Discovering Classes of Strongly Equivalent Logic Programs

Fangzhen Lin Yin Chen
Department of Computer Science Software Institute
Hong Kong University of Science and Technology Sun Yat-Sen University
Clear Water Bay, Kowloon, Hong Kong Guangzhou, China
Abstract Using computers to discover theorems is an old aspira-

tion. There have been many success stories. For instance,
AM [Lenat, 1979 was reported to be able to come up with
some interesting concepts and theorems in number theory,
and the remarkable system describedPetkovseket al,
1994 automates the discovery and proofs of identities, espe-
cially hypergeometric identities involving sums of binomial
coefficients that are important for the analyses of algorithms.
Yet another example where “interesting” theorems can be dis-
covered almost fully automatically is a recent work by Lin
[2004 on discovering state invariants in planning domains.
Lin showed that there are ways to classify potentially inter-
esting constraints according to their syntactic properties, and
these constraints can be easily enumerated for most domains.
Furthermore, for many of these constraints whether they are
invariants can be checked automatically. As a result, the sys-
1 Introduction tem Qescri_bed irﬁL?n, 2004 _could discover many common
invariants in planning domains, and for the logistics domain,
This paper makes two contributions. First, it reports on at could even discover a set of “complete” state invariants.
successful experiment of computer-aided theorem discovery |, this paper, we consider the problem of discovering theo-

in Iog_ic programming with answer set semarjtics. Secon(_i ltems about strongly equivalent logic programs under answer
contributes to the theory and practice of logic programmingset semantics.
in that the discovered theorems that capture certain classes of

" | valent loai wivial and The notion of strongly equivalent logic programs is inter-
strongly equivalent 'ogic programs are néw, non-trivial, an esting for a variety of reasons. For instance, as Lifsciitz

lead to new program simplification rules that preserve strong, [2001 noted, if two sets of rules are strongly equivalent,

equivalence. then one can be replaced by the other in any logic program re-
Theorem discovery is a highly creative human process P y y 09ic prog

G I ki divide it i g gardless of the context. Thus identifying strongly equivalent

Generally speaking, we can divide it into two steps: (i) CON-ge5 of ryles is a useful exercise that may have applications
jecture formulat|pn, and (ii) conjecture ver|f|cat|o'n, and com-; - program simplification, and the purpose of this paper is

pﬁ_tersl can help 'nIbOth Og thesedt_/vo ﬁtefps. For instance, Mg giscover conditions under which a set of rules is strongly

chine learning tools can be used inthe first step, 1.€. In COMay jivalent to another. It is important that these conditions

ing up with reasonable conjectures, and automated deductiqiheq 1o he computationally effective as in general checking

tools can be used in t_he second step, i.e. in verifying the COfit two sets of rules are strongly equivalent is coNP-complete

rectness of these conjectures. éc f[Lin, 2002)

While theorem discovery may make use of learning, thes To discover these conditions, we follow the methodolo
two tasks are fundamentally different. Theorem discoverymc [Lin. 2004 by looking at domains of small sizes first Fogry
starts with a theory, and aims at findingteresting con- 'nstanée o digcover f%r what kinds of rules and We
sequences of the theory, while learning is mostly aboubave tha{t{ }is strongly equivalent tdrs} i\s/ve coTr?sider
induction, i.e. it starts with examples/consequences, ang’, - naua erbvith sa tr?rge gtoms and gﬁu’merate all possible
aims at finding a theory that would explain the given exam-__. guage with, say ! - alp
pairs of rules in this language that are strongly equivalent. We
ples/consequences. ; 2 :
then conjecture a condition that would capture exactly this set

*Our thanks to Yan Zhang for his comments on an earlier versiorPf pairs of rules, and then try to verify if this conjecture is

of this paper. This work was supported in part by HK RGC CERGtrue in the general case. [hin, 2004, a general theorem

