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Abstract

We introduce a rule selection algorithm called
ROCCER, which operates by selecting classifica-
tion rules from a larger set of rules — for instance
found by Apriori — using ROC analysis. Experi-
mental comparison with rule induction algorithms
shows that ROCCER tends to produce considerably
smaller rule sets with compatible Area Under the
ROC Curve (AUC) values. The individual rules
that compose the rule set also have higher support
and stronger association indexes.

1 Introduction

Classification rule learning can be defined as the process of,
given a set of training examples, finding a set of rules that can
be used for classification or prediction. Almost all classifica-
tion rule learning algorithms belong to one of two families,
namely separate-and-conquer and divide-and-conquer algo-
rithms. The two families share a number of characteristics,
most notably the assumption that the example space contains
large continuous regions of constant class membership. The
major differences are outlined below.

In the separate-and-conquer family of classification rule
learning algorithms [Fiirnkranz, 1999], the search procedure
is generally an iterative greedy set-covering algorithm that on
each iteration finds the best rule (according to a search cri-
terion) and removes the covered examples. The process is
repeated on the remaining examples until all examples have
been covered or some stopping criterion has been met. In or-
der to build a classifier, the rules found in each iteration are
gathered to form either an ordered rule list (a decision list) or
an unordered rule set. In the former case the classification is
given by the first rule in the list that fires, while in the latter
case the predictions of rules that fire are combined to predict
a class.

This approach contrasts with the divide-and-conquer fam-
ily of learning algorithms [Quinlan, 19931, where a global
classifier is built following a top-down strategy by consec-
utive refinements of a partial theory. The result is gener-
ally expressed as a decision tree, which completely divides
the instance space into non-overlapping axis-parallel hyper-
rectangles.
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As decision tree induction necessarily builds complete
disjoint models, in some complex domains with high-
dimensional feature spaces these models can be quite com-
plex. In such cases, individual rule learning algorithms may
be preferable since they are capable of inducing overlapping
and simpler rule sets [van den Eijkel, 2003]. However, one
of the problems of set-covering rule learning is that rules are
found in isolation, although they are used in the context of the
others inside the classifier. This issue can pose several prob-
lems for a rule learning algorithm. First, from the learning
perspective, fewer and fewer examples are available as cov-
ering progresses. In latter stages of induction, this may lead
to fragmented training sets and rules with insufficient statis-
tical support [Domingos, 1996]. Furthermore, each new rule
is constructed in complete ignorance of the examples already
covered by the previously induced rules. If a bad rule has
been introduced in the rule set, there is no chance of finding
a better rule for those examples (there is no backtracking).

In this work we present a new rule learning algorithm
named ROCCER, aimed to overcome such problems. The
main idea of the algorithm is to construct a convex hull in
ROC space. We evaluate ROCCER on a broad set of bench-
mark domains from the UCI repository [Blake and Merz,
1998] and compare it with other rule induction methods. The
paper is organized as follows. In Section 2 we discuss the
background related to this work. Section 3 presents our pro-
posed algorithm, and Section 4 contains the experimental
evaluation. In Section 5 we make some concluding remarks.

2 Related work

Several approaches have been proposed in the literature to
overcome the fragmentation problem. [Liu er al., 1998] de-
couple the rule generation from the covering step. The ba-
sic idea is to use an association rule algorithm to gather all
rules that predict the class attribute and also pass a mini-
mum quality criterion into the rule set. Although this ap-
proach might overcome some of the problems of the separate-
and-conquer approach, and its performance was reported to
outperform standard rule learning algorithms in some do-
mains, its main drawback is related to the number of gen-
erated rules. Often they considerably outnumber the exam-
ples, implying serious difficulties from a knowledge discov-
ery point of view, since the understandability and usability of
the generated model would decrease and the risk of overfit-



ting would increase. This idea has been extended in the Apri-
oriC and AprioriSD algorithms [Javanoski and Lavrac, 2001;
Kavsek er al., 2003] by adding an additional filtering step to
remove some of the redundant rules. However, AprioriC still
tends to build large rule sets and AprioriSD has been devel-
oped mainly for subgroup discovery.

