
Abstraction-based Action Ordering in Planning

Maria Fox and Derek Long and Julie Porteous
Department of Computer and Information Sciences

University of Strathclyde, Glasgow, UK

Abstract

Many planning problems contain collections of
symmetric objects, actions and structures which
render them difficult to solve efficiently. It has been
shown that the detection and exploitation of sym-
metric structure in planning problems can dramat-
ically reduce the size of the search space and the
time taken to find a solution. We present the idea of
using an abstraction of the problem domain to re-
veal symmetric structure and guide the navigation
of the search space. We show that this is effective
even in domains in which there is little accessible
symmetric structure available for pruning. Proac-
tive exploitation represents a flexible and powerful
alternative to the symmetry-breaking strategies ex-
ploited in earlier work in planning and CSPs. The
notion ofalmost symmetryis defined and results are
presented showing that proactive exploitation of al-
most symmetry can improve the performance of a
heuristic forward search planner.

1 Introduction
Symmetries frequently occur in search problems such as
planning problems[Joslin and Roy, 1997; Fox and Long,
1999; Rintanen, 2003], CSPs[Roy and Pachet, 1998; Gent
and Smith, 2000; Roney-Dougalet al., 2004] and model
checking [Ip and Dill, 1996; Audemard and Benhamou,
2002]. Many techniques have been developed for symmetry-
breaking to improve search performance, with emphasis on
using symmetries to prune search spaces rather than to sug-
gest branches to pursue. In this paper we propose the use
of symmetries to direct the forward search of an FF-style
planner in a positive way. We show that the proactive use
of symmetries can lead to significant performance improve-
ments across a variety of planning domains.

The automatic identification of all of the symmetries of a
problem is NP-hard. Because of the complexity of the identi-
fication problem most researchers working in symmetry have
broken symmetries by hand by expressing specific symmetry-
breaking constraints in the modelling of the problem[Gent
and Smith, 2000; Ip and Dill, 1996; Roney-Dougalet al.,
2004]. Planning domain models are structured in a way that

often makes some of the underlying symmetric structure ac-
cessible and a subset of the available symmetries can be effi-
ciently identified using automatic techniques[Fox and Long,
1999; 2002]. However, it has been observed that the most di-
rectly accessible symmetries are often not the ones that would
be most useful to exploit.

It happens that structures within a planning problem are
oftenalmost, but not quite, symmetric, and that treating them
as symmetric would increase the efficiency of the search.Al-
most symmetriesare revealed by the application of an appro-
priate abstraction to the domain. As we will see, the term
almost refers to the fact that the associated symmetry be-
longs to the abstracted domain and might be unsound with
respect to the original domain. Such symmetries can only be
exploited in a positive way (to suggest how best to develop
the plan) because using them for pruning would compromise
completeness. In this paper we consider how the application
of a certain simple abstraction, which we call theproperty-
based abstraction, can reveal a form of almost symmetry
which we then show can be effectively exploited to solve the
original problem. We begin with a simple motivating exam-
ple, then we present the definitions and examples that support
the following discussion. We then describe the extension of
FF that enables the proactive exploitation of symmetric prob-
lem structure and discuss a collection of results obtained from
STRIPS domains used in the 2002 planning competition.

2 Identifying Almost Symmetry
Consider the problem of transporting a number of crates from
one location to another (as in the Depots domain[Fox and
Long, 2003]). The crates are stacked in several different piles
in the initial state and must be moved into new configurations.
Any solution plan will involve unstacking the crates, loading
them onto transport and then delivering and unloading them.
At an abstract level at which the precise locations of the crates
are ignored, the crates can be treated as symmetric because
the same sub-plans are required to get all of the crates into
their goal configurations.

The fact that the cargoes start stacked in different piles
means that they cannot be automatically identified as func-
tionally equivalent[Fox and Long, 1999]). Furthermore,
since their initial configurations are different they cannot be
identified as symmetric in the sense exploited in[Joslin and
Roy, 1997]). Nevertheless, there is a high degree of symmetry

in the structure of the problem even though it is not immedi-
ately accessible to automatic analysis. The crates arealmost
symmetricbecause they can be made symmetric by abstract-
ing out the specific domain objects to which they are related
(eg: crate1 is onsomething, but it doesn’t matter what), with-
out losing sight of the properties (beingon something as op-
posed to having something elseon top) that distinguish them.
When a collection of objects (in this case crates) are almost
symmetrical we reason that we may well need to perform the
same operations on these objects during the course of any
eventual solution plan.

