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Abstract curve, which aggregates its behaviour for all possible deci-

. ) . sion thresholds. The quality of a probabilistic classifier can be
In this paper we investigate methods to detect and  measured by the Area Under the ROC Curve (AUC), which
repair concavities in ROC curves by manipulating measures how well the classifier separates the two classes
model predictions. The basic idea is that, if a point  without reference to a decision threshold. A good classifier
or a set of points lies below the line spanned by two  should have a large AUC, and AUC=1 means that there is
other points in ROC space, we can use thisinforma- 3 decision threshold such that the corresponding categorical

tion to repair the concavity. This effectively builds classifier has 100% accuracy.

a hybrid model combining the two better models We use the ternmodel repairto denote approaches that
with an inversion of the poorer models; in the case  mqdify given models in order to obtain better models. In
of ranking classifiers, it means that certain inter-  contrast, ensemble methods produce hybrid models that leave
vals of the scores are identified as unreliable and  the original models intact. An approach to model construc-
candidates for inversion. We report very encour- tion using ROC space is given [Blockeel and Struyf, 2042

aging results on 23 UCI data sets, particularly for  \yhere the authors identify and assemble parts of a decision
naive Bayes where the use of two validation folds  yree that perform well in different areas of ROC space. Our
yielded significantimprovements on more thanhalf  555r0ach in this paper is to identify ‘bad’ areas, or concav-
of them, with only one loss. ities, in a ROC curve and repair them by manipulating the
corresponding low-quality predictions. The approach is ex-
. perimentally validated using both naive Bayes and decision

1 Introduction tree, but the approach has much wider scope as it can be ap-

There is an increasing amount of work on model selection an@lied to any classifier that computes class scores.

model combination in the machine learning and data mining To illustrate the approach, we describe in Section Rae

literature: for instance, model selection based on ROC spadegirPoint algorithm that combines three models based on dif-

[Provost and Fawcett, 20)Imodel combination by means ferent thresholds of the same probabilistic classifier, and cre-

of bagging[Breiman, 199§ boosting[Freund and Schapire, ates a new model which theoretically should improve upon

1994, arcing[Breiman, 1998 the mixture of experts method the worst of the three models. In Section 3 we introduce the

[Jacobset al, 1991, to name just a few. A review on en- main algorithmRepairSection, that mirrors an entire con-

sembles of learning machines can be founfMalentini and ~ cave region (a region of the curve that is below its convex

Masulli, 2003. hull). In Section 4 we present experimental results on 23
Typically, these methods assume a set of given models witdata sets from the UCI repository. Section 5 reviews some

fixed performance, and the issue is how best to combine thegglated work on model ensembles, gives the main conclusion

models to obtain a better ensemble model. There is no afihd suggests further work.

tempt to analyse the performance of the given models to de-

termine a region where performance is sub-standard. Thispg  Basjcs of repairing classifiers in ROC space

per investigates methods to improve given models using ROC

analysis. Assume that the confusion matrix of a classifier evaluated on
ROC (Receiver Operating Characteristic) analysis is usua test set is as in Table 1. Then the true positive rate of the

ally associated with classifier selection when both class andlassifier isa/(a+ b) and the false positive rate of the classi-

misclassification cost distribution are unknown at trainingfier isc/(c+d). The point(c/(c+d),a/(a+ b)) in the XY

time. However, ROC analysis has a much broader scopplane (i.e., ROC space) will be used to represent the perfor-

that is not limited to cost-sensitive classification. A categor-mance of this classifier.

ical classifier is mapped to a point in ROC space by means If a model is under the ascending diagonal in ROC space,

of its false positive rate on the X-axis and its true positivethis means that it performs worse than random. Models

rate on the Y-axis. A probabilistic classifier results in a ROCA and B in Figure 1 are such worse-than-random models.



predicted positive  predicted negative Given three models Model 1, Model 2 and Model 3, output

actual positive a b Model 4 that operates as follows:
actual negative c d 1. If both Model 1 and Model 2 predict negative, then pre-
dict negative;
Table 1: A confusion matrix. 2. Ifboth Model 1 and Model 2 predict positive, then predict
positive;

. . . If Model 1 predicts negative and Model 2 predicts posi-
However, there is a very useful trick to obtain better-than- tive, then predict the opposite of what Model 3 predicts;

random models: simply invert all predictions of the origi- 4. Otherwise, predict what Model 3 predicts.
nal model. This corresponds to exchanging the columns in

the contingency table, leading to a new true positive rate ofraple 2: AlgorithmRepairPoint. The last clause does not

b/(a+b) =1—a/(a+b), i.e. one minus the original true apply under the inclusion constraints and is only added for
positive rate; similarly we obtain a new false positive rate ofcompleteness.

d/(c+d)=1—c/(c+d). Geometrically, this corresponds

to mirroring the original ROC point through the midpointon ] -
the ascending diagonal. sified negative by Model 1 and positive by Models 3 and 2