A different approach is to use weighted covering, which
has been independently proposed by [Cohen and Singer,
1999] and [Weiss and Indurkhya, 2000]. Instead of com-
pletely removing the examples covered by the best rule on
each iteration, their weights are decreased, and in each itera-
tion the covering algorithm concentrates on highly-weighted
(i.e., infrequently covered) examples. [Lavraé er al., 2004]
also discuss the use of weighted covering in a subgroup dis-
covery context. Alternative methods to remove redundant
rules are based on pruning [Fiirnkranz and Widmer, 1994,
Cohen, 1995].

Some authors propose the use of confidence thresholds for
classification. [Gamberger and Lavra¢, 2000] include only
rules with high confidence in the rule set. The classifier then
refuses to classify a new instance if none of the rules cover
it. [Ferri et al., 2004] extends this idea by retraining a new
classifier on the unclassified examples.

3 The ROCCER rule selection algorithm.

Our approach relies on using ROC analysis for selecting rules
instead of using a classical covering algorithm. Roughly
speaking, a ROC graph is a plot of the fraction of positive
examples misclassified — false positive rate (fpr) — on the x
axis against the fraction of positive examples correctly classi-
fied — true positive rate (fpr) — on the y axis. It is possible to
plot in a ROC graph either a single rule, a classifier (formed
by a rule set, or not) or even a partial classifier (formed by a
subset of a rule set, for instance).

For a threshold-based classifier one can obtain several pairs
of points (fpr;,tpr;) by varying the threshold. If we trace a
line connecting those points we obtain a curve in the ROC
space that represents the behaviour of the classifier over all
possible choices of the respective threshold. In a rule learning
context, [Fiirnkranz and Flach, 2005] show that rule learning
using a set covering approach can be seen as tracing a curve
in ROC space. To see why, assume we have a empty rule list,
represented by the point (0,0) in ROC space. Adding a new
rule R; to the rule list implies a shift to the point (fpr;, tpr;),
where fpr; and ipr; is the fpr and fpr of the partial rule list (in-
terpreted as a decision list) containing all rules already learnt
including R;. A curve can be traced by plotting all partial
rule lists (fpr;, tpr;), for j varying from O to the total number
n of rules in the final rule list in the order they are learnt. A
final default rule that always predicts the positive class can be
added at the end, connecting the point (fpr,, tpr,) to the point
(1,1).

Our approach is based on this observation, and the fact that
the points which represent the optimum thresholds lie on the
upper convex hull of the ROC curve [Provost and Fawcett,
2001]. Rules come from a external larger set of rules (in our
implementation, we use the Apriori association rule learning
algorithm, fixing the head of the rules to each of the possible

class values, allowing us to deal with multi-class problems)
and we perform a selection step based on the ROC curve.
The basic idea is to only insert a rule in the rule list if the
insertion leads to a point outside the current ROC convex hull
(the current ROC convex hull is the upper convex hull of the
rules that are already in the rule list). Otherwise the rule is
discarded. For a better understanding of how our algorithm
works, we first describe it using an example.

Rules are selected separately for each class, and are kept
in an ordered rule list. Let’s label the class we are selecting
rules for positive; the label negative represents the (conjunc-
tion of) examples in the other class(es). First, we initialize
the rule list with a default rule, Rg,f,,1r, Which always pre-
dicts positive. The current ROC convex hull is formed then
by 2 points, (0,0) and (1,1) which means “ignore the de-
fault rule (classify everything as negative) or use the default
rule (classify everything as positive)”. We use fprg;, tprg; to
refer to the rule R;’s true and false positive rates, and pr;,
Jpr; to refer to a point i in the ROC curve, representing the
corresponding rule list’s true and false positive rates. Sup-
pose now we are inserting a new rule R;. As the actual con-
vex hull is formed only by the line segment (0,0) — (1,1),
Ry will only be inserted if the point formed by the rule’s
(forgi,tprr;) is above the convex hull. Let’s say R; is in-
serted. The current convex hull is then updated, and con-
tains the points (0,0), (fpr;,tpry),(1,1), where fpr; = fprp;
and tpr| = tprp,;. This process is depicted in Figure 1.
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Figure 1: R leads to a point outside the current convex hull
(main diagonal) and is therefore inserted in the rule list.

