Counting Solutions of CSPs. A Structural Approach*

Gilles Pesant
ILOG, 1681 route des Dolines, 06560 Valbonne, France
pesant@crt.umontreal.ca

Abstract consistency algorithms act on the domains of the variables i
.) its scope (i.e. on which the constraint is defined) to filter ou

Determining the number of solutions ofcsphas values which do not belong to any solution of this constraint
several applications ial, in statistical physics, and thus avoiding some useless search. For many families of con-
in guiding backtrack search heuristics. It is B+# straints, all such values can be removed in polynomial time
complete problem for which some exact and ap- eyen though globally the problemé7P-hard. The only vis-
proximate algorithms have been designed. Suc- jpje effect of the consistency algorithms is on the domains,
cessfulcspmodels often use high-arity, global con- projecting the set of solutions on each of the variables. But

straints to capture the structure of a problem. This 5 constraint's consistency algorithm often maintainsrimia-

paper exploits such structure and derives polytime {jon which may be exploited to evaluate the number of valid

evaluations of the number of solutions of individ- tuples. We intend to show that a little additional work isewft

ual constraints. These may be combined to approx- gyfficient to provide close or even exact solution countsfor

imate the total number of solutions or used to guide ¢onstraint, given the existing consistency algorithm.

search he_unstlc_s_. We give algonthms f_or several The global counting problem farsrs (denoted &sP is

of the main families of constraints and discuss the 5 oomplete even if we restrict ourselves to binary con-

possible uses of such solution counts. straints and is thus very likely intractable. Recent theore
ical work [Bulatov and Dalmau, 20QXharacterizes some

1 Introduction tractable classes afsrs for this problem but these are quite
. restrictive, especially for practical problems. The caumt
Many important combinatorial problems in Artificial Intell roblem for Boolearcsrs (#SAT) is the best studied subclass

gence A1), Operations Research and other disciplines can bggeg e.g[Birbaum and Lozinskii, 199.
cast as Constraint Satisfaction Proble@sr). One is usually '
interested in finding a solution to@sPif it exists (thecom-

binatorial existence problejrand much scientific literature backtrack searct{Kask et al, 2004 adapts Iterative Join-

has been devoted to this subject in the past few decades. Ap- : - -
other important question, though not as thoroughly Studied&raph Propagation to approximate the number of solutions

is how many solutions there are (tbembinatorial enumera- extending a partial solution and uses its results in a value-
tion roblen>)/ Our ability to answer this question has severalOrdering heuristic to solvesFs, choosing the value whose as-
appIin:ations 'il’lAI e.g [%)rponen 199D[g€oth 1998,[Dar- signment to the current variable gives the largest appratem
wiche, 2001), in statistical physics (e.qBurton and Steif, solution count. An implementation optimized for binary eon

; : . straints performs well compared to other popular strategie
1994, [Lebowitz and Gallavotti, 197}, or more recently in : o : g
guiding backtrack search heuristics to find solutions s [Refalo, 2004 proposes a generic variable-ordering heuris

tic based on the impact the assignment of a variable has on
[Hor_sch and Havens, ZOEK.ask_et al, 2004[Refalo, 200‘}1'. the reduction of the remaining search space, computed as the
In this latter context, an estimation of the number of solusi

is sought repeatedlv as search proaresses. The best gtrat Cartesian product of the domains of the variables. It report
9 P y prog : ¥ ?@omising results on multi-knapsack, magic square, anith Lat

tso gggmﬁfeocvf r;a"urt?nntltmhgslgvgm?gx?ég?ignase accuracy fo square completion benchmarks for (not necessarily binary)
P puting PP y csps. The value- and variable-ordering heuristics described

_The model of aCspis centered on the constraints, which ;06 rely on an approximation of the solution count. Both
give It its structure. T.h's paper proposes to prlon this in can benefit from an improvement in the quality and/or effi-
herent structure to derive polytime approximations to the s cient computation of this approximation.

lution count of acsp by combining solution counts of com- Inth tof th Section 2 revisit | fail
ponent constraints. At the level of the individual consttai ntherestortne paper, Section 2 revisits several lamales
constraints to evaluate the effort necessary to provideisol

*Research conducted while the author was on sabbatical leavgounts, Section 3 explores possible uses for them, Section 4
from Ecole Polytechnique de Montréal. gives some examples, and Section 5 discusses future work.

