
Counting Solutions of CSPs: A Structural Approach∗

Gilles Pesant
ILOG, 1681 route des Dolines, 06560 Valbonne, France

pesant@crt.umontreal.ca

Abstract

Determining the number of solutions of aCSPhas
several applications inAI , in statistical physics, and
in guiding backtrack search heuristics. It is a #P-
complete problem for which some exact and ap-
proximate algorithms have been designed. Suc-
cessfulCSPmodels often use high-arity, global con-
straints to capture the structure of a problem. This
paper exploits such structure and derives polytime
evaluations of the number of solutions of individ-
ual constraints. These may be combined to approx-
imate the total number of solutions or used to guide
search heuristics. We give algorithms for several
of the main families of constraints and discuss the
possible uses of such solution counts.

1 Introduction
Many important combinatorial problems in Artificial Intelli-
gence (AI), Operations Research and other disciplines can be
cast as Constraint Satisfaction Problems (CSP). One is usually
interested in finding a solution to aCSP if it exists (thecom-
binatorial existence problem) and much scientific literature
has been devoted to this subject in the past few decades. An-
other important question, though not as thoroughly studied,
is how many solutions there are (thecombinatorial enumera-
tion problem). Our ability to answer this question has several
applications inAI (e.g. [Orponen, 1990],[Roth, 1996],[Dar-
wiche, 2001]), in statistical physics (e.g.[Burton and Steif,
1994], [Lebowitz and Gallavotti, 1971]), or more recently in
guiding backtrack search heuristics to find solutions toCSPs
[Horsch and Havens, 2000][Kasket al., 2004][Refalo, 2004].
In this latter context, an estimation of the number of solutions
is sought repeatedly as search progresses. The best strategy
to keep the overall runtime low may be to trade accuracy for
speed while computing these approximations.

The model of aCSP is centered on the constraints, which
give it its structure. This paper proposes to exploit this in-
herent structure to derive polytime approximations to the so-
lution count of aCSPby combining solution counts of com-
ponent constraints. At the level of the individual constraint,

∗Research conducted while the author was on sabbatical leave
from École Polytechnique de Montréal.

consistency algorithms act on the domains of the variables in
its scope (i.e. on which the constraint is defined) to filter out
values which do not belong to any solution of this constraint,
thus avoiding some useless search. For many families of con-
straints, all such values can be removed in polynomial time
even though globally the problem isNP-hard. The only vis-
ible effect of the consistency algorithms is on the domains,
projecting the set of solutions on each of the variables. But
a constraint’s consistency algorithm often maintains informa-
tion which may be exploited to evaluate the number of valid
tuples. We intend to show that a little additional work is often
sufficient to provide close or even exact solution counts fora
constraint, given the existing consistency algorithm.

The global counting problem forCSPs (denoted #CSP) is
#P-complete even if we restrict ourselves to binary con-
straints and is thus very likely intractable. Recent theoret-
ical work [Bulatov and Dalmau, 2003] characterizes some
tractable classes ofCSPs for this problem but these are quite
restrictive, especially for practical problems. The counting
problem for BooleanCSPs (#SAT) is the best studied subclass
(see e.g.[Birnbaum and Lozinskii, 1999]).

For binaryCSPs, exponential time exact algorithms have
been described (e.g.[Angelsmark and Jonsson, 2003]). For
backtrack search,[Kask et al., 2004] adapts Iterative Join-
Graph Propagation to approximate the number of solutions
extending a partial solution and uses its results in a value-
ordering heuristic to solveCSPs, choosing the value whose as-
signment to the current variable gives the largest approximate
solution count. An implementation optimized for binary con-
straints performs well compared to other popular strategies.
[Refalo, 2004] proposes a generic variable-ordering heuris-
tic based on the impact the assignment of a variable has on
the reduction of the remaining search space, computed as the
Cartesian product of the domains of the variables. It reports
promising results on multi-knapsack, magic square, and Latin
square completion benchmarks for (not necessarily binary)
CSPs. The value- and variable-ordering heuristics described
above rely on an approximation of the solution count. Both
can benefit from an improvement in the quality and/or effi-
cient computation of this approximation.

