 1999; Marek and Truszczynski, 1999]:

reached(X)← arc(Y,X), hc(Y, X), reached(Y ).

When instantiated on a graph with cyclic arcs likearc(a, a),
this rule generates cyclic rules of the formreached(X) ←
hc(X, X), reached(X). Unless deleted explicitly, these
rules will slow down many systems, especially those based
on SAT.

It is thus useful to consider using the results that we have
here for program simplification. Indeed, transformation rules
such as deleting those that contain common elements in their
heads and positive bodies have been proposed[Brass and Dix,
1999], and studied from the perspective of strong equiva-
lence[Osorio et al., 2001; Eiteret al., 2004]. Our results
add new such transformation rules. For instance, by Theo-
rem 7, we can delete those elements in the head of a rule that
also appear in the negation-as-failure part of the rule. Theo-
rems 6, 8, and 9 can also be used to define some new trans-
formation rules.

7 Concluding remarks and future work
Donald Knuth, in his Forward to[Petkovseket al., 1996], said

“Science is what we understand well enough to
explain to a computer. Art is everything else we
do. ...Science advances whenever an Art becomes
a Science. And the state of the Art advances too,
because people always leap into new territory once
they have understood more about the old.”

We hope that with this work, we are one step closer to making
discovering classes of strongly equivalent logic programs a
Science.

We have mentioned that the methodology used in this pa-
per is similar to that in[Lin, 2004]. In both cases, plau-
sible conjectures are generated by testing them in domains
of small sizes, and general theorems are proved to aid the
verification of these conjectures in the general case. How-
ever, while plausible conjectures are generated automatically
in [Lin, 2004], they are done manually here. While the verifi-
cations of most conjectures in[Lin, 2004] are done automat-
ically as well, they are done only semi-automatically here.
Overcoming these two weaknesses is the focus of our future

work. Specifically, we would like to make Step 3 of the pro-
cedure in Section 5 automatic, and prove a theorem similar
to Theorem 3 to automate the proofs of the “only if” parts
of theorems like Theorems 5 - 8, in the same way that The-
orem 3 makes the proofs of the “if” parts of these theorems
automatic. This way, we would be able to discover more in-
teresting theorems in this area, and more easily!
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