Suppose we are now trying to insert a second rule R;. As
we have said before, in the standard set-covering approach
the learning of a new rule does not take into account the rules
already learnt. In our approach, we try to overcome this issue
using the ROC graph to analyze interactions among rules. We
do this by comparing the rule we are trying to insert with the
slopes of each of he line segments in the current convex hull
in the ROC graph. In our example, if the slope of the point
formed by the origin and (fprg,,prg,) is above the line from
the origin to the point (fpry,tpr;), we say that R, “improves
in relation to” Ry and insert R in the rule list. This is similar
to if R, had been learned before R; in the set-covering ap-
proach. By comparing with the rules which are already in the
rule list, our algorithm provides a kind of backtracking. This
insertion will, of course, produce changes to the other points
in the ROC curve. The first non-trivial point in the ROC curve
changes to (fprg,,prg,). If Ry and R, do not have any over-
lap, the second point will be (fprg, +fPrg1, P Ry + 7 R2)-
If R; and R, do have some overlap, however, we should dis-



count the examples covered by both rules to calculate the sec-
ond point.

If R, is not inserted at the first iteration, we proceed by
comparing with the remaining line segments in the ROC con-
vex hull. Before we compare with the next line segment, we
update R;’s fpr and tpr by removing the examples covered by
R (the examples which evaluate to true for R;’s antecedent).
In fact, we are “interpreting” R, as —-R; A R,. If the updated
position of Ry is above the line from Ry t0 Rgpfaylr. Rz is
inserted in the rule list after R;. This process is depicted in
Figure 2. Otherwise (since no further rules remain) R; is dis-
carded. The pseudo-code of this algorithm is shown in Algo-
rithm 1.

Default Default
rule =7 rule

(b) ...but it does when com-
pared with Rdefaull'

(a) R, does not improve the
convex hull when compared to
R;...

Figure 2: Finding the right point to insert R;.

Algorithm 1: The ROCCER algorithm.

Data: RS;,: A (large) rule set for a given class
Result: RS,,;: A (smaller) rule list containing the
selected rules
RSous = {Rdefault};
foreach Rule € RS;,, do
TryTolnsertRule(Rule)
endfch
return RS,

procedure TryTolnsertRule(Rule)
RuleToCompare = first rule in RS,,;
repeat
if Rule’s (fpr,tpr) is outside convex hull then
Insert Rule into RS,,; before RuleToCompare
else
/+ shift to a new origin =/
Remove all the examples from Rule which are
covered by RuleToCompare;
Actualize Rule’s (fpr.tpr);
RuleToCompare = next rule in RS,
endif
until RuleToCompare # Rgefayis;
if Rule is not inserted then
Discard Rule
endif

Due to overlapping coverage among rules, this process

does not necessarily lead to a convex curve. The insertion
of a new rule in the rule list may introduce concavities be-
fore or after the point of insertion. If concavities occur after
an insertion, the inserted rule covers examples originally cov-
ered by subsequent rules, which decreases the latter’s preci-
sion. In this case, we remove the rules where the concavity
occurs. Alternatively, if the concavity occurs before the in-
sertion point, both rules share a region where they misclas-
sify some examples. In this case, it is unreasonable to use
the partial rule list including the first rule but excluding the
second, because the corresponding ROC point is under the
convex hull. Therefore, we construct the disjunction of the
two rules and treat it as a single rule.

In our implementation, rules presented to ROCCER are ini-
tially ordered, using the Euclidean distance to the point (0, 1)
in the ROC space. However, due to the possibility to remove
a selected rule and the (implicit) backtracking, the order de-
pendence in selecting rules is lower than a decision list in
inducing rules. Experiments with another orderings would be
an interesting issue for further work, though.