HKUST6170/04E. is proved to automate the verification part. We try to do the

We report on a successful experiment of computer-
aided theorem discovery in the area of logic pro-
gramming with answer set semantics. Specifically,
with the help of computers, we discovered exact
conditions that capture the strong equivalence be-
tween a set of a rule and the empty set, a set of a
rule and another set of a rule, a $ebf two rules
and a subset of with one rule, a set of two rules
and a set of another rule, and a Setf three rules
and a subset of with two rules. We prove some
general theorems that can help us verify the correct-
ness of these conditions, and discuss the usefulness
of our results in program simplification.

same here by proving some general theorems that will makBotice that ifm = n = 0, then the left sides of the implica-

the verification part easier, almost semi-automatic. tions in (3) and (4) are considered to bewe, and if k = 0,
This paper is organized as follows. In the next section, wehen the right sides of the implications in (3) and (4) are con-

briefly review the basic concepts of logic programming undersidered to befalse.

answer set semantics. Then in section 3 we state in more pre-

cise_terms the type of theorems that we want to dispover. I3 The problem

section 4 we prove some general theorems that will help us)))

prove these theorems, and in section 5, we describe some 88 we mentioned above, one possible use of the notion of

the theorems that we discovered. We then discuss an applicatrongly equivalent logic programs is in program simplifica-

tion to logic program simplification in section 6, and finally tion. For instance, given a logic program, for each rule

we conclude this paper in section 7. in it, we may ask whether it can be deleted without know-
ing what other rules are i#®, i.e. whether{r} is strongly

2 Logic programming with answer set equivalent to the empty set. Or we may ask whether a

semantics rule r in P can be deleted if one knows that another rule

N) r’ is already inP, i.e. whether{r,r'} is strongly equiva-
Let L be a propositional language, i.e. a set of atoms. Inent to {+'}. In general, we may ask the followinigm-n
this paper we shall consider logic programs with rules of tthuestion: IS{r1, ..., "k, U1, ..., Uy} Strongly equivalent to
following form: {r1, ..., k01, ..., v, }? Thus our theorem discovery task is
his -3 hg < p1,, Pm,nOt Py, -+ -, notp, (1) to come up, for a giverk-m-n problem, a computationally
whereh;’s andp;’s are atoms in.. So a logic program here effective condition that holds if and only if the answer to the

can have default negationdt), constraints (wheit = 0), ~~7-n question is positive. »
and disjunctions in the head of its rules. In the following, NOW suppose we have such a conditioh and suppose
if - is a rule of the above form, we writéld, to denote that when{ri, .7y u1,....,un} is strongly equivalent to
the set{hy, ..., hy,}, Ps, the set{pi, ..., pn}, and Ng, the {r, ...,Tk,vll,...,vn}, it is better to replacéu, ..., u,, } by
set {pm+1,...,pn}. Thus a ruler can also be written as 1V1 -.,Un} in the presence of, ..., r; for the purpose of,
Hd, — Ps,, not Ng,.. The semantics of these programs areS&y computing the_answgr sets of a program. One way to use
given by answer sets as defined[@elfond and Lifschitz, thiS result to simplify a given prograf is to first choose
1991. To save space, we do not give the definition here. ~ fules inP, and for any other rules in it, try to findn rules
Two such logic program®, and P are said to bequiva- SO that the_ conditio@' holds, and then replace therules in
lentif they have the same answer sets, atidngly equivalent £ by the simplem rules.
[Lifschitz et al,, 2001 (under the languagg) if for any logic However, even if checking whethe&r holds would take
programP in L, P U P, andP U P, are equivalent. For ex- & negllglble_ constant time, using the abo_ve procedure to
ample,{a — b} and{a < c} are equivalent, but not strongly simplify a given logic program W!|| be practical only when
equivalent. It can be shown tht — not a} and{— nota} F m,nare all very small or wheh is almost the same as the
are strongly equivalent. number of the rul_es in the given program, amdan_dn are
Lifschitz et al. [2001] showed that checking for strong Very small. Thus it seems to us that it is worthwhile to solve
equivalence between two logic programs can be done in th&'€ k-m-n problem only wherk, m, n are small. In particu-
logic of here-and-there, a three-valued non-classical logi¢ah in this paper, we shall concentrate on the-0 problem
somewhere between classical logic and intuitionistic logic (whether a rule can always be deleted), ¢hé-1 problem
Lin [2009 provided a mapping from logic programs to (whether a ruIe_ can always be replaced by another one), the
propositional theories and showed that two logic programd -1-0 problem (in the presence of a rule, whether another rule
are strongly equivalent iff their corresponding theories inc@n be deleted), the-1-0 problem (in the presence of two
propositional logic are equivalent. This result will be usedrules, whether a rule can always be deleted), and)ibel
here both for generating example pairs of strongly equivalenProblem (if a pair of rules can be replaced by a single rule).
logic programs, and for verifying a conjecture. We repeat it An example of theorems that we want to discover about