For binarycsrs, exponential time exact algorithms have
been described (e.dAngelsmark and Jonsson, 2dR3For

2 Looking at Constraints the total number of solutions decreasesipy- q(w) + 1 and

This section proceeds through a short list of usual comsrai $¢(¥ v) iS decremented by one ftw) < v < d,.

(for their origin, see e.gRégin, 2004 and examines how Sometimes the domains of variables involved in such con-
solution counts may be derived. We assume throughout thaXaints are maintained as intervals. This simplifies tfra-co
the constraints are domain consistent, unless statednigiger ~Putation, for which we derive a closed form:

Given a variabler, we denote its domain of possible values Ymax ~Tmin Ymax —Tmax—1

asD(z), the smallest and largest value inz) asz,;, and #(z <y) o= Z i

ZTmax respectively, and the number of valuesiMz) asd,. i=Ymin—Tmin i=1

We use#~ to mean the number of solutions for constrajnt = Ymax (Tmax + 1) = Zomin - dy

2.1 Binary Constraints —1 - (Thhax + Tmax + Ymin — Ymin) (3)
Many arc consistency algorithms have been developed for Clearly, what preceded equally applies to constraints
binary constraints of the form(z,y). Among them, AC-4 « < ¥,z >y, andz >y, with small adjustments. Counting
[Mohr and Henderson, 198aintains a support counter for solutions for equality and disequality constraints is camp
each value irD(z) andD(y). The total solution countis then atively straightforward (remember that domain consisgenc
simply the sum of those counters over the domain of one ofias been achieved):

the variables: #rx=y) = d, (4)
#y(z,y) = Y sc(z,v) (1) #(x#y) = dy-dy,—|D@)NDy) (5)
veD(x) With an appropriate representation of the intersection of

. D(x) and D(y), an incremental version of the count for
wheresc(z, v) stands for the support counter of valum the . + y requires constant time.

domain of variable:. However, other consistency algorithms — |,'some applications such as temporal reasoning, constants

only compute support witnesses as needed and hence woulgs resent in the binary constraints (exg< y + ¢ for some
not have support counters available. constant). The previous algorithms and formulas are easily

22 Arithmetic Binary Constraints adapted to handle such constraints.

Typically, support counters are not maintained by the con2.3 Linear Constraints

sistency algorithm for arithmetic binary constraints boeo Many constraint models feature linear constraints of thmfo
rather relies on the semantics of the constraint. Take fer exX3"" a,z; o bwhereo stands for one of the usual relational
amplez < y: KNOWiNgzmin andymax is sufficient to remove operators and the;’s andb are integers. Bound consistency
all the inconsistent values. To compute the number of valids typically enforced, which is a fast but rather weak form
couples we can simply enumerate them, which done naivelgf reasoning for these constraints. Working from domains
would requireQ(d,. - d,) time. Provided the domains are filtered in this way is likely to yield very poor approximatie
maintained in sorted order, a reasonable assumption,rthate of the number of solutions.

meration can be done i&(d, + d,) time by using a running Example1 Constraint3a + 222 — x5 — 24 = 0 with bound

pointer in each domain as described in Algorithm 1. consistent domain®(z;) = {0,1,2}, 1 < i < 4 admits
only seven solutions even though the size of the Cartesian
function It_cardz, y) product is 81. Since the value of any one variable is totally
let t,, andt, be tables containing the values of the determined by the combination of values taken by the others,
domains ofr andy, respectively, in increasing order; the upper bound can be lowered to 27 but this is still high.
p=1g:=1c:=0; These constraints are actually well studied under the name
whileg < d, do of linear Diophantine equations and inequations. In pastic
whilep < d, and t,[p] < t,[q| do lar, [Ajili and Contejean, 1995offers an algorithm adapted
p=p+1 to constraint programming that produces a finite descriptio
c:=ct+p—1 of the set of solutions of a system of linear Diophantine equa
q:=q+1 tions and inequations ové¥
return c; When the constraints are of the foih< > | a;z; < b

with thea;’s andx;’s belonging toN, we get knapsack con-
straints for which[Trick, 2003 adapts a pseudo-polynomial
dynamic programming algorithm. It builds an acyclic graph
#(x <y) = ltcardz,y)) Glai),(ai) by Of size O(nb) in time .(_Q(nbd) (whered =