In the rest of the paper, Section 2 revisits several familiesof
constraints to evaluate the effort necessary to provide solution
counts, Section 3 explores possible uses for them, Section 4
gives some examples, and Section 5 discusses future work.

2 Looking at Constraints
This section proceeds through a short list of usual constraints
(for their origin, see e.g.[Régin, 2004]) and examines how
solution counts may be derived. We assume throughout that
the constraints are domain consistent, unless stated otherwise.
Given a variablex, we denote its domain of possible values
asD(x), the smallest and largest value inD(x) asxmin and
xmax respectively, and the number of values inD(x) asdx.
We use#γ to mean the number of solutions for constraintγ.

2.1 Binary Constraints
Many arc consistency algorithms have been developed for
binary constraints of the formγ(x, y). Among them, AC-4
[Mohr and Henderson, 1986] maintains a support counter for
each value inD(x) andD(y). The total solution count is then
simply the sum of those counters over the domain of one of
the variables:

#γ(x, y) =
∑

v∈D(x)

sc(x, v) (1)

wheresc(x, v) stands for the support counter of valuev in the
domain of variablex. However, other consistency algorithms
only compute support witnesses as needed and hence would
not have support counters available.

2.2 Arithmetic Binary Constraints
Typically, support counters are not maintained by the con-
sistency algorithm for arithmetic binary constraints but one
rather relies on the semantics of the constraint. Take for ex-
amplex < y: knowingxmin andymax is sufficient to remove
all the inconsistent values. To compute the number of valid
couples we can simply enumerate them, which done naively
would requireΩ(dx · dy) time. Provided the domains are
maintained in sorted order, a reasonable assumption, that enu-
meration can be done inΘ(dx + dy) time by using a running
pointer in each domain as described in Algorithm 1.

function lt card(x, y)
let tx andty be tables containing the values of the
domains ofx andy, respectively, in increasing order;
p := 1; q := 1 c := 0;
while q ≤ dy do

while p ≤ dx and tx[p] < ty[q] do
p := p + 1;

c := c + p − 1;
q := q + 1;

return c;

Algorithm 1: Computing the number of solutions tox < y.

#(x < y) = lt card(x, y) (2)

For each valuev in D(y), it finds out of the number of sup-
portssc(y, v) fromD(x) and adds them up inc. We can make
the algorithm incremental by storingsc(y, v) for eachv in
D(y) andq(w), the smallestq such thatw < ty[q], for each
w in D(x): if v is removed fromD(y), the total number of
solutions decreases bysc(y, v); if w is removed fromD(x),

the total number of solutions decreases bydy − q(w) +1 and
sc(y, v) is decremented by one forq(w) ≤ v ≤ dy.

Sometimes the domains of variables involved in such con-
straints are maintained as intervals. This simplifies the com-
putation, for which we derive a closed form:

#(x < y) =

ymax−xmin∑

i=ymin−xmin

i −

ymax−xmax−1∑

i=1

i

= ymax · (xmax + 1) − xmin · dy

− 1

2
· (x2

max + xmax + y2
min − ymin) (3)

Clearly, what preceded equally applies to constraints
x ≤ y, x > y, andx ≥ y, with small adjustments. Counting
solutions for equality and disequality constraints is compar-
atively straightforward (remember that domain consistency
has been achieved):

#(x = y) = dx (4)

#(x 6= y) = dx · dy − |D(x) ∩ D(y)| (5)

With an appropriate representation of the intersection of
D(x) and D(y), an incremental version of the count for
x 6= y requires constant time.

In some applications such as temporal reasoning, constants
are present in the binary constraints (e.g.x < y + t for some
constantt). The previous algorithms and formulas are easily
adapted to handle such constraints.