We say that two actions are almost symmetric if they are
two different instances of the same operator in which objects
in the corresponding argument positions are symmetric in the
abstracted domain. The stategy we describe below favours
the selection of actions that are almost symmetric to actions
that have already been applied in the plan.

3 Symmetries in Planning Domains
In this section we develop a formal framework for defining
symmetries in planning problems. We begin with familiar
definitions of a planning domain, a planning problem and a
plan. Symmetries have been studied for decades by math-
ematicians asgroups. We therefore adopt a group-theoretic
characterisation, defining each symmetry as a permutation
that preserves the equivalence of the domain configurations
to which it is applied. The elements of our groups act on the
objects in a domain.

Definition 3.1 A planning problem, P, is a tuple (O,I,G,C),
where O is a set of operator schemas, I is a set of initial state
facts, G is a set of goal propositions and C is a set containing
all of the constants appearing in I∪G.

Definition 3.2 A plan, p, for a planning problem, (O,I,G,C),
is a sequence of operator schemas from O each instantiated
with constants from C such that each instantiated operator
schema can be applied from the preceding state, starting at I,
and the final state satisfies G.

The first symmetry we consider is the form explored by
Joslin and Roy[Joslin and Roy, 1997] and subsequently con-
sidered by Rintanen[Rintanen, 2003].

Definition 3.3 A configuration symmetryof a planning prob-
lem P = (O,I,G,C) is a group, S, acting on the constants in C,
such that under the action of the elements of S, the initial and
goal states are invariant and every plan for P remains a valid
plan for P.

This definition requires that a plan should remain valid un-
der the action of elements of the symmetryS, but it does not
require that the plan should be invariant. For example, con-
sider the simple blocks problem illustrated in figure 1. The
group{id, (CE)(DF)}1 is a configuration symmetry. How-
ever, although valid plans will remain valid, plans will not be
invariant under the transpositions of C with E and D with F,
since this will rearrange the steps of a plan.

1The identity element is denoted byid. The elements are ex-
pressed in the standard cycle notation for groups.

A special subclass of configuration symmetries contains
those symmetries that have proved to be amongst the most
fruitful in existing exploitations of symmetries[Fox and
Long, 1999; 2002]. This is the class that is generated by all
pairwise transpositions of a set of symmetric objects:

Definition 3.4 A configuration symmetry,S, of P =
(O,I,G,C), is a functional symmetryif it is a permutation
group,Sn, acting on a subset ofn of the constants in C.

3.1 The Property-based Abstraction
All symmetries can be seen as a consequence of some form of
abstraction. The abstraction renders certain groups of actions,
objects or structures equivalent by not specifying the details
of the relationships that differentiate them. In some problems,
applying an abstraction to remove the distinctions between
objects can lead to the discovery of new potential symmetries
that are not present in the base domain. It is this observation
that leads us to make the following definition:

Definition 3.5 An abstractionof a planning problem, P, is a
mapping, f, from P onto a new planning problem, Q.

This definition is deliberately permissive, since we do not
wish to exclude any possible abstractions. In general we will
be considering compositional mappings in which the com-
ponents of Q are constructed by applying an abstraction in-
dependently to the different components of P. The following
definition formalises the property-based abstraction described
earlier. Properties were first defined in[Fox and Long, 1998].
A property of an argument to a predicate is the pair contain-
ing the predicate name and the argument position index (this
is denoted below by subscripting the predicate name with the
argument position).

Definition 3.6 The following mapping is theproperty-based
abstraction for planning problemP .

For each proposition in a planning problem, P, formed
from predicate p applied to k arguments, x1, . . . , xk,
f(p(x1, . . . , xk)) = {p1(x1), . . . , pk(xk)}. Thek unary tar-
get predicates,p1, . . . , pk are calledproperties.

The property-based abstraction simplifies the structure of a
problem by removing the linkage between pairs of objects
and considering the problem as the union of separate projec-
tions of the original problem for each constant. This has the
effect of abstracting out which objects play which roles with
respect to other objects.