. o max{d,, }) whose paths from the initial node to a goal node
For each value in D(y), it finds out of the number of sup- correspond to solutions. It is pointed out that enumerating
portssc(y, v) from D(x) and adds them up in We can make solutions amounts to enumerating paths through a depth-firs
the algorithm incremental by storing:(y, v) for eachv in gearch, in time linear in the size of the graph.
D(y) andq(w), the smallest such thatw < t,[g], for each

w in D(z): if v is removed fromD(y), the total number of by < . < b)=|{paths traversing, . ;.\ 1 6
solutions decreases by(y, v); if w is removed fromD(z), #l'< ;ale <b=l{p G o taioo] (6)

Algorithm 1: Computing the number of solutions o< .

Interestingly, the approach could be generalized so astto li 3. Any assignment of the variables 6f such thatvp =

the nonnegativity restriction on the coefficients and \Jzlga ¢ — |R| of them take a value i’ can be extended into
at the expense of a larger graph of st2ér) wherer repre- HmeX\P d, complete solutions.

sents the magnitude of the rangeXat’_, a;x; over the finite .

domains. 4. There are such assignments for every valueofrom

Cmin — |R| 10 cmax — |R| @and for every subsef of P

; identifying thevp variables in question. How many as-
24 E!.ement. Constraints) o) . signments, givel$? Each variablg € S has|D(y)NV|
The ability to index an array with a finite-domain variable, possible values and each variable P\ S has|D(z) \

commonly known as ael enment constraint, is often present V| possible values, totalingta(S) = [], g |D(y) N
in practical models. Given variablesand: and array of val- VI-TI . ID(2) \ V| assignments ve
z€P\S '

uesa, el enent (i, a,) constrainse to be equal to theé'” o _
element ofa (z = a[i]). Note that this is not an arbitrary Putting it all together gives:

relation between two variables but rather a functional-rela Cmax
tlons_hlp. As a reIatlo_n, it could poten_tlally numbey - d; #among(c, X, V) = H do Z Z #a(S) (9)
solutions, corresponding to the Cartesian product of thie va 2EX\P hecmiy SCP
ables. As a functional relationship, there are exactly asyma |S|=k—|R|
tuples as there are consistent values for In the worst case, the number Sfsets to consider is ex-
yel ement (i,a,2) = d; @) ponential in the number of variables. It may be preferable
)) - 1

sometimes to compute faster approximations. We can re-
This exact count improves on the product of the domairplace every#a(S) by some constant lower or upper bound.

sizes by a factod,.. Let ¢, be a table in which the sizes d(z) N V for ev-
ery x € P appear in increasing order. Similarly, l&f,
2.5 Regular Language M embership Constraints be a table in which the sizes dd(z) \ V for everyz €

Given a sequence of variabléé — (x1,2s,...,z,) and P appear in increasing order. We define a lower bound

a deterministic finite automatad, r egul ar (X, A) con- £(a(k)) = [T tnf] - TILZ 17 tau]

strains any sequence of values taken by the variables of and an upper bound

to belong to the regular language recognizedbjPesant, u(a(k)) = Hf;llRl tm[|P|—z'+1]-H‘i£|1_k+‘R‘ toul|P|—741].
2004. The consistency algorithm for this constraint builds aThen

directed acyclic gBr/aph;XA wahose structure is very similar oo

to the one used byTrick, 2003 for knapsack constraints, as >) FIRW

reported in Section 2.3. Here as well, each path corresponds #amng(c, X, V) _zel:([\gwk_zc:(’“’*) Halk)) (10)
to a solution of the constraint and counting them represents -

no complexity overhead with respect to the consistency-algo

rithm. #armng(c, X, V) < H Ao Z (kLP\L?\) u(a(k)) (11)