2.3 Linear Constraints
Many constraint models feature linear constraints of the form∑n

i=1 aixi ◦ b where◦ stands for one of the usual relational
operators and theai’s andb are integers. Bound consistency
is typically enforced, which is a fast but rather weak form
of reasoning for these constraints. Working from domains
filtered in this way is likely to yield very poor approximations
of the number of solutions.
Example 1 Constraint3x1+2x2−x3−2x4 = 0 with bound
consistent domainsD(xi) = {0, 1, 2}, 1 ≤ i ≤ 4 admits
only seven solutions even though the size of the Cartesian
product is 81. Since the value of any one variable is totally
determined by the combination of values taken by the others,
the upper bound can be lowered to 27 but this is still high.

These constraints are actually well studied under the name
of linear Diophantine equations and inequations. In particu-
lar, [Ajili and Contejean, 1995] offers an algorithm adapted
to constraint programming that produces a finite description
of the set of solutions of a system of linear Diophantine equa-
tions and inequations overN

When the constraints are of the formb′ ≤
∑n

i=1 aixi ≤ b
with theai’s andxi’s belonging toN, we get knapsack con-
straints for which[Trick, 2003] adapts a pseudo-polynomial
dynamic programming algorithm. It builds an acyclic graph
G〈ai〉,〈xi〉,b,b′ of size O(nb) in time O(nbd) (where d =
max{dxi

}) whose paths from the initial node to a goal node
correspond to solutions. It is pointed out that enumerating
solutions amounts to enumerating paths through a depth-first
search, in time linear in the size of the graph.

#(b′≤
n∑

i=1

aixi ≤b)=|{paths traversingG〈ai〉,〈xi〉,b,b′}| (6)

Interestingly, the approach could be generalized so as to lift
the nonnegativity restriction on the coefficients and variables
at the expense of a larger graph of sizeO(nr) wherer repre-
sents the magnitude of the range of

∑n

i=1 aixi over the finite
domains.

2.4 Element Constraints
The ability to index an array with a finite-domain variable,
commonly known as anelement constraint, is often present
in practical models. Given variablesx andi and array of val-
uesa, element(i, a, x) constrainsx to be equal to theith

element ofa (x = a[i]). Note that this is not an arbitrary
relation between two variables but rather a functional rela-
tionship. As a relation, it could potentially numberdx · di

solutions, corresponding to the Cartesian product of the vari-
ables. As a functional relationship, there are exactly as many
tuples as there are consistent values fori:

#element(i, a, x) = di (7)

This exact count improves on the product of the domain
sizes by a factordx.

2.5 Regular Language Membership Constraints
Given a sequence of variablesX = 〈x1, x2, . . . , xn〉 and
a deterministic finite automatonA, regular(X,A) con-
strains any sequence of values taken by the variables ofX
to belong to the regular language recognized byA [Pesant,
2004]. The consistency algorithm for this constraint builds a
directed acyclic graphGX,A whose structure is very similar
to the one used by[Trick, 2003] for knapsack constraints, as
reported in Section 2.3. Here as well, each path corresponds
to a solution of the constraint and counting them represents
no complexity overhead with respect to the consistency algo-
rithm.

#regular(X,A) = |{paths traversingGX,A}| (8)

2.6 Among Constraints
Under constraintamong(c, X, V), variablec corresponds to
the number of variables from setX taking their value from
setV [Beldiceanu and Contejean, 1994]. Let R = {x ∈ X :
D(x) ⊆ V }, the subset of variables required to take a value
from V , andP = {x ∈ X \ R : D(x) ∩ V 6= ∅}, the subset
of variables possibly taking a value fromV . Those two sets
are usually maintained by the consistency algorithm since the
relationship|R| ≤ c ≤ |R|+ |P | is useful to filter the domain
of c.

Define νS as the number of variables from setS taking
their value fromV . To derive the number of solutions, we
first make the following observations:

1. νR = |R|, a constant, so that in any solution to the con-
straint the value taken byx ∈ R can be replaced by any
other in its domain and it remains a solution.