If we apply an abstraction to a planning problem and then
identify a symmetry in the abstracted problem, this symmetry
can have a useful relationship to the original problem:

Definition 3.7 Given a planning problem, P, and an abstrac-
tion, f , mapping P into the planning problem Q, a symmetry
of Q is called analmost symmetryfor P with respect to the
abstractionf .

Abstractions can throw away so much of the structure of a
problem that the abstracted domain has no useful connection
with the original domain. In practice we are interested in ab-
stractions that preserve significant structure from the original
problem. One way in which structure might be preserved is
in the behaviour of plans under an abstraction:

D

E

B

AC

F

Goal state

A

B D

E

F

C

Initial state

Figure 1: A simple example blocks problem

Definition 3.8 An abstraction,f , of planning problem P is
plan preservingif, when p is a plan for P,f(p) is a plan for
f(P).

The property-based abstraction of a problem is not necessar-
ily plan preserving because each property is available only
once in the abstracted domain and once it is deleted it can-
not be replaced. Thus, in cases where a set of propositions
collapses to a single property there may be no solution to the
abstracted problem.

Definition 3.9 An almost symmetry of planning problem P
with respect to the abstractionf is a strong (weak) almost
symmetryif f is (is not) plan preserving.

In the case wheref is the identity, any symmetry onP with
respect tof is, trivially, a strong almost symmetry.

The property-based abstraction is just one abstraction func-
tion that reveals exploitable almost symmetries. In gen-
eral, the abstraction process can remove important constraints
from the original problem, so can only act as a guide to the
solution of the original problem: indeed, even for use as a
guide, an abstraction must be chosen with care. For this rea-
son, almost symmetries must be handled cautiously: pruning
a search space using an almost symmetry is very likely to
compromise completeness.

Our starting point for identifying almost symmetries be-
tween objects is the method used by Joslin and Roy[Joslin
and Roy, 1997]. For a given planning problem we build a
graph representing the object relationships in the initial and
goal states of the problem and then use NAUTY[McKay,
1990], the graph automorphism discovery tool, to identify
automorphisms in the graph. The key difference in our ap-
proach is the way in which thegraph is constructed. Given
a planning problem, our approach identifies a subset of the
almost symmetries of the domain. We construct a coloured
graph that represents an abstraction of the problem under the
property-based abstraction. This construction is performed
by themakeGraphalgorithm shown in figure 2. NAUTY is
then used to find the symmetries in the abstracted problem.
The colouring of the nodes distinguishes between the proper-
ties that arise in the property-based abstraction described in
definition 3.6. Thus, NAUTY finds the almost symmetries of
the problem with respect to the property-based abstraction.

The following theorem guarantees thatmakeGraphgen-
erates an almost functional symmetry with respect to the
property-based abstraction. The proof is omitted for brevity.

Theorem 3.10 The automorphisms of the graph make-
Graph(P), for planning problem P, restricted to the constants
in P, form analmost functional symmetrywith respect to the
property-based abstraction of P.

1: makeGraph(P)
2: input: planning problemP = (O, I, G, C)
3: output: coloured graphN
4: initialise an empty graphN .
5: for all c ∈ C do
6: create vertexvc with colour equal to its type
7: addvc to N
8: initialise an empty set of propositions,QI

9: for all propositionsp ∈ I do
10: if p containsc then
11: addp to QI

12: let props = the bag of properties of c inQI

13: create a vertexvQI with colour equal to (|QI |,props)
14: {the names of the properties in props identify the arities of

the predicates and the types of their arguments}
15: addvQI to N
16: create an edgee betweenvc andvQI

17: adde to N
18: initialise an empty set of propositions,QG

19: for all propositionsp ∈ G do
20: if p containsc then
21: addp to QG

22: let props = the bag of properties of c inQG

23: create a vertexvQG with colour equal to (|QG|,props)
24: addvQG to N
25: create an edgee betweenvc andvQG

26: adde to N
27: returnN

Figure 2: The construction of the coloured graph.

clear(A)
on(A,B)

clear(E)
on(E,F)

clear(C)
on(C,D)

on(C,D)
ontable(D)

on(E,F)
ontable(F)

on(A,B)
ontable(B)

A
0

C
2

E
4

B
1

D
3

F
5

on(D,E)on(F,C)on(B,A)

7

6 17

16

8

9

15

12

10

11

13

14
on(D,E) on(F,C)on(B,A)

Figure 3: The graph constructed by makeGraph for the blocks
example. Nodes with the same shape and outline have the
same colour and are numbered 0-17.