here. these problems is as follows:
Let P, and P, be two finite logic programs, and the set For any ruler, {r} is strongly equivalent to the

of atoms in them. empty set) iff (Hd, U Ng,.) N Ps,. # (. (x)

Theorem 1 [Lin, 2004 P, and P, are strongly equivalent iff

in propositional logic, the following sentence is valid: 4 Some General Theorems
(/\ pop) D] /\ §(r) = /\ 5(r)], (2) Inthis section, we prove some general theorems that will help
pel repy reP; us verify whether an assertion like)(@bove is true.

where for eaclp € L, p’ is a new atom, and for each rute Let L be a propositional language, i.e. a set of atoms.

of the form (1),6(r) is the conjunction of the following two From L, construct a first-order language, with equality,

sentences: two unary predicate#l; and H,, three unary predicatdsd,.,

PLA - Apm A =Pyt Ao A=ply DhiVe--Vhg, (3) tP;]sr, andNg, for each logic program rulein L (we assume
, , , , , , at each rule irL has a unigue name), and three unary pred-
PN APy NPy Aeo- Amp, D hy VeV (8) jcatesX;, Vi, andZ; for each positive number

Notice that we have usefdd,., Ps,, andNg, to denote sets (a) For any sequence of k+m+n rules,P =

of atoms previously, but now we overload them as unary pred- — [r1, ..., Tk, U1, .oy U, V1, ..., Uy], if @ IS true on P,
icates. Naturally, the intended interpretations of these unary then {ry,...,rg, u1,...,un, } is strongly equivalent to
predicates are their respective sets. {r1y ey Ty V1, oey Un }

Definition 1 Given a setL of atoms, anintended modebf (b)(b.1) If n > 0, then for any sequence® =
Fy, is one whose domain iB, and for each rule- in L, the [F1y ooy Ty ULy oey U, U1, .oy U] OF rules with at
unary predicatesPs,., Hd,., and Ng, are interpreted by their mostw + 2(k + m) atoms, if® is true on P,
corresponding sets of atomBs,., Hd,., and Ng,., respectively. then {ry,...,rg, u1, ..., um } is strongly equivalent

Conditions on rules i, such asPs,. N Ng, # 0, will be to {ri, ..., 7k, 1, s Un }.
expressed by special sentences caiexgbertiesin F. (b.2) If n = 0, then for any sequence

= [r1,., Tk, UL, .., uy] Of rules with

Definition 2 A sentence of, is a property about: rules] ,
at most K atoms, if & is true on P, then

if it is constructed from equality and predicatés, Y;, and

Z;, 1 < i < n. A property® aboutn rules is true (holds) {ri,...;rg,u1, ..., um}t is strongly equivalent to
on a sequenc® = [rq,...,r,] of n rules if ®[P] is true in {r1,...,r}, whereK isw + 2k if w+2k > 0, and
an intended model of,, where®[P] is obtained from® by K =1 otherwise.

replacing eachX; by Hd,., Y; by Ps,.,, andZ; by Ng,. . The “only if” part of (5) can often be proved with the help

Notice that sinceb[P] does not mention predicates;, ¥;, of the following theorem.