2€X\P k=cmin

Cmax

#regular(X,A) = [{pathsraversinG'x.a}| (8) Note that if the variables if® have identical domains then

the lower and upper bounds coincide and we obtain the exact

2.6 Among Constraints
count.

Under constrainanong(c, X, V'), variablec corresponds to i
the number of variables from séf taking their value from Example2 Consideranong(c, {21, 22, 3,24, 25}, {1,2})
setV [Beldiceanu and Contejean, 1994et R = {z € X : With D(c) = {3,4}, D(x1) = {1,3,4}, D(z3) =
D(z) C V}, the subset of variables required to take a value{1, 2}, D(zs) = {3,4}, D(zs4) = {2}, and D(z;) =
fromV,andP = {z € X \ R: D(z) NV # 0}, the subset {1,2,3}. We obtainkR = {z3,24}, P = {z1,25}, and
of variables possibly taking a value frof. Those two sets #among(c, {z1, x2, x5, 24,25}, {1,2}) = day, - day - da, -
are usually maintained by the consistency algorithm sinee t (|D2(z1) N {1,2}] - [D(x5) \ {1,2}] + [D(xs) N {1,2}] -
relationshig R| < ¢ < |R[+ |P| is useful to filter the domain [P (1) \ {1, 2}| + [D(z1) N {1,2}] - [D(x5) N {1,2}]) =
of c. 2-2-1-(1-14+2-241-2) =28, by (9). Using (10),(11)
Define vs as the number of variables from ssttaking ~ We getlé < #anong(c,{x1, z2, 23,24, 75}, {1,2}) < 40.
their value fromV. To derive the number of solutions, we !N comparison, the size of the Cartesian produdtis

first make the following observations: 27 Mutual Exclusion and Global Cardinality
1. vg = |R|, a constant, so that in any solution to the con- Constraints
straint the value taken hy € R can be replaced by any

other in its domain and it remains a solution. Besidesanong, other constraints are concerned with the

number of repetitions of values. Constraaitl di f f (X)

2. vx\(rup) = 0, a constant, so that in any solution to forces the variables of sek to take different values.
the constraint the value taken bye X \ (RU P) can Constraint gcc(Y,V,X), for a sequence of variables
be replaced by any other in its domain and it remains & = (y1,%2,...,ym) and a sequence of valuds =
solution. (v1,v2,...,v,), makes eacly; equal to the number of times

a variable ofX takes valuey;. It is a generalization of the which could happen. However, successive transformations

former. from distinct connected components is safe: each resulting
Already for theal | di ff constraint, the counting prob- matching is distinct. We may therefore take the product of

lem includes as a special case the number of perfect matctike number of maximum (sub)matchings in each connected

ings in a bipartite graph, itself equivalent to théP-hard component of the bipartite graph. Identifying the connécte

problem of computing the permanent of the adjacency macomponentg’ takes time linear in the size of the graph. Enu-

trix representation of the graph. So currently we do notmerating all the appropriate cycles and paths of each con-

know of an efficient way to computgtal | di ff (X) or nected component can be done(inm?) time. Let their

#gcc (Y, V, X) exactly. A polytime randomized approxima- number bey, for each connected compongng& C. Then

tion algorithm for the permanent was recently proposed in

[Jerrumet al, 2004 but its time complexity, ir2(n'?), re- #al 1 di ff(X)> H (vg+1) (13)

mains prohibitive. Therefore even getting a reasonable ap- geC

proximate figure is challenging. We nevertheless propose

some bounds. For thegcc constraint, we may be able to adapt the ideas

which gave rise to the previous lower bound. The consis-
Upper Bound tency algorithm for this constraint is usually based on net-
If D(z) C D(y) for some variables;,y € X then regard- work flows. Given a network and a flow through it, a resid-
less of the value taken byz we know that at most,, — 1 ual graph can be defined and the circuits in this graph lead
possibilities remain foy sincev € D(y). We generalize this to equivalent flows. Another idea is to decompose the con-
simple observation by consideriiy = {D(x) : z € X}, straintintoanong constraints on singleton sets of values and
the distinct domains o. For eachD € D, defineEp = use (9)-(11).
{z € X : D(z) = D}, the set of variables with domaif,
andSp = {z € X : D(z) C D}, the set of variables whose 3 Using Solution Counts of Constraints

domain is properly contained if2. Then This section examines the possible uses of solution codints o

|Ep| constraints.