Having identified the almost symmetries that exist at the
object level in the domain we can construct the almost sym-
metric relation on actions, as described above. The applica-
tion of a property-based abstraction, as described in defini-
tion 3.6, allows the identification of the symmetry in figure 1
between the blocks on the tops of the stacks and between the
blocks on the bottoms of the stacks. In such an interpreta-
tion it can be seen that the blocks A, C and E, which areon
other blocks and therefore at the tops of the three stacks, will
move to being at the bases of the three new stacks in the goal.
Similarly, B, D and F will move from being beneath other
blocks to being at the tops of the new stacks. By abstraction,
the fact that these groups of blocks start in different positions
has been made irrelevant and the symmetry in their behaviour
becomes apparent.

The coloured graph that we construct for this problem is
shown in figure 3. The round nodes are the 6 blocks in the
problem. These nodes have the same colour because the

blocks are all of the same type (so can be considered to share
the same unary type predicate). Each of these nodes is con-
nected to the set of propositions that mention the correspond-
ing block in the initial state, and the set of propositions that
mention the block in the goal state. It can be seen that when
the properties obtained from the propositions in these sets are
different the corresponding nodes have different colours. For
example, nodes 16 and 17 have different colours because, al-
though they contain the same proposition, the colour of node
16 contains the propertyon with respect to block A (the prop-
erty on2) while the colour of node 17 contains the property
on with respect to block B (the propertyon1).

The output from NAUTY is the generators for the graph
automorphism group. When restricted to domain objects, the
output for this problem is: vertices 0, 2, 4 or{A,C,E} and
vertices 1, 3, 5 or{B,D,F}

The almost symmetry that is obtained by first applying the
property-based abstraction to this blocks world problem, and
then applying NAUTY to the resulting graph, belongs to the
abstracted problem in which the detailed relationships be-
tween particular blocks have been removed. It can be seen
that the blocks A, C and E are interchangeable in the property-
based abstraction, as are the blocks B, D and F. Interestingly,
in this particular simple example these collections of blocks
are interchangeable in the plan as well, so that the property-
based abstraction is plan preserving in this case and the al-
most symmetry is strong (as defined in definition 3.9).

4 Proactive Symmetry Exploitation
In most existing work exploiting symmetry in search prob-
lems, the exploitation has beennegative, in the sense that it
is used to prune the search space in order to avoid search-
ing symmetrically equivalent parts of the search space. This
is useful when one part of the space has been searched
fruitlessly, since the symmetry implies that the symmetri-
cally equivalent parts of the space will also prove fruit-
less. Various approaches can be used to prune the search
space, including the introduction of symmetry breaking con-
straints into the problem encoding itself (this technique is
used in the planning context in[Joslin and Roy, 1997;
Rintanen, 2003]), by forcing an ordering between otherwise
symmetric choices for example, and monitoring choices in
the search machinery itself, pruning equivalent choices as
they arise (the approach followed in[Fox and Long, 1999;
2002; Long and Fox, 2003]). However, in the context of cer-
tain heuristic search strategies the utility of these approaches
is significantly reduced. In particular, the forward search
approach of FF effectively breaks symmetries by not back-
tracking over action choices. Although some benefit might
be obtained by avoiding the consideration of symmetric ac-
tion choices during a breadth-first search of a plateau, pruning
symmetric branches appears likely to be less useful in heuris-
tic search planners than in systematic search planners.

In order to exploit symmetry in heuristic search planners,
we propose an alternative strategy to the pruning approach: in
cases where action choices are available that are symmetric
with choices that have already been made and adopted, we
propose to encourage those choices.