This concludes the description of the training phase. For
classification, we also use a ROC-based method. Bayes’ the-
orem states that the odds that a classifier correctly classifies
an instance (posterior odds) is given by the likelihood ratio
times the odds of the instance being of the predicted class
(prior odds). In ROC space, the likelihood ratio can be in-
terpreted as zpr/fpr. Recall that we selected rules separately
for each class. Thus, we have a ROC convex hull for each
class. To classify a new instance we also consider each class
separately, and, for each class, we determine the first rule that
fires in the respective ROC convex hull. This rule has an asso-
ciated (fpr,fpr) in the ROC curve, which yields a likelihood
ratio. The posterior odds is then converted back to a prob-
ability (for ranking), or we select the class with maximum
posterior odds (for classification).

4 Experimental evaluation

In order to empirically evaluate our proposed approach, we
performed a experimental evaluation using 16 data sets from
UCI [Blake and Merz, 1998]. We used only data sets with-
out missing values, as Apriori (the association rule algorithm
we use to generate the rules for subsequent selection by Roc-
CER) can’t handle them. Table 1 summarizes the data sets em-
ployed in this study. It shows, for each data set, the number of
attributes (#Attrs), the number of examples (#Examples), and
percentage of examples in the majority class (%eMajClass) —
although ROCCER can handle more than two classes, in order
to calculate AUC values we restricted our experiments to two-
class problems. For data sets having more than two classes,
we chose the class with fewer examples as the positive class,
and collapsed the remaining classes as the negative.

ROCCER’s results were compared with those obtained by
the following rule learning systems:

CN2 This algorithm is a classical implementation of the
separate-and-conquer rule learning family. In its first
version [Clark and Niblett, 1989] CN2 induces a deci-
sion list using entropy as a search heuristic. It has later



# Data set # Attrs  # Examples  %MajClass
1 Breast 10 683 65.00
2 Bupa 7 345 57.98
3 E.Coli 8 336 89.58
4 Flag 29 194 91.24
5 German 21 1000 70.00
6 Glass 10 214 92.07
7 Haberman 4 306 73.53
8 Heart 14 270 55.55
9 Ionosphere 34 351 64.10
10 Kr-vs-Kp 37 3196 52.22
11 Letter-a 17 20000 96.06
12 New-thyroid 6 215 83.72
13 Nursery 9 12960 97.45
14 Pima 9 768 65.10
15 Satimage 37 6435 90.27
16 Vehicle 19 846 76.48

Table 1: UCI data sets used in our experiments.

been modified to incorporate the induction of unordered
rule sets and Laplace error correction as evaluation func-
tion [Clark and Boswell, 1991].

Ripper [Cohen, 1995] proposed Ripper in the Incremental
Reduced Error Pruning (IREP) [Fiirnkranz and Widmer,
1994] context. It has features such as error-based prun-
ing and an MDL-based heuristic for determining how
many rules should be learned.

Slipper This algorithm is a further improvement of Ripper
which uses a weighted set-covering approach [Cohen
and Singer, 1999].

C4.5 [Quinlan, 1993]’s C4.5 is almost a standard in empiri-
cal comparison of symbolic learning algorithms. It is a
member of divide-and-conquer family. C4.5 uses infor-
mation gain as quality measure to build a decision tree
and a post-pruning step based on error reduction. We
can consider each branch in a decision tree as a rule.

Ripper and Slipper were used with -a option to generate rules
for both classes. CN2 was used in its two versions, or-
dered (CN20OR) and unordered (CN2). We also evaluated
both pruned (C45) and non-pruned (C45NP) trees induced
by C4.5. All other parameters were set to default values. In
order to calculate the AUC values we estimated probabilities
of each rule using Laplace correction. For the unordered ver-
sion of CN2, probabilities were estimated using all fired rules.
AUC values were estimated using the trapezoidal rule. We
used [Borgelt and Kruse, 2002]’s implementation of Apriori
to generate the large rule sets used by ROCCER. The parame-
ters were set to 50% of confidence and 1/3 of the percentage
of minority class as support. For ROCCER, the probabilities
were estimated by the posterior odds (described in Section 3).
We also compare with a bagging of all rules generated by
Apriori.