2. νX\(R∪P) = 0, a constant, so that in any solution to
the constraint the value taken byx ∈ X \ (R ∪ P) can
be replaced by any other in its domain and it remains a
solution.

3. Any assignment of the variables ofP such thatνP =
c − |R| of them take a value inV can be extended into∏

x∈X\P dx complete solutions.

4. There are such assignments for every value ofνP from
cmin − |R| to cmax − |R| and for every subsetS of P
identifying theνP variables in question. How many as-
signments, givenS? Each variabley ∈ S has|D(y)∩V |
possible values and each variablez ∈ P \S has|D(z) \
V | possible values, totaling#a(S) =

∏
y∈S |D(y) ∩

V | ·
∏

z∈P\S |D(z) \ V | assignments.

Putting it all together gives:

#among(c, X, V) =
∏

x∈X\P

dx ·
cmax∑

k=cmin

∑

S⊆P

|S|=k−|R|

#a(S) (9)

In the worst case, the number ofS sets to consider is ex-
ponential in the number of variables. It may be preferable
sometimes to compute faster approximations. We can re-
place every#a(S) by some constant lower or upper bound.
Let tin be a table in which the sizes ofD(x) ∩ V for ev-
ery x ∈ P appear in increasing order. Similarly, lettout

be a table in which the sizes ofD(x) \ V for every x ∈
P appear in increasing order. We define a lower bound
ℓ(a(k)) =

∏k−|R|
i=1 tin[i] ·

∏|P |−k+|R|
i=1 tout[i]

and an upper bound
u(a(k)) =

∏k−|R|
i=1 tin[|P |−i+1]·

∏|P |−k+|R|
i=1 tout[|P |−i+1].

Then

#among(c, X, V)≥
∏

x∈X\P

dx ·
cmax∑

k=cmin

(|P |
k−|R|) · ℓ(a(k)) (10)

#among(c, X, V)≤
∏

x∈X\P

dx ·
cmax∑

k=cmin

(|P |
k−|R|) · u(a(k)) (11)

Note that if the variables inP have identical domains then
the lower and upper bounds coincide and we obtain the exact
count.

Example 2 Consideramong(c, {x1, x2, x3, x4, x5}, {1, 2})
with D(c) = {3, 4}, D(x1) = {1, 3, 4}, D(x2) =
{1, 2}, D(x3) = {3, 4}, D(x4) = {2}, and D(x5) =
{1, 2, 3}. We obtainR = {x2, x4}, P = {x1, x5}, and
#among(c, {x1, x2, x3, x4, x5}, {1, 2}) = dx2

· dx3
· dx4

·
(|D(x1) ∩ {1, 2}| · |D(x5) \ {1, 2}| + |D(x5) ∩ {1, 2}| ·
|D(x1) \ {1, 2}| + |D(x1) ∩ {1, 2}| · |D(x5) ∩ {1, 2}|) =
2 · 2 · 1 · (1 · 1 + 2 · 2 + 1 · 2) = 28, by (9). Using (10),(11)
we get16 ≤ #among(c, {x1, x2, x3, x4, x5}, {1, 2}) ≤ 40.
In comparison, the size of the Cartesian product is72.

2.7 Mutual Exclusion and Global Cardinality
Constraints

Besidesamong, other constraints are concerned with the
number of repetitions of values. Constraintalldiff(X)
forces the variables of setX to take different values.
Constraint gcc(Y, V, X), for a sequence of variables
Y = 〈y1, y2, . . . , ym〉 and a sequence of valuesV =
〈v1, v2, . . . , vm〉, makes eachyi equal to the number of times

a variable ofX takes valuevi. It is a generalization of the
former.