Z,’, Hl, anng, if it is true in one intended mOdel, then it is Theorem 4 Let Ll and L2 be two |anguageS, anﬂ a func-
true in all intended models. . . tion from L, to L. If P, and P, are two programs inL;
~ As we have mentioned above, we are interested in captuthat are strongly equivalent, thef(P;) and f(P,) are two
ing the strong equivalence between two programs by a comprograms inL, that are also strongly equivalent. Heyd P)
putationally effective condition. More specifically, for some js obtained fromP by replacing each atomin it by f(p).

smallk, m, andn, we are interested in finding a propery . " .
Proof: By Theorem 1 and the fact that in propositional logic,
aboutk +m+n rules such that for any sequencéeief m+n if > is a tautology, and a function fromLi o Ly, then f (i)

rules,P = [, ..., Thy UL, ovy Un, UL, ooy Un)s is also a tautology, wherg(y) is the formula obtained from
{re, ity e un b and{ry, ., v, vn) © by replacing each atomin it by f(p). m
are strongly equivalent if and only @ is true onP. (5) _ o .
We shall now prove some general theorems that can help ug FOr @n example of using the theorems in this section for
verify the above assertion for a class of formulas proving assertions of the form (5), see Section 5.1.
First of all, Theorem 1 can be reformulated /i as fol- . .
lows by reading; (p) as “p holds”, andH, (p) as ' holds™ O Computer aided theorem discovery

Theorem 2 P; and P, are strongly equivalent irf. iff the ~ Given ak-m-n problem, our strategy for discovering theo-

fo“owing sentence rems about |t iS as fO||OWS:
Va(Hy(z) O Ha(z)) O [/\ +(r) = /\ A () 1. Choose a small Ia_nguage L;
rePy reP, 2. Generate all possible triples
is true in all intended models df;,, wherevy(r) is the con- {r1y i}y {un, oo um }y {01, oy 00) 9)

junction of the following two sentences:

Wa(Psw () > Hy () AVa(Ngo(z) > —Ha(x))] > of sets of rules inL such that{ry, ..., g, u1, ..., u } IS

strongly equivalenttdry, ..., 7%, v1, ..., vn } iN L;

3o (Hdy () A Hi(x)), (7) 3. Formulate a conjecture on them-n problem that holds
[Vz(Psr(z) D Ha(z)) AVz(Ngr(z) D ~Ha(2))] D in the languagé., i.e. a condition that is true for a triple
Jx(Hd, () A Ha(x)). (8) of the form (9) iff it is generated in Step 2;
In first order logic, if a prenex formula of the foraxvy B 4. Verify the correctness of this conjecture in the general
is satisfiable, then it is satisfiable in a structure wittele- case.

ments, where: is the length of# if it is non-empty, andl Thjs process may have to be iterated. For instance, a conjec-

whenz is empty. We can prove a similar result for our first- ;e came up at Step 3 may fail to generalize in Step 4, so

order languages and their intended models here. the whole process has to be repeated. Or we may start with
From this and Theorem 2, we can show the following the- |anguagd. with, say three atoms but have to increase it to

orem which will enable us to automate the verification of thefe or six atoms later on.

“if” part of (5) when the propertyb is in the prenex format. Ideally, we would like this process to be automatic. How-

Theorem 3 Without loss of generality, suppose > n. If ® ever, it is difficult to automate Steps 3 and 4 - the number of
is a property about k+m-+n rules of the forawvyQ, where possible patterns that we need to examine in order to come
Z is a tuple ofw variables, and@ a formula that does not up with a good conjecture in Step 3 is huge, and we do not
have any quantifiers, then the following two assertions areéhave a general theorem that enables us to automate the verifi-
equivalent: cation part in Step 4: while Theorem 3 enables us to automate

the proof of the sufficient part of the assertion (5) for a clasdi.emma 3 For any two rules'; andr, that mentions at most
of formulas®, we do not have a similar result for the neces-three atoms{r, .} and{r } are strongly equivalent iff one
sary part. Theorem 4 helps, but it is not fully automatic yet.of the following two conditions is true:

Nonetheless, computers play a crucial role in all steps, and 1 r,.. 1 is strongly equivalent td

in the following we report some of the theorems discovered {ra} gyeq '

using the above procedure. 2. Psy, C Psyy, Ngp, © Ngyy, andHd,, C Hdy, U Ngy,.
Lemma 4 If there are two rules; andry such that{r;,ro}

5']_' The0-1-0 pf‘?b'efn . . and {r,} are strongly equivalent, but none of the two con-
This problem asks if a given rule is strongly equivalent to theditions in Lemma 3 hold, then there are two such rules that
empty set, thus can always be deleted from any program. Wention at most three atoms.

have the following experimental result Theorem 6 (Thel-1-0 problem) Lemma 3 holds in the gen-

Lemma 1 If a rule r mentions at most three distinct atoms, eral case, without any restriction on the number of atoms in
then{r} is strongly equivalent td iff (Hd, UNg,)NPs, # 0. r, andr,.