We ran the experiments using 10-fold stratified cross-
validation. The experiment is paired, i.e., all inducers were
given the same training and test files. The averaged AUC
values (and respective standard deviations in brackets) are

shown in Table 2. We also perform a two-tailed Dunett mul-
tiple comparison with a control procedure' using ROCCER
as control (the other results against ROCCER). Cells having
AUC values statistically better than ROCCER are represented
in dark gray while light gray is used to represent cells statis-
tically worse than ROCCER, both with 95% confidence level.

Table 2 shows relatively few statistically significant differ-
ences. Comparing against C4.5, ROCCER achieved 4 wins
and 1 loss. This is the same score if we compare ROCCER
against Ripper. Against Slipper, the results are 5 wins and no
losses. A comparison of ROCCER against C4.5 without prun-
ing, CN2 and CN2 ordered yield 2 losses and no wins. We
believe these two losses are due to the high degree of class
skew in those two datasets (they are the most skewed in our
study). In order to allow Apriori to find rules for both classes
in these domains, the support parameter used in Apriori is
very low. In these cases we have both a small number of
rules generated for the minority class and a large number of
rules generated for the majority class. Further improvements
should be made in ROCCER to cope with such situations (for
instance, it would be interesting to introduce different min-
imum support for each class). Taking into account all the
rule learning algorithms, the score is 12 wins and 9 losses (all
losses are concentrated in the two skewed domains, though).
Comparing with all the generated rules, ROCCER produced 6
wins and no losses. We also compute AUC value on selecting
k (the same number as ROCCER)random rules and rules with
higher individual AUC values. Due to lack of space results
are not shown in this paper, but they are in most of the cases
significantly worst and never better than ROCCER. This indi-
cates that ROCCER’s selection procedure is responsible for a
gain of performance over all the presented rules.

The good results with both versions of CN2, and the rel-
atively poor AUC figures for Ripper and Slipper, are worth
noticing, and may be explained by the absence of pruning
mechanisms. It has already been reported in the literature that
non-pruned trees are better for probability prediction and thus
produce higher AUC values [Provost and Domingos, 2003].
It might be expected that a similar phenomenon also would
occur with algorithms from the separate-and-conquer family.
Ripper and Slipper are — at least conceptually — similar to
CN2 but incorporate, respectively, rule pruning and weighted
coverage.

Table 3 presents the average size (in number of rules) of
the rule sets for each algorithm. Size 0 means that the clas-
sifier is formed only by the default rule. The picture here
is more clear. Apart from some exceptions, ROCCER pro-
duces smaller rule sets than C4.5 without pruning, CN2 (both
ordered and unordered), and Slipper. On the other hand,
Ripper produced (significantly) smaller rule sets in 7 out of
16 domains, and there were 8 draws and 1 win. A further
investigation involving the data sets where most of the al-
gorithms produced smaller rule sets than ROCCER (Breast,
Heart, Ionosphere and Kr-vs-kp) might produce some in-

'Multiple comparison is used to adjust the observed significance
level for the fact that multiple comparisons are made. If we use a
t-test, and as each comparison has up to 5% Type I error, then the
Type I error rate over the entire group can be much higher than 5%.