Already for thealldiff constraint, the counting prob-
lem includes as a special case the number of perfect match-
ings in a bipartite graph, itself equivalent to theNP-hard
problem of computing the permanent of the adjacency ma-
trix representation of the graph. So currently we do not
know of an efficient way to compute#alldiff(X) or
#gcc(Y, V, X) exactly. A polytime randomized approxima-
tion algorithm for the permanent was recently proposed in
[Jerrumet al., 2004] but its time complexity, inΩ(n10), re-
mains prohibitive. Therefore even getting a reasonable ap-
proximate figure is challenging. We nevertheless propose
some bounds.

Upper Bound
If D(x) ⊆ D(y) for some variablesx, y ∈ X then regard-
less of the valuev taken byx we know that at mostdy − 1
possibilities remain fory sincev ∈ D(y). We generalize this
simple observation by consideringD = {D(x) : x ∈ X},
the distinct domains ofX . For eachD ∈ D, defineED =
{x ∈ X : D(x) = D}, the set of variables with domainD,
andSD = {x ∈ X : D(x) ⊂ D}, the set of variables whose
domain is properly contained inD. Then

#alldiff(X)≤
∏

D∈D

|ED|∏

i=1

(|D| − |SD| − i + 1) (12)

Computing it requires taking the product ofn terms, each of
which can be computed easily inO(nm) time and probably
much faster with an appropriate data structure maintaining
the ED and SD sets. This upper bound is interesting be-
cause for the special case where all domains are equal, say
{v1, v2, . . . , vm}, it simplifies to the exact solution count,

n∏

i=1

(m − i + 1) = m!/(m − n)!

Lower Bound
As hinted before, the consistency algorithm foralldiff
computes a maximum matching in a bipartite graph. It is
known that every maximum matching of a graph can be ob-
tained from a given maximum matching by successive trans-
formations through even-length alternating paths starting at
an unmatched vertex or through alternating cycles.1 Each
transformation reverses the status of the edges on the path or
cycle in question: if it belonged to the matching it no longer
does, and vice versa. The result is necessarily a matching
of the same size. Finding every maximum matching in this
way (or any other) would be too costly, as we established be-
fore, but finding those that are just one transformation away
is fast and provides a lower bound on the number of max-
imum matchings, or equivalently on the solution count of
alldiff.

By not applying transformations in succession, we also
avoid having to check whether two matchings obtained by
distinct sequences of transformations are in fact identical,

1An alternatingpath or cycle alternates between edges belonging
to a given matching and those not belonging to it.

which could happen. However, successive transformations
from distinct connected components is safe: each resulting
matching is distinct. We may therefore take the product of
the number of maximum (sub)matchings in each connected
component of the bipartite graph. Identifying the connected
componentsC takes time linear in the size of the graph. Enu-
merating all the appropriate cycles and paths of each con-
nected component can be done inO(nm2) time. Let their
number beνg for each connected componentg ∈ C. Then

#alldiff(X)≥
∏

g∈C

(νg + 1) (13)

For thegcc constraint, we may be able to adapt the ideas
which gave rise to the previous lower bound. The consis-
tency algorithm for this constraint is usually based on net-
work flows. Given a network and a flow through it, a resid-
ual graph can be defined and the circuits in this graph lead
to equivalent flows. Another idea is to decompose the con-
straint intoamong constraints on singleton sets of values and
use (9)-(11).

3 Using Solution Counts of Constraints
This section examines the possible uses of solution counts of
constraints.

3.1 Approximate the Solution Count of a CSP
They can be used to approximate the number of solutions to
a CSP. Given a model for aCSP, consider its variables as
a setS and its constraints as a collectionC of subsets ofS
defined by the scope of each constraint. Add toC a singleton
for every variable inS. A set partitionof S is a subset ofC
whose elements are pairwise disjoint and whose union equals
S (see Section 4 for some examples). To each element of
the partition corresponds a constraint (or a variable in case
of a singleton) for which an upper bound on the number of
solutions can be computed (or taken as the cardinality of the
domain in case of a singleton). The product of these upper
bounds gives an upper bound on the total number of solutions.
In general there are several such partitions possible and we
can find the smallest product over them. If it is used in the
course of a computation as variables become fixed and can be
excluded from the partition, new possible partitions emerge
and may improve the solution count.