Using Theorem 4, we can show the following result: Proof: The condition in Lemma 3 is equivalent to the follow-
Lemma 2 If there is a ruler of the form (1) such thafr} ing property

is strongly equivalent t@ and (Hd, U Ng,.) N Ps,. # 0 is

not true, then there is such a rule that mentions at most three Bz (Xa(2) V 25 (2)) A Ya(2)] V

atoms. {Vz.Y1(z) D Ya(x)] A [Va.Z1(x) D Za(x)] A

Proof: Supposer} is strongly equivalent td, Hd, N Ps, = [V X (x) O (Xa(2) V Z2(x))]}
0, andPs, N Ng, = (. SupposeL is the set of atoms in, peing true on[ry,r,]. Thus the “if” part follows from

anda, b, c are three new atoms. Let Theorem 3 and Lemma 3, by noticing that the above property
a p € Hd, can be written aslzVy.QQ as required by Theorem 3. The
flp) = { b p € Ps, “only if” part follows from Lemma 3 and Lemma 4
c otherwise

. . Thus if a ruler, cannot be deleted on its own but can be
By Theorem 4,{f(r)} is also strongly equivalent . By geleted in the presence of another rule then it must be
the construction of , we also havéld () N Psy) = 0,and the case that, is redundant givem;: if the body ofrs is
Psg(y N Ngyy = 0, and thatf(r) mentions at most three satisfied, then the body of is satisfied as well; furthermore,
distinct atomsm ro can entail no more than what can be entailedb§fid,, C
Hd,, U Ng,,).
Theorem 5 (The0-1-0 problem) Lemma 1 holds inthe gen- ~ Osorioet al. [2001 proved that{ry,r.} and {r;} are

eral case, i.e. without any restriction on the number of atomsstrongly equivalent if eithefs,, U Ng,, = 0 and Hd,, C
inr. Ng,, or Ps,, C Ps.,, Ng,, € Ng,,, andHd,, C Hd,,.

_) L More recently, Eiteet al. [2004 showed that{r,,r,} and

Proof: We notice that the condition in Lemma Uid, U 1.\ are strongly equivalent ifry s—impIieSr;{ [Wan}g and

Ngr) N Psy # 0, is equivalent to the following property Zhou, 2003, i.e. if there exists a sel C Ny, such that
Jz.(X1(x) V Z1(z)) A Yi(x) Hd,, € Hd,, U A, Ng,, C Ng,, \ A, andPs,, C Ps,,.

As one can see, these are all special cases of the “if” part of
Theorem 6. Our result is actually more general. For instance,
these special cases do not apply{te «— b,notc), («—
b,notc)} and{c < b, not c}, but one can easily show that
these two sets are strongly equivalent using our theorem.

; From our solution to thé-1-0 problem, we can derive a
roved by Osoricet. al. [2001]. To the best of our knowl- : '
gdge they“only if” part is[new].] solution to thed-1-1 problem.
We notice here that there is no need to considethe0 ~ Theorem 7 (The0-1-1 problem) For any two rulesr; and
problem forn > 1, because for any, {r1,...,r,, } is strongly 72, {r1} and{r2} are strongly equivalent iff one of the fol-
equivalent td) iff for each1 < i < n, {r;} is strongly equiv- lowing two conditions is true:

being true orr]. Thus the “if” part follows from Theorem 3
and Lemma 1. The “only if” part follows from Lemma 1 and
Lemma2m

The “if” part of the theorem is already well-known, first

alent tof). 1. {r1} and{ry} are both strongly equivalent th
5.2 Thel-1-0 and the 0-1-1 problems 2. Zsm = Psy,, Ngr, = Ngr,, andHd,, U Ng,, = Hd,, U
Gry-