# ROCCER C45 C45NP CN2 CN20OR Ripper Slipper All

1 98.63(1.88) 97.76(1.51)  98.39(1.30)  99.26(0.81)  99.13(0.92) 98.72(1.38) 99.24 (0.57) 99.07(0.87)
2 65.30(7.93) 62.14(9.91) 57.44(11.92) 62.74(8.85)  62.21(8.11) 69.10(7.78) 59.84 (6.44) 65.38(10.63)
3 90.31(11.56) ~ 50.00(0.00)  90.06(7.75)  90.17(6.90) 85.15(11.38)  61.86(25.49) 74.78 (15.94) 16.50(10.43)
4 61.83(24.14)  50.00(0.00) 68.68(17.22) 53.22(24.12) 42.78(24.43)  45.28(14.93)  52.35(7.44) 62.11(23.96)
5 72.08(6.02)  71.43(5.89) 67.71(4.12)  75.25(5.38)  70.90(4.70) 64.02(13.62) 71.32 (6.20) 73.37(4.84)
6 79.45(12.98)  50.00(0.00) 81.50(12.65) 73.74(15.40)  79.64(13.24)  49.75(0.79) 50.00 (2.36)  35.62(18.93)
7 66.41(11.54) 55.84(6.14) 64.33(13.58) 59.83(9.87)  59.28(10.13) 57.45(3.85) 50.40 (11.14)  66.52(5.94)
8 85.78(8.43) 84.81(6.57) 81.11(7.91) 83.61(6.89) 82.25(6.59) 84.89(7.68) 84.03 (6.36) 90.72(6.28)
9 94.18(4.49) 86.09(9.97)  90.91(6.03)  96.23(2.97)  92.18(7.54) 92.06(5.94) 93.95 (6.82) 90.14(5.32)
10 99.35(0.36) 99.85(0.20)  99.86(0.20)  99.85(0.16)  99.91(0.17) 99.85(0.21) 99.91 (0.09) 92.67(1.60)
11 96.08(0.52) 95.49(1.96) [199:33(0:46)  99.34(0:28)  99:44(0:63) | 97.27(1.86) [198:82(0:44) 92.45(1.54)
12 98.40(1.70) 87.85(10.43) 97.50(3.39)  99.14(1.19)  98.43(2.58) 94.95(9.94) 99.12 (1.25) 89.97(7.75)
13 97.85(0.44) [ 99.42(0.14)  99.74(0:13) 100.00(0.00)  99.99(0.01)  99.43(0.26)  94.40(1.59) 97.79(0.65)
14 70.68(5.09)  72.07(4.42)  72.60(6.50)  70.96(4.62)  71.97(5.44) 68.07(9.46) 70.02 (5.97) 70.37(5.01)
15 89.39(2.38) 90.15(1.70)  91.31(1.32)  91.48(1.45)  91.48(0.90) 86.83(3.94) 89.06 (1.98) 79.62(4.95)
16 96.42(1.47) 94.76(3.00)  96.99(1.44)  97.38(2.05)  96.49(2.41) 95.01(2.22) 93.99 (3.13) 93.37(3.05)

Avg  85.13 77.98 84.84 84.51 83.2 79.03 80.08 75.98

Table 2: AUC values estimated with 10-fold cross-validation on the 16 UCI data sets described in Table 1, obtained with
ROCCER, C4.5, C4.5 without pruning, CN2 unordered, CN2 ordered (i.e., learning decision lists), Ripper, Slipper, and bagging
all rules found by Apriori. Numbers between brackets indicate standard deviations; dark gray indicates significant wins over
ROCCER, and light gray indicates significant losses against ROCCER.

sights for improvements to our approach.

We conclude from Tables 2 and 3 that ROCCER combines,
in a sense, the best of both worlds: it achieves AUC values
that are comparable to those of unpruned decision trees and
CN2, but without the large number of rules induced by those
systems. Finally, Table 4 presents statistics of the individual
rules that comprise the rule sets, which demonstrates another
advantage of the ROCCER approach. Support ranges from 0
to 100% and is a measure of the relative coverage of each
rule. Weighted relative accuracy (WRAcc) ranges from 0 to
0.25 and assesses the significance of a rule, in terms of dif-
ference between the observed and expected numbers of true
positives. The odds ratio ranges from 0 to o and is a mea-
sure of strength of association. It can clearly be seen that the
rules selected by ROCCER have considerably higher values
for all measures. This means that the rules are more mean-
ingful in isolation, without reference to the other rules in the
rule set. Thus, ROCCER successfully overcomes one of the
main drawbacks of the set-covering approach.

Support (%) WRAcc Odds Ratio
ROCCER  13.67 (13.89)  0.0355(0.018)  154.02 (337.33)
C4.5 3.73 (6.01) 0.0094 (0.013) 44.55 (77.04)
C4.5NP 1.19 (1.06) 0.0030 (0.003) 31.90 (56.68)
CN2 3.90 (2.52) 0.0110 (0.009)  98.73 (138.64)
CN20OR 3.10 (2.18) 0.0085 (0.007)  95.07 (192.94)
Ripper 5.96 (5.34) 0.0184 (0.012)  74.08 (103.88)
Slipper 1.92 (1.58) 0.0060 (0.006) 33.86 (50.41)
All 8.07 (5.06) 0.0114 (0.014)  67.39 (111.72)

Table 4: Support, weighted relative accuracy and odds ratio

averaged over all learned rules.