1: actionSelect(h,G,As,H)
2: input: The heuristic value of the current state h, a symmetry G,

a set of proposed actions As, a plan head H
3: output: An extended plan head H’
4: initialise a vector vs of counts, one for each action in As.
5: for all actions a in Asdo
6: for all actions b in Hdo
7: if a uses object c and b uses object d and(b d) ∈ G then
8: increment vs[a]
9: sort As according to vs

10: for all a in Asdo
11: if heuristic value of a> h then
12: H’ = H+a
13: return H’

Figure 4: A modified version of FF favouring symmetric ac-
tion choices.

5 Exploitation of symmetry information
In the work described in this paper we have explored a
simple strategy where the symmetry information was used
as aheuristic guidefor selection between proposed action
choices. During plan generation FF performs a forward state
space search and at each stage proposes actions to apply at the
current state. We amend the action selection strategy of FF to
favour actions that are almost symmetric to actions selected
earlier in the plan. This is a positive exploitation of symme-
try because we use the symmetric structure of the problem to
propose rather than to prune action choices.

The heuristic prefers actions that use objects that are sym-
metrical to objects that have appeared inthe sameactions ear-
lier in the plan. This exploits the observation that where sym-
metric objects each require treatment in a plan they are likely
to require symmetric treatment.

This heuristic is straightforward to implement in FF. At
each stage during plan generation we have a current plan
which consists of the actions applied so far to get from the
initial state to the current state. At this stage a set of pos-
sible next actions are proposed by FF. These are the helpful
actions, all of which occur in the first layer of the relaxed
plan from the current state and are immediately applicable
in the current state. FF normally chooses between these by
applying its relaxed distance measure to the states that they
produce and choosing the first helpful action that produces
the state closest to the goal. We modify the strategy that FF
uses for selecting between these by ordering the helpful ac-
tions so that those that use objects that are symmetrical to any
that have appeared in actions in the plan so far are visited first
in the selection strategy. The consequence of this is that only
actions that improve the heuristic distance will be selected by
the modified strategy. We do not modify the heuristic esti-
mate itself. To order the actions we record, for each action,
a count of the number of symmetric objects it uses and sort
the actions into descending order of this count. Any ties are
broken using FF’s standard action selection strategy. The nec-
essary modifications to the action selection step are shown in
figure 4.

To illustrate the use of the symmetry information in FF ver-
sion 2.3 (ff-v2.3), consider a simple Depots example (pfile3
in the IPC3 archive). The following sets of objects are found

Action Symmetric args Score
(a) (distributor1,depot0) 1
(b) (distributor1,depot0), (depot0,distributor1)2
(c) (hoist2,hoist0) 1
(d) 0
(e) (hoist1,hoist0), (crate4,crate5) 2

Table 1: Scoring helpful actions for symmetric arguments.

to be symmetric according to their properties in the initial
and goal states of the problem:{pallet0, pallet1, pallet2},
{crate4,crate5}, {crate0, crate2}, {truck1, truck2}, {depot0,
distributor1} and{hoist0, hoist1, hoist2} At some intermedi-
ate point during plan generation the plan contains the follow-
ing actions:

drive(truck1,distributor0,depot0)
drive(truck1,depot0,distributor1)
drive(truck0,depot0,distributor1)
lift(hoist0,crate5,crate2,distributor1)
load(hoist1,crate5,truck1,distributor1)

The set of helpful actions proposed by FF at this point in
the plan contains:

(a)drive(truck1,distributor1, distributor0)
(b) drive(truck1,distributor1,depot0)
(c) lift(hoist2,crate2,pallet2,distributor1)
(d) lift(hoist0,crate1,pallet0,depot0)
(e) lift(hoist1,crate4,crate3,distributor0)

The scores associated with these actions are obtained by
counting the number of corresponding pairs of symmetric ar-
guments between each action and an occurence of thesame
action in the plan so far. In scoring, we do not increment the
score in the case where the argument in the helpful action is
identical to the corresponding argument in the earlier action
as we want to encourage acting onotherobjects in the same
symmetric set.

We now consider the helpful actions in turn, scoring them,
as shown in figure 1. The heuristic must choose between the
two actions weighted 2. In this case the lift action is selected
(it is likely that the competing drive action was not highly
valued by the distance heuristic because it undoes the effect
of an immediately preceding step).