3.2 Guide Search Heuristics
As we saw in the introduction, these counts are also useful
to develop robust search heuristics. They may allow a finer
evaluation of impact in the generic search heuristic of[Re-
falo, 2004] since their approximation of the size of the search
space is no worse than the Cartesian product of the domains.
Value-ordering heuristics such as[Kasket al., 2004] are also
good candidates. Other search heuristics following thefirst-
fail principle (detect failure as early as possible) and centered
on constraints can be guided by a count of the number of so-
lutions left for each constraint. We might focus the search
on the constraint currently having the smallest number of so-
lutions, recognizing that failure necessarily occurs through a
constraint admitting no more solutions (see Section 4).

3.3 Evaluate Projection Tightness
We can also compute the ratio of the (approximate) solution
count of a constraint to the size of the Cartesian product of
the appropriate domains, in a way measuring the tightness
of the projection of the constraint onto the individual vari-
ables. A low ratio stresses the poor quality of the infor-
mation propagated to the other constraints (i.e. the filtered
domains) and identifies constraints whose consistency algo-
rithm may be improved. Tightness can also serve as another
search heuristic, focusing on the constraint currently exhibit-
ing the worst tightness (i.e. the smallest ratio). An ideal ratio
of one corresponds to a constraint perfectly captured by the
current domains of its variables.

4 Some Examples
The purpose of this section is to illustrate solution countsand
their possible uses through a few simple models, easier to
analyse.

4.1 Map Coloring
Consider the well-known map coloring problem for six Euro-
pean countries: Belgium, Denmark, France, Germany, Lux-
embourg, and the Netherlands. Any two countries sharing a
border cannot be of the same color. To each country we asso-
ciate a variable (named after its first letter) that represents its
color. Constraints

f 6= b, f 6= ℓ, f 6= g, ℓ 6= g, ℓ 6= b, b 6= n, g 6= n, g 6= d, g 6= b

model the problem. If we allow five colors, there are1440 le-
gal colorings. The cardinality of the Cartesian product of the
domains of the variables initially overestimates that number
to be15625 (56). A set partition such as{f 6= ℓ, b 6= n, g 6=
d} provides a slightly better estimate, using (5):

(dx · dy − |D(x) ∩ D(y)|)3 = (5 · 5 − 5)3 = 8000.

Noticing that four of these countries are all pairwise adjacent,
an alternate model is

alldiff({b, f, g, ℓ}), b 6= n, g 6= n, g 6= d

yielding a still better upper bound on the solution
count, 5! · 52 = 3000, using (12) with set partition
{alldiff({b, f, g, ℓ}), n, d}. We see here that the solution
counts of the constraints in aCSP model, particularly those
of high arity, can quickly provide good approximations of
the number of solutions ofCSPs. The projection tightness
of b 6= n, g 6= n, and g 6= d is 20/25 = 0.8; that of
alldiff({b, f, g, ℓ}) is5!/54 = 0.192. This could be taken
as an indication that search should focus on the latter.

Let us now analyse the effect of coloring one of the coun-
tries red. Regardless of the country we choose, the number of
legal colorings will decrease five fold to288 since colors are
interchangeable. The true impact of fixing a variable, mea-
sured as1 minus the ratio of the remaining search space after
and before ([Refalo, 2004]), is thus0.8. Table 4.1 reports af-
ter each country is colored red the cardinality of the Cartesian
product of the domains (column 2), the upper bound on the
solution count from each of the two set partitions (columns

domains 1st partition 2nd partition
var solns impact solns impact solns impact
ℓ 1600 .898 1024 .872 600 .800
f 1600 .898 1024 .872 600 .800
b 1280 .918 768 .904 480 .840
g 1024 .934 576 .928 384 .872
n 2000 .872 1280 .840 360 .880
d 2500 .840 1600 .800 480 .840

avg – .893 – .869 – .839

Table 1: Comparing different approximations of the number
of solutions of a small map coloring problem.