A final word should be said regarding computational com-
plexity. ROCCER is, of course, computationally more expen-
sive than the other algorithms. In the worst case, the com-

plexity is O(n?), where n is the number of rules used as in-
put. However, on average, the number of iterations is Q(mn),
where m is the number of rules selected by the algorithm.
Due to lack of space we will not report runtime statistics for
all data sets. For most datasets the runtime ranges from a few
seconds to 10 minutes per fold (on a Pentium 4 2.4Ghz ma-
chine with 512MB of RAM). For these datasets, the number
of rules used as input is up to 1,000. For some domains (Kr-
vs-kp and Satimage) the number of rules generated by Apriori
is very high (more than 40,000). The runtime in these cases
is on average nearly 1.5 hours per fold.

5 Conclusion

We presented ROCCER, a rule selection algorithm based on
ROC analysis. ROCCER operates by selecting rules from a
larger set of rules by maintaining a ROC convex hull in the
ROC space. Featuers of ROCCER’s approach include implicit
backtracking and discovery of pairs of related rules. Exper-
imental results demonstrate AUC values that are compatible
with the best probability predictors such as unpruned deci-
sion trees, achieved with considerably smaller rule sets. The
rules that compose the rule sets induced by ROCCER have
also higher values of support, weighted relative accuracy and
odds ratio, and thus are more meaningful as individual rules.
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4 1.7(2.26) 0(0) 35.7(7.41) 20.2(1.62) 13.4(2.12)  1.3(0.48) 1.6(3.53) 827.4(254.92)
5 23.7(6.75) 78.2(18.5) 388.6(19.07) 143.9(6.98) 106.8(4.37) | 8.9(3.25) 37.4(12.42)  2886.1(577.3)
6 2.4(0.52) 0(0) 32.1(5.99) 21.6(1.26) 21.9(3.18) 0.2(0.42) 2(3.43) 26.7(12.1)
7 0.8(0.42) 5.6(5.72) 71.2(9.39) 75.9(3.9) 57(5.98) 3.50.97)  11.8(1321)  21.2(1.4)
8 68.2(4.42) 13.2(4.49) 97.4(15.04) 42.8(2.49) 36.1(1.79) 7.7(1.25) 27.2(8.73) 1875.6(91.9)
9  67.1(5.38) 23.4(3.98) 128.4(14.1) 36.9(2.28) 22.9(1.29) 19.6(4.43) 38.8(10.43) | 20855.9(2690.9)
10 43.6(7.97) 29.2(2.15) 37.4(3.5) 30.1(1.85) 28.1(1.73) 27.3(1.7) 61.2(9.87) 41790.8(565.72)
11 78.4(3.06) 183.8(15.22)  700.4(31.76) 126.3(3.56) 120.2(2.7) 71(6.58) 115.2(6.16)  649.1(20.55)
12 8.5(0.53) 4(0) 35.4(4.2) 18.7(0.67) 15.3(0.82) 10.93.21)  20.7(5.48) 39.1(4.72)
13 18.9(1.66) 114.6(3.1) 227.1(3.57) 112.4(2.27) 17.6(0.52) 44.1(7.32)  57.6(2.37) 100.0(4.29)
14 4(0.82) 49.4(20.27) 347.4(10) 169.7(10.08) 168.4(7.9) 8.7(2.21) 30.5(10.82)  10.7(3.62)
15 143.9(51.28) 531.1(84.63) 1767.2(111.93)  158.8(6.09) 199.8(6.99) [132(4:37) 52.3(13.9) 4451.2(712.9)
16 48.4(4.48) 89.5(12.12) 188.9(9.42) 49.8(3.29) 41.2(2.82) 23.7(4.06) | 75.7(12.11)  431.4(53.85)
Avg  35.54 73.43 272.92 73.49 61.89 18.01 38.33 4674.23
Table 3: Average numbers of rules obtained with the experiments reported in Table 2.
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