#alldiff(x)< [[J[J(PI-1Spl-i+1) (12

DeD i=1

Computing it requires taking the producteterms, each of

3.1 Approximatethe Solution Count of a CSP

They can be used to approximate the number of solutions to
a csk. Given a model for acsp, consider its variables as

‘Sjl setS and its constraints as a collectiahof subsets of5

. g . efined by the scope of each constraint. Add'ta singleton

the EDf ant?]SD sets.l This Uﬁper blcl)l:jnd IS Interesting tl)e- for every variable inS. A set partitionof S is a subset ot
cause for the special case where all domains are equal, S, ,se elements are pairwise disjoint and whose union equals

{v1,02,..., vm}, it simplifies to the exact solution count, g (see Section 4 for some examples). To each element of
n the partition corresponds a constraint (or a variable ire cas

H(m —i+1)=m!/(m —n)! of a singleton) for which an upper bound on the number of

i=1 solutions can be computed (or taken as the cardinality of the

L ower Bound domain in case of a singleton). The product of these upper

As hinted before, the consistency algorithm &drl di f f bounds gives an upper bound on the total number of solutions.

computes a maximum matching in a bipartite araph. It iSIn general there are several such partitions possible and we
knoven that every maximum mat?:hin ofF; ra Ecgn be opSan find the smallest product over them. If it is used in the
tained from a gi\yen maximum matchigng by %uc%essive transcourse of a computation as variables become fixed and can be
formations through even-length alternating paths stréin excluded.from the partition, new possible partitions eraerg
an unmatched vertex or through alternating cyéleEach and may improve the solution count.

transf_ormatior] reverses the status of the edg_es on the path95 Guide Search Heuristics

cycle in question: if it belonged to the matching it no longer

does, and vice versa. The result is necessarily a matchi s we saw in the introduction, these counts are also useful

of the same size. Finding every maximum matching in thid develop robust search heuristics. They may allow a finer

way (or any other) would be too costly, as we established be€valuation of impact in the generic search heuristi¢Ré-

fore, but finding those that are just one transformation away@/0; 2004 since their approximation of the size of the search

is fast and provides a lower bound on the number of maxshace is no worse than the Cartesian product of the domains.
imum matchings, or equivalently on the solution count of value-ordering heuristics such Biéasket al, 2004 are also
al 1 di ff. gqod .cand|dates. Other search heuristics followmgfrrlse

By not applying transformations in succession, we aIsJa" principle (detect failure as early as possible) and centered

avoid having to check whether two matchings obtained byP" constraints can be guided by a count of the number of so-

distinct sequences of transformations are in fact ideftica |Utions left for each constraint. We might focus the search
on the constraint currently having the smallest number of so

An alternatingpath or cycle alternates between edges belongindutions, recognizing that failure necessarily occurs tigtoa
to a given matching and those not belonging to it. constraint admitting no more solutions (see Section 4).

3.3 Evaluate Projection Tightness domains 1st partition 2nd partition

. : . Ins impact solns impact solns impact
We can also compute the ratio of the (approximate) solution var _so
count of a constraint to the size of the Cartesian product of ¢ 1600 898 1024 872 600 -800

the appropriate domains, in a way measuring the tightness g 1228 gig 1%3 ggi ggg 328
of the projection of the constraint onto the individual vari ' : :
ables. A low ratio stresses the poor quality of the infor- 9 %ggg g?g 122738 gig ?3’2?) gg%
mation propagated to the other constraints (i.e. the fitere Z 5500 .840 1600 '800 180 '840
domains) and identifies constraints whose consistency alge : : .
rithm may be improved. Tightness can also serve as anothe2YY — 893 — .869 — 839

search heuristic, focusing on the constraint currentlylgth
ing the worst tightness (i.e. the smallest ratio). An ideéibr

of one corresponds to a constraint perfectly captured by th
current domains of its variables.

Table 1: Comparing different approximations of the number
8f solutions of a small map coloring problem.

4 and 6), and their corresponding impacts (columns 3, 5, and
4 Some Examples 7).

Again we note a significant improvement in the approxi-
mation of the number of solutions over the Cartesian prod-
fct, particularly from the second set partition based on the
modelusing aml | di f f constraint. The latter also provides

; a closer approximation of the true impact: the average com-
41 Map Coloring puted impact is less than 5% away whereas it is more than

Consider the well-known map coloring problem for six Euro- 1104 away for the average computed impact using Cartesian
pean countries: Belgium, Denmark, France, Germany, Luxproducts.