It can be seen that our strategy is forcing the planner to
commit earlier to actions that have already proved success-
ful for symmetrical objects (we needed to lift upcrate5 and,
sincecrate4 andcrate5 are symmetric it may be a good idea
to do the same thing withcrate4).

6 Experimental Results
In this section we report results of experiments that compare
the performance of the planner ff-v2.3[Hoffmann and Nebel,
2001; Hoffmann, 2002] with a version of the same planner
that uses symmetry information as a positive heuristic in de-
ciding which action to apply next. We refer to this planner
asff-v2.3+symm. We consider six domains: two of these are
artificially constructed to contain a high degree of directly ex-
ploitable symmetry, whilst the remaining four are more natu-
ral domains, taken from the IPC3 competition bench marks.
In the latter group (Depots, Driverlog, Rovers and Freecell),
there is very little directly exploitable symmetry — existing

 10

 100

 1000

 10 100 1000

F
F

 w
ith

 s
ym

m
et

ry

FF version 2.3

Ferry
Gripper
Rovers
Depots

DriverLog
FreeCell

Figure 5: Comparison of states visited.

techniques discover at most 4 symmetric objects in any of
these problems. Our results show that we obtain significant
advantages in both the artificial and the natural domains. The
Gripper results we present are for randomly generated prob-
lems in which the number of balls and the number of grippers
both vary. The Ferry problems are randomly generated with
varying numbers of ferries and cars. Increasing the numbers
of grippers and ferries in these problems reduces the num-
ber of times that amoveor a sail is the only helpful action
and therefore increases the relative density of choicepoints
at which symmetric actions are available. We begin by pre-
senting graphs of the results comparing numbers of states ex-
plored and time taken (which includes the time required to
carry out the symmetry analysis itself).

Figure 5 shows the comparison of the performances offf-
v2.3andff-v2.3+symmin terms of the number of states vis-
ited in the search. The plot is log-scaled and the middle of
the three lines represents equal performance. The other lines
represent a 10% performance difference either side of equal.
Again, points below the line represent a performance advan-
tage forff-v2.3+symm. It can be seen that five of the Free-
cell problems and one Rovers problem (six problems in total)
were solved at least 10% more efficiently byff-v2.3. By con-
trast, twenty eight problems were solved at least 10% more
efficiently byff-v2.3+symm.

Figure 6 shows the comparative time performance on prob-
lems taken from the six domains. In this plot, and in the sta-
tistical reported below, we exclude instances solved in under
one second. There are two reasons for this: firstly, noise ef-
fects in the measurements are more severe in values this small
and, secondly, the implementation of our symmetry analysis
is not optimised for speed, making its overhead a relatively
distorted penalty for these small problems. The line repre-
sents equal performance and points below the line represent
better performance byff-v2.3+symm. It can be seen thatff-
v2.3outperformsff-v2.3+symmin only four cases.

To confirm statistical significance of our results, we have
used the Wilcoxon-Mann-Whitney matched pairs signed
ranks test. This test is more appropriate than a matched pairs
t-test, since the distribution of the differences in performance

 0

 20

 40

 60

 80

 100

 120

 20 40 60 80 100

F
F

 w
ith

 s
ym

m
et

ry

FF version 2.3

Ferry
Gripper
Rovers
Depots

DriverLog
FreeCell

Figure 6: Comparison of time performance.

Time States visited
Test orig spl Z p spl Z p
6 doms 82 26 3.43 0.0006 65 4.14 <0.0004
4 doms 69 17 2.18 0.0292 55 3.12 0.0018
Symm 11 9 2.72 <0.05 10 2.80 <0.05

Table 2: Results from matched pairs ranked signs tests show-
ing sample size, Z-value, and significance (all less than 5%).
Tests are for all domains (6 doms), 4 IPC3 domains (4 doms)
and Gripper+Ferry (Symm).

is certainly not normal: where problems are solved with lit-
tle search the potential advantage is restricted, while it can be
larger in harder problems. The matched pairs signed ranks
test is more sensitive and more robust in cases where the un-
derlying distribution is not known. We show, in figure 2, that
in both sets of domains the performance offf-v2.3+symmis
statistically significantly better than that offf-v2.3, both in
terms of time taken and in terms of number of states vis-
ited. For each of the tests we performed we provide the
sample size, the Z-value obtained (using the Wilcoxon-Mann-
Whitney test) and the corresponding p-value. Since equal per-
formance cases are discarded in performing the test, we also
report the original sample size (including equal performance
cases), for comparison. Since the Gripper and Ferry domains
contain artificially high degrees of symmetry, we perform the
tests both including and excluding these domains (although
note that only 10 problems were considered for these do-
mains). We do not report results for individual domains, but it
is interesting to note that these are not significant, indicating
that the effects of almost symmetry across the whole problem
set are not the consequence of strong performance in a subset
of the domains, but are distributed across all of them.