4 and 6), and their corresponding impacts (columns 3, 5, and
7).

Again we note a significant improvement in the approxi-
mation of the number of solutions over the Cartesian prod-
uct, particularly from the second set partition based on the
model using analldiff constraint. The latter also provides
a closer approximation of the true impact: the average com-
puted impact is less than 5% away whereas it is more than
11% away for the average computed impact using Cartesian
products.

4.2 Rostering
Consider next a simple rostering problem: a number of daily
jobs must be carried out by employees while respecting some
labor regulations. LetE be the set of employees,D the days
of the planning horizon, andJ the set of possible jobs, in-
cluding a day off. Define variablesjde ∈ J (d ∈ D, e ∈ E)
to represent the job carried out by employeee on dayd. To
ensure that every job is performed on any given day, we can
state the following constraints:

gcc(〈1, 1, . . . , 1〉, J \ {day off}, (jde)e∈E) d ∈ D. (14)

Some jobs are considered more demanding than others and
we wish to balance the workload among employees. We in-
troduce variableswde representing the workload of employee
e on dayd and link them to the main variables in the follow-
ing way:

element(jde, (ℓj)j∈J , wde) d ∈ D, e ∈ E (15)

whereℓj corresponds to the load of jobj. We then add con-
straints enforcing a maximum workloadk:

∑
d∈D wde ≤ k e ∈ E. (16)

Finally work patterns may be imposed on individual rosters:

regular((jde)d∈D,A) e ∈ E (17)

with the appropriate automatonA.
To approximate the number of solutions, there are a few

possibilities for a set partition of the variables(jde)d∈D,e∈E

and(wde)d∈D,e∈E : constraints (14)(16) are one, constraints
(17)(16) are another, and so are constraints (15). In deciding
which one to use, its size (the number of parts), the qual-
ity of the bounds, and the projection tightness of each con-
straint may help. Partition (15) has size|D| · |E| compared
to |D| + |E| and 2 · |E| for the other two: a smaller size

means larger parts and probably a better overall approxima-
tion since each solution count has a more global view. We
presented exact counts for every constraint used here except
(14), making partition (14)(16) less attractive. A set partition
that includes constraints with low tightness (which is difficult
to assess here without precise numbers) is more likely to do
significantly better than the size of the Cartesian product of
the individual domains, which can be considered a baseline.

5 Discussion
This paper argued that looking at the number of solutions of
individual constraints inCSPs is interesting and useful. It can
approximate the number of solutions as a whole or help guide
search heuristics. Efficient ways of counting solutions were
given for several families of constraints. The concepts of set
partition over the variables and of projection tightness were
defined in order to combine solution counts and measure the
efficacy of consistency algorithms, respectively.

But this is a first step and many questions remain. Some
of the main families of constraints have been investigated but
others were left out: for example, those useful in schedul-
ing or packing problems such ascumulative anddiffn,
or those for routing problems such ascycle. How close
can we get to the solution count for them and at what com-
putational cost? For the simplest constraints that we investi-
gated, we mentioned how the algorithms computing solution
counts could be made incremental. This is an important issue
to achieve efficiency when such counts are computed repeat-
edly as in backtrack search. What can be done for the other
constraints? The whole question of the usefulness of such
an approach hasn’t been settled either. The answer is likely
to come, at least in part, from empirical evidence. Compu-
tational experiments will need to be run on larger and more
realistic models.

Acknowledgements
Philippe Refalo’s work on impact-based search sparked the
idea for this paper. I thank Jean-Charles Régin for discus-
sions and the anonymous referees for their constructive com-
ments. This work was partially supported by the Canadian
Natural Sciences and Engineering Research Council under
grant OGP0218028.