The 1-1-0 problem asks if a rule can always be deleted in
the presence of another rule, and thé-1 problem asks if a Proof: By Theorem 1, it is easy to see thit; } and{r2}
rule can always be replaced by another one. We first solvare strongly equivalent iff{ry,72} and {r1} are strongly

the 1-1-0 problem, and the solution to tlgel-1 problem will equivalent andr;, 2} and{r.} are strongly equivalens
come as a corollary.
We have the following experimental result for thel-0 Thus two rules; andry can always be interchanged if ei-

problem: ther both of them can be deleted (strongly equivalent to the

empty set) or they have the same body, and the same condeemma 6 If there are three rules;,r5 and r3 such that
qguences when the body is true. Forinstadees— B, nota} {r1,r2,r3} and{ry,r2} are strongly equivalent, but none of
and{< B, not a} are strongly equivalent no matter what the four conditions in Lemma 5 hold, then there are three such
is, because the two rules have the same body, and when theles that mention at most six atoms.

body is true, the same consequence - a contradiction. As an- .
other example{a; b — not a} and{b — not a} are strongly Yheorem 8 (The2-1-0 problem) Lemma 5 holds in the gen-

equivalent because the two rules have the same body an(aral case, without any restriction on the number of atoms in
when the body is true, the same consequebce, 172,73

The conditions in Lemma 5 (Theorem 8) are rather com-
5.3 The2-1-0, 0-2-1, and 0-2-2 problems plex, and the reason why it is difficult to automate Step 3 of

The2-1-0 problem asks if a rule can be deleted in the presencgjoisprco;iﬂlrjereaﬁt ?:sigtlag?;slgg \?vfhg]rfsigﬁggz'mlg'? Ee condi-
of another two rules, th@-2-1 problem asks if two rules can p P 1

be replaced by a single rule, and the-2 problem asks if andr,, and are difficult to describe concisely by words. We

two rules can be replaced by another two rules. Similar toglvgosnosri]:jeere)t(r?emf%lﬁs\./vin three rules: .
the previous subsection, the solution to the-1 and0-2-2 9 ni (az < ay), ry

problems will follow from a solution to the-1-0 problem. (a3 « notai), andrs: (as « notap). We have that
We have the following experimental result for tBel-0 {r1, 72,75} and{ry, 7>} are strongly equivalent because the
problem: condition (4) in Lemma 5 holds.

However, if we change; into v : a2 <« notas, then

Lemma 5 For any three rules-, r, andrs that mentions at 1 = {r1,72,73} and = {ry, 7>} are not strongly equiv-
most six atoms}ry, 72, 73} and{ry, ro } are strongly equiva- alent: one could check that condition (4.3) in Lemma 5 does

lent iff one of the following four conditions is true: not hold, and indeed, whil&, U {a; < a,} has a unique
)) answer sefas}, P1 U {a; < as} has two answer setss }
1. {rs} is strongly equivalent t@. and{a., as).
2. {ry,r3} is strongly equivalent tdr; }. It is also easy to show by Theorem 8 that «— not as
. . is “subsumed” by{(a;;as;a3 <), (az;a3 < a1)}, and
3. {rq,r3} is strongly equivalent tgrs }. a2; a3 — is "subsumed” by{ (as — a1), (a5 — not @)}
4. There is an atorp such that: With the results that we have, the following theorem will

yield a solution to th@-2-1 problem.
4.1 p € (Ps,, UPs,,)N (Hd,, UHd,, U Ng,, UNg,,)

4.2 Hd, C Hd,. U Ng,. andPs,. C Ps, Theorem 9 (the0-2-1 problem) For any three rulgsh, ro
and1]\>g{p{ (p} C S]Vg gvsherez' - 1\2{p} =77 andrs, {r1,r2} and{rs} are strongly equivalent iff the fol-
T = T3 - 5