embourg, and the Netherlands. Any two countries sharing a
border cannot be of the same color. To each country we assd:2 Rostering

ciate a variable (named after its first letter) that repr&s#® consider next a simple rostering problem: a number of daily
color. Constraints jobs must be carried out by employees while respecting some

labor regulations. LeE be the set of employees) the days
F#0J#LT #9679 70070 g ngFdgFb of the planning horizon, and the set of possible jobs, in-
model the problem. If we allow five colors, there arel0 le- cluding a day off. Define variableg. € J (d € D,e € E)
gal colorings. The cardinality of the Cartesian productaft to represent the job carried out by employeen dayd. To
domains of the variables initially overestimates that neamb ensure that every job is performed on any given day, we can
to be15625 (5°). A set partition such a§f # ¢,b # n, g # state the following constraints:

d} provides a slightly better estimate, using (5): .
e ohtly 96) gec((1,1,...,1),J\ {day off}, (ja)ecr) d € D. (14)

3 _ 3 _
(dz - dy —[D(x) N D(y)])” = (55— 5)” = 8000. Some jobs are considered more demanding than others and
Noticing that four of these countries are all pairwise adjge ~ We Wish to balance the workload among employees. We in-

The purpose of this section is to illustrate solution coamd
their possible uses through a few simple models, easier t
analyse.

an alternate model is troduce variables,. representing the workload of employee
e on dayd and link them to the main variables in the follow-
alldiff({b, f,g,¢}),b#n,g #n,g #d ing way:
yielding a still better upper bound on the solution el ement (jae, (¢;)jct, Wde) de D, ec E(15)
count, 5! - 52 = 3000, using (12) with set partition

{al1dif£({b, f, g, ¢}),n.d}. We see here that the solution Where¢; corresponds to the load of job We then add con-
counts of the constraints in@sp model, particularly those Straints enforcing a maximum workloéd
of high arity, can quickly provide good approximations of e Wae < k ec E. (16)

the number of solutions ofsrs. The projection tightness) o
of b # n, g # n, andg # dis 20/25 = 0.8; that of Finally work patterns may be imposed on individual rosters:

al 1 di ff({b,f,g,0})is5!/5* = 0.192. This could be taken .
as an indigzgtiongtha}i)searéh should focus on the latter. regul ar ((jae)acp, A) cek ()
Let us now analyse the effect of coloring one of the coun-with the appropriate automatof.
tries red. Regardless of the country we choose, the number of To approximate the number of solutions, there are a few
legal colorings will decrease five fold &88 since colors are possibilities for a set partition of the variablége)icp.ccr
interchangeable. The true impact of fixing a variable, meaand (wqe)4ecp.ccr: COnstraints (14)(16) are one, constraints
sured ad minus the ratio of the remaining search space aftef17)(16) are another, and so are constraints (15). In degidi
and before[Refalo, 200%), is thus0.8. Table 4.1 reports af- which one to use, its size (the number of parts), the qual-
ter each country is colored red the cardinality of the Céates ity of the bounds, and the projection tightness of each con-
product of the domains (column 2), the upper bound on thestraint may help. Partition (15) has sig@| - |E| compared
solution count from each of the two set partitions (columnsto |D| + |E| and2 - |E| for the other two: a smaller size

means larger parts and probably a better overall approximdBirnbaum and Lozinskii, 1999E. Birnbaum and E. L.
tion since each solution count has a more global view. We Lozinskii. The Good Old Davis-Putnam Procedure Helps
presented exact counts for every constraint used here excep Counting Models. Journal of Artificial Intelligence Re-
(14), making partition (14)(16) less attractive. A set izt search 10:457-477, 1999.

that includes constraints with low tightness (whichis difft [gylatov and Dalmau, 2003A.A. Bulatov and V. Dalmau.
to assess here without precise numbers) is more likely to do Towards a Dichotomy Theorem for the Counting Con-

significantly better than the size of the Cartesian prodéict o giraint Satisfaction Problem. IRroc. FOCS'03 pages
the individual domains, which can be considered a baseline. 562573, |EEE Computer Society, 2003.