References
[Ajili and Contejean, 1995] F. Ajili and E. Contejean. Com-

plete Solving of Linear Diophantine Equations and In-
equations without Adding Variables. InProc. CP’05,
pages 1–17. Springer-Verlag LNCS 976, 1995.

[Angelsmark and Jonsson, 2003] O. Angelsmark and P. Jon-
sson. Improved Algorithms for Counting Solutions in
Constraint Satisfaction Problems. InProc. CP’03, pages
81–95. Springer-Verlag LNCS 2833, 2003.

[Beldiceanu and Contejean, 1994] N. Beldiceanu and
E. Contejean. Introducing Global Constraints in CHIP.
Mathematical and Computer Modelling, 20:97–123,
1994.

[Birnbaum and Lozinskii, 1999] E. Birnbaum and E. L.
Lozinskii. The Good Old Davis-Putnam Procedure Helps
Counting Models. Journal of Artificial Intelligence Re-
search, 10:457–477, 1999.

[Bulatov and Dalmau, 2003] A.A. Bulatov and V. Dalmau.
Towards a Dichotomy Theorem for the Counting Con-
straint Satisfaction Problem. InProc. FOCS’03, pages
562–573. IEEE Computer Society, 2003.

[Burton and Steif, 1994] R. Burton and J. Steif. Nonunique-
ness of Measures of Maximal Entropy for Subshifts of
Finite Type. Ergodic Theory and Dynamical Systems,
14:213–236, 1994.

[Darwiche, 2001] A. Darwiche. On the Tractable Counting
of Theory Models and its Applications to Truth Main-
tenance and Belief Revision.Journal of Applied Non-
Classical Logic, 11:11–34, 2001.

[Horsch and Havens, 2000] M. Horsch and B. Havens. Prob-
abilistic Arc Consistency: A Connection Between Con-
straint Reasoning and Probabilistic Reasoning. InUAI-
2000, pages 282–290, 2000.

[Jerrumet al., 2004] M. Jerrum, A. Sinclair, and E. Vigoda.
A polynomial-Time Approximation Algorithm for the Per-
manent of a Matrix with Non-Negative Entries.Journal of
the ACM, 51:671–697, 2004.

[Kasket al., 2004] K. Kask, R. Dechter, and V. Gogate.
Counting-Based Look-Ahead Schemes for Constraint Sat-
isfaction. InProc. CP’04, pages 317–331. Springer-Verlag
LNCS 3258, 2004.

[Lebowitz and Gallavotti, 1971] J. Lebowitz and
G. Gallavotti. Phase Transitions in Binary Lattice
Gases.Journal of Mathematical Physics, 12:1129–1133,
1971.

[Mohr and Henderson, 1986] R. Mohr and T.C. Henderson.
Arc and Path Consistency Revisited.Artificial Intelli-
gence, 28:225–233, 1986.

[Orponen, 1990] P. Orponen. Dempster’s Rule of Combi-
nation is #-Complete.Artificial Intelligence, 44:245–253,
1990.

[Pesant, 2004] G. Pesant. A Regular Language Membership
Constraint for Finite Sequences of Variables. InProc.
CP’04, pages 482–495. Springer-Verlag LNCS 3258,
2004.

[Refalo, 2004] P. Refalo. Impact-Based Search Strategies for
Constraint Programming. InProc. CP’04, pages 557–571.
Springer-Verlag LNCS 3258, 2004.

[Régin, 2004] J.-C. Régin. Global Constraints and Filtering
Algorithms. In M. Milano, editor,Constraint and Integer
Programming: Toward a Unified Methodology. Kluwer,
2004.

[Roth, 1996] D. Roth. On the Hardness of Approximate Rea-
soning.Artificial Intelligence, 82:273–302, 1996.

[Trick, 2003] M.A. Trick. A Dynamic Programming Ap-
proach for Consistency and Propagation for Knapsack
Constraints.Annals of Operations Research, 118:73–84,
2003.