4.3 Itp € Ps,, N Ny, thenHd,. N Hd,, — 0 lowing three conditions are true: |
4.4 Ifp € Ps,, N Ny, thenid,,, N Hd,, — 1. {ry,re,r3} @and{ry,ro} are strongly equivalent.
Notice that in principle, given a languadg every subset 2. {r1,rs} and{r} are strongly equvaIent.
of L can be thefd, Ps, or Ng of a rule. Thus when the size of ~ 3- {r2,73} and{rs} are strongly equivalent.
L is six, there are3|)n |:_Jr|nC|pI(5126)3 — 1 =262, 143 possible For example,{(az « a1,notas), (ay;as «— notas)}
rules, and262, 143" triples of them. Thus at first glance, it s strongly equivalent to{a; < notas}. While {(—
seems that verifying Lemma 5 experimentally using the cury, .) (— a4, notay)} is strongly equivalent td— as},
rently available computers would be impossible. However.(,, «— 4, a3), (a; — a3, not as)} is not strongly equiva-
we can cut the numbers down significantly with the resultggnt to{a; — az}. Similarly, we have the following theorem
that we already have proved. First, we only have to consider
rules that do not have common element&fif) Ps, andNg: if 1 heorem 10 (the0-2-2 problem) For any four rulesry, ro,
either Hd and Ps or Ps and Ng have a common element, then 73; 74, {1,72} and {rs, 74} are strongly equivalent iff the
by Theorem 5, this rule can be deletedifl and Ng have following four conditions are true:
common elements, then according to Theorem 7, we obtain 1. {r;, 5,73} and{ry,r} are strongly equivalent.
a strongly equivalent rule by deleting the common elements
in Hd. Second, we do not have to consider isomorphic rules:
if there is a one-to-one onto function fromto L that maps 3. {rs,r4,r1} and{rs, r4} are strongly equivalent.

ri1,r2, 73} to {r},r5, ri}, then these two sets of rules are) :
éssentialli/ the{slamze eﬁcept for the names of atoms in them.4' {ra,r4,r2} and{rs, ra} are strongly equivalent.
By using a certain normal form for triples of rules that avoids . e
these redundant cases, we ended up with roughly 120 miF—3 Program simplification
lion triples of rules to consider for testing Lemma 5, which We have mentioned that one possible use of the notion of
took about 10 hours on a Solaris server consisting of 8 Sustrongly equivalent logic programs is in simplifying logic
Ultra-SPARC Il 900Mhz CPUs with 8GB RAM. programs: if P and @ are strongly equivalent, and thét

The following lemma is the reason why we need to con-is “simpler” than P, we can then replac® in any program

sider a language with six atoms for this problem. that contains it byy.

2. {r1,re,74} and{ry, ro} are strongly equivalent.

Most answer set programming systems perform some prowvork. Specifically, we would like to make Step 3 of the pro-
gram simplifications. However, only SmoddIlNiemek et cedure in Section 5 automatic, and prove a theorem similar
al., 2004 has a stand-alone front-end called Iparse that camo Theorem 3 to automate the proofs of the “only if” parts
be used to ground and simplify a given logic program. Itof theorems like Theorems 5 - 8, in the same way that The-
seems that Iparse simplifies a grounded logic program bgrem 3 makes the proofs of the “if” parts of these theorems
computing first its well-founded model. It does not, how- automatic. This way, we would be able to discover more in-
ever, perform any program simplification using the notion ofteresting theorems in this area, and more easily!
strong equivalence. For instance, Iparse-1.0.13, the current
version of Iparse, did nothing to the following set of rules: References

{(a < notb), (b — nota),(a — a)}. Nor does it replace [Brass and Dix, 1999S. Brass and J. Dix. Semantics of (dis-

:?Oi Zgrsgbrﬂeégt:l)i fg)lll?r\:\gnc%ﬁ;g%:ig(zo; nota), (a junctive) logic programs based on partial evaluatiah.
It is unlikely that anyone would be intentionally writing Log. Program. 40(1pages 146, 1999.

rules likea « a orb « a, not a. But these type of rules can [Eiteretal, 2004 T. Eiter, M. Fink, H. Tompits, and S.
arise as a result of grounding some rules with variables. For Woltran. Simplifying logic programs under uniform and
instance, the following is a typical recursive rule used in logic ~ strong equivalence. IDPNMR pages 87-99, 2004.

programming encoding of the Hamiltonian Circuit problem [Gelfond and Lifschitz, 1991M. Gelfond and V. Lifschitz.
[Niemek, 1999; Marek and Truszczynski, 1999 Classical negation in logic programs and disjunctive
reached(X) — arc(Y, X), he(Y, X), reached(Y). databasedNew Generation Computing:365—-385, 1991.