. . [Burton and Steif, 1994R. Burton and J. Steif. Nonunique-
5 Discussion ness of Measures of Maximal Entropy for Subshifts of
This paper argued that looking at the number of solutions of Finite Type. Ergodic Theory and Dynamical Systems
individual constraints irtsrs is interesting and useful. Itcan ~ 14:213-236, 1994.
approximate the number of solutions as a whole or help guidgDarwiche, 2001 A. Darwiche. On the Tractable Counting
search heuristics. Efficient ways of counting solutionsever of Theory Models and its Applications to Truth Main-
given for several families of constraints. The conceptsedf s tenance and Belief RevisionJournal of Applied Non-
partition over the variables and of projection tightnesseve Classical Logi¢11:11-34, 2001.

defined in order to combine solution counts and measure thFHorsch and Havens, 20D0M. Horsch and B. Havens. Prob-

efficacy of consistency algorithms, respectively. abilistic Arc Consistency: A Connection Between Con-
But this is a first step and many questions remain. Some giraint Reasoning and Probabilistic Reasoning. UNI-
of the main families of constraints have been investigated b 200Q pages 282—290, 2000.

others were left out: for example, those useful in schedul- . . .
ing or packing problems such asimul at i ve anddi f f n, [Jerrumet al,, 2004 M. Jerrum, A. Sinclair, and E. Vigoda.

or those for routing problems such agcl e. How close A polynomlaI-T|m_eApprOX|mat|0n Algonthmforthe Per-
can we get to the solution count for them and at what com- Manent of a Matrix with Non-Negative Entrieournal of
putational cost? For the simplest constraints that we tives the ACM 51:671-697, 2004.

gated, we mentioned how the algorithms computing solutiodKasket al, 2004 K. Kask, R. Dechter, and V. Gogate.
counts could be made incremental. This is an importantissue Counting-Based Look-Ahead Schemes for Constraint Sat-
to achieve efficiency when such counts are computed repeat- isfaction. InProc. CP’04 pages 317-331. Springer-Verlag
edly as in backtrack search. What can be done for the other LNCS 3258, 2004.

constraints? The whole question of the usefulness of suc_ebowitz and Gallavotti, 1971J. Lebowitz and

an approach hasn’t been settled either. The answer is likely G. Gallavotti. ~ Phase Transitions in Binary Lattice

to come, at least in part, from empirical evidence. Compu- Gases.Journal of Mathematical Physicd2:1129-1133,
tational experiments will need to be run on larger and more 1971.

realistic models. [Mohr and Henderson, 198&. Mohr and T.C. Henderson.

Arc and Path Consistency RevisitedArtificial Intelli-
Acknowledgements gence 28:225-233, 1986.

Philippe Refalo’s work on impact-based search sparked thEOrponen, 199D P. Orponen. Dempster's Rule of Combi-
idea for this paper. | thank Jean-Charles Régin for discus- nation is #-CompleteAtrtificial Intelligence 44:245-253,
sions and the anonymous referees for their constructive com 1990.

ments. This work was partially supported by the Canadiarfpesant, 2004G. Pesant. A Regular Language Membership
Natural Sciences and Engineering Research Council under constraint for Finite Sequences of Variables. Rroc.

grant OGP0218028. CP'04, pages 482-495. Springer-Verlag LNCS 3258,
2004.
References [Refalo, 2004 P. Refalo. Impact-Based Search Strategies for

[Ajili and Contejean, 1995 F. Ajili and E. Contejean. Com- Constraint Programming. IAroc. CP'04 pages 557-571.
plete Solving of Linear Diophantine Equations and In- Springer-Verlag LNCS 3258, 2004.
equations without Adding Variables. IRroc. CP’05 [Régin, 2004 J.-C. Régin. Global Constraints and Filtering
pages 1-17. Springer-Verlag LNCS 976, 1995. Algorithms. In M. Milano, editorConstraint and Integer

[Angelsmark and Jonsson, 2408. Angelsmark and P. Jon- Programming: Toward a Unified Methodolagitluwer,
sson. Improved Algorithms for Counting Solutions in 2004.
Constraint Satisfaction Problems. Rioc. CP'03 pages [Roth, 1998 D. Roth. On the Hardness of Approximate Rea-
81-95. Springer-Verlag LNCS 2833, 2003. soning.Atrtificial Intelligence 82:273-302, 1996.

[Beldiceanu and Contejean, 1994, Beldiceanu and [Trick, 2003 M.A. Trick. A Dynamic Programming Ap-
E. Contejean. Introducing Global Constraints in CHIP. Proach for Consistency and Propagation for Knapsack
Mathematical and Computer Modelling20:97—123, Constraints.Annals of Operations Research18:73-84,

1994, 2003.