7 Conclusions and Further Work
In this paper we have introduced a method for extracting
almost symmetries from a planning problem and exploiting
them proactively in a forward search planner. We have pre-
sented results showing that proactive symmetry exploitation
can improve the search performance of a planner and some-

times result in the discovery of higher quality plans. Specifi-
cally, using symmetry information to inform the heuristic se-
lection of the next action can reduce the number of states ex-
panded during search, the number of steps added to the plan
and also the overall time taken to generate a solution plan.

A useful aspect of the proactive approach is that it can be
combined with negative symmetry-breaking techniques. It is
feasible to combine the action choice heuristic with a com-
pleteness preserving pruning strategy such as has been ex-
ploited by Rintanen[Rintanen, 2003] and Fox and Long[Fox
and Long, 1999], since these approaches are not in any way
mutually exclusive.

References
[Audemard and Benhamou, 2002] G. Audemard and B. Ben-

hamou. Reasoning by symmetry and function ordering in finite
model generation. InProc. 18th Int. Conf. on Automated Deduc-
tion (CADE-18), volume 2392 ofLNCS, 2002.

[Fox and Long, 1998] M. Fox and D. Long. The automatic infer-
ence of state invariants inTIM . JAIR, 9, 1998.

[Fox and Long, 1999] M. Fox and D. Long. The Detection and Ex-
ploitation of Symmetry in Planning. InProc. of the 16th Int. Joint
Conf. on AI (IJCAI), 1999.

[Fox and Long, 2002] M. Fox and D. Long. Extending the exploita-
tion of symmetries in planning. InProc. of AIPS’02, 2002.

[Fox and Long, 2003] M. Fox and D. Long. An extension toPDDL
for expressing temporal planning domains.Journal of AI Re-
search, 20, 2003.

[Gent and Smith, 2000] I. P. Gent and B. Smith. Symmetry break-
ing during search in constraint programming. InProc. of ECAI,
2000.

[Hoffmann and Nebel, 2001] J. Hoffmann and B. Nebel. The FF
planning system: Fast plan generation through heuristic search.
JAIR, 14, 2001.

[Hoffmann, 2002] J. Hoffmann, 2002. The FF-v2.3 plan-
ner is available to download from http://www.informatik.uni-
freiburg.de/∼hoffmann/ff.html.

[Ip and Dill, 1996] C. Norris Ip and David L. Dill. Better verifica-
tion through symmetry.Formal Methods in System Design, 9,
1996.

[Joslin and Roy, 1997] D. Joslin and A. Roy. Exploiting symmetry
in lifted CSPs. InProc. of 14th National Conf. on AI (AAAI-97),
1997.

[Long and Fox, 2003] D. Long and M. Fox. Plan permutation sym-
metries as a source of planner inefficiency. InProc. of UK Work-
shop on Planning and Scheduling, 2003.

[McKay, 1990] B. McKay. NautyUsers Guide 1.5. Technical Re-
port TR-CS-90-02, Australian National University, 1990.

[Rintanen, 2003] J. Rintanen. Symmetry reduction for SAT repre-
sentations of transition systems. InProc. of the 13th Int. Conf. on
Planning and Scheduling, 2003.

[Roney-Dougalet al., 2004] C.M. Roney-Dougal, I.P. Gent,
T. Kelsey, and S. Linton. Tractable symmetry breaking using
restricted search trees. InProceedings of ECAI, 2004.

[Roy and Pachet, 1998] P. Roy and F. Pachet. Using symmetry of
global constraints to speed up the resolution of CSPs. InWork-
shop on Non-binary Constraints, ECAI, 1998.