[Lenat, 1979 D. B. Lenat. On automated scientific theory

When instantiated on a graph with cyclic arcs like:(a, a), formation: A case study using the AM prograMachine

this rule generates cyclic rules of the formaached(X) «— ;
he(X, X),reached(X). Unless deleted explicitly, these In;erI:!gencg 9pagei 2I'5%1_2?j3’ 1979. Jean Hayes, Donald
rules will slow down many systems, especially those based Michie, and L. I. Mikulich, eds.
on SAT. [Lifschitz et al, 2001 V. Lifschitz, D. Pearce, and

It is thus useful to consider using the results that we have A. Valverde. Strongly equivalent logic program&CM
here for program simplification. Indeed, transformation rules Transactions on Computational Logic2(4):526-541,
such as deleting those that contain common elements in their 2001.
heads and positive bodies have been propfBeass and Dix, [|in, 2004 F. Lin. Reducing strong equivalence of logic pro-

1999, and studied from the perspective of strong equiva- grams to entailment in classical propositional logic. In
lence [OSOI’IO et al, 2001; Eiteret al, 2004. Our results Proc. KR'02 pages 170-176, 2002.

add new such transformation rules. For instance, by Theo- . :
rem 7, we can delete those elements in the head of a rule thetin; 2004 F. Lin. Discovering state invariants. - Iroc.
also appear in the negation-as-failure part of the rule. Theo- KR'04, pages 536-544, 2004.

rems 6, 8, and 9 can also be used to define some new trarlddarek and Truszczynski, 1999%V. W. Marek and

formation rules. M. Truszczynski. Stable logic programming - an al-
ternative logic programming paradigm. [Fhe Logic
7 Concluding remarks and future work Programming Paradigm: A 25-Year Perspectié.R.

Apt, V.W. Marek, M. Truszczynski, D.S. Warren, eds,
Springer-Verlag, 1999.

[Niemeketal,200d I. Niemeh, P. Simons, and
T. Syrjanen. Smodels: a system for answer set program-
a Science. And the state of the Art advances too, ming. InProc NMR-2000 (CoRR: arXiv:cs.Al/0003033)

because people always leap into new territory once _http://www.tcs.hut_.fi/ Software/ s_models/ : _
they have understood more about the old.” [Niemek, 1999 I. NiemeB. Logic programs with stable

We hope that with this work, we are one step closer to making model semantics as a co.nstramt programming paradigm.

discovering classes of strongly equivalent logic programs a Ann- Math. and Al25(3-4):241-273, 1999.

Science. [Osorioet al, 2001 M. Osorio, J. A. Navarro, and J. Arra-
We have mentioned that the methodology used in this pa- zola. Equivalence in answer set programmind-OPSTR

per is similar to that inLin, 2004. In both cases, plau- 2001, pages 57-75, 2001.

sible conjectures are generated by testing them in domaingetkovselet al, 199§ M. Petkovsek, H. S. Wilf, and D.
of small sizes, and general theorems are proved to aid the Zeilberger.A -B. Wellesley Mass. * A K Peters. 1996.
verification of these conjectures in the general case. How- ' ’

ever, while plausible conjectures are generated automaticalhyVang and Zhou, 2045K. Wang and L. Zhou. Compari-
in [Lin, 2004, they are done manually here. While the verifi- ~ Sions and computation of well-founded semantics for dis-
cations of most conjectures fhin, 2004 are done automat- junctive logic programsACM Transactions on Computa-
ically as well, they are done only semi-automatically here. tional Logic 2005. To appear.

Overcoming these two weaknesses is the focus of our future

Donald Knuth, in his Forward tiPetkovselet al.,, 1994, said

“Science is what we understand well enough to
explain to a computer. Art is everything else we
do. ...Science advances whenever an Art becomes