(TP —TPR) U (FP; — FPy)); those classified negative by

. Models 1 and 3 and positive by Model 2T(® — TR;) U
(FP, — FP3)); and those classified negative by all three mod-
els (POS-Th)U(NEG—FP,), wherePOSandNEGare
Wddel-A the sets of all positive and all negative examples, respec-
Model -5 P tively). By construction, Model 4 classifies the first group as
06 - positive, the second group as negative, the third group as pos-

R 4 itive, and the fourth group as negative. The true positives of
0s G R Model 4 are thu§ P,U (TR, — TR;); because of the inclusion

’ Model B constraints the result follows (analogous for false positives).
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Figure 1. By inverting their predictions, worse-than-random
models A and B below the diagonal can be transformed into
better-than-random models -A and -B above the diagonal.

o
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Notice that the ascending diagonal really connects two o2 /
classifiers: the classifier which always predicts negative in
(0,0), and the classifier which always predicts positive in o - ” - " i
(1,1). This suggests that the above repair procedure can be ' False Postive Rate '
generalised to line segments connecting arbitrary classifiers.
For instance, consider Figure 2. Denote the sets of true and
false positives of Modell by TR andFPR, then we can con- Figure 2: Model 3 is mirrored to Model 4 with the help of
struct Model 4 under the condition th@tP, C TR, C TR,  Models 1 and 2.
andFP, C FP; C FP.. In particular, thesénclusion con- ] o )
straints are satisfied if Models 1, 2 and 3 are obtained by An equivalent construction is the following. Remove from
setting thresholds on the same probabilistic model, which i¢he test set all instances classified positive by Model 1, and all
what we assume throughout the paper. instances classified negative by I\/_Iodel 2 We can imagine this
Model 4 operates as indicated in Table 2. The inclusior®s @ smaller nested ROC space in which Model 1 represents
constraints guarantee that the geometric configuration of Figd0.0) and Model 2 represents (1,1); because of the inclusion
ure 2 holds. This is formally stated in the following theorem. constraints the position of Model 3 remains unchanged. Note
. that Model 3 performs worse than a random model in this
lgec&regpl &S:‘#n”;'ggl :)hrgthci% t-)ryPSAlggo-[i%;enpdairFP%ir%t nested ROC space. We then construct Model 4 as in Figure 1,
3 C FPy, ; X o o
has true and false positive rates T+ T Pr, T Pry — T Prs by inverting the predictions of Model 3 on the remaining test

examples.
and FPy = FPry + FPra — FPrs, where TPyand FPy de- We end this section by noting that the true and false posi-
note true and false positive rates of Model i.

tive rates derived for Model 4 only hold for the same test set
Proof. Under the inclusion constraints expressed in the theeon which Models 1, 2 and 3 were evaluated. On a second, in-
orem, there are four disjoint groups of examples: those clasdependent test set the ROC locations of the 4 classifiers may
sified positive by Models 1, 3 and 2 P, UFPy); those clas- be different — in particular, Model 3 may not be below the




line connecting Models 1 and 2, in which case Model 4 will score calculated by the probabilistic model in this interval,
be evaluated worse than Model 3. In our experiments, wand output a constant score (e.g., the mid-point of the inter-
therefore use validation sets to decide whether concavities aral). Assuming that ties are broken by assigning a random
stable across different samples. This will be further discusserthnk, this would replace the concave region of the ROC curve

in Section 4. with the line segment cd. It is interesting to note that if this

procedure is followed for all concavities, this corresponds to

3 Identifying and repairing concavities in a constructing the convex hull by discretising the probability
ROC curve scores.

. . . o . However, in theory we should be able to do better than that:
The previous section outlined the main ideas underlying re-

. o S we can invert the ranking of the instances in the probability
pairing concavities in ROC curves. However, preliminary ex-

. o X ; interval, which can be seen as applying Algoritfitepair-
periments indicated that the three-point approach is too crudg; i 1 4| thresholds in this interval. For instance, by ap-
to work well in practice. In this section we introduce our

main algorithm, which manipulates a whole section of a ROCt)lymg this algorithm to the model corresponding to threshold

; J . .. .2, this point would be point-mirrored through the midpoint
curve. A ROC curve is obtained by evaluating a probabilisticy " ;e spegment cd to tk?e other side of the gonvex hull? The
ClaS.SIfIPTI’ on a test set and varying fche decision thrgshold, "%ame can be done for the other thresholds. The resulting ROC
sulting in a step curvgHand and Till, 2001 An efficient ’

. . . X : curve is shown in Figure 4. We can note that the area C under
way of constructing this curve is by ranking the instance

; . ; . . '®®She curve has been replaced by an equally large arabdve
corresponding to their predicted probability of being IOOSItIVethe curve. The AUC og the repii;lired gurvg is t?‘lerefore larger

[Fawce'ty, .ZOOB Figure 3 shows both the ROC curve for a than both the AUC of the original curve and the AUC of its
probabilistic model evaluated on a small test setd its con-

convex hull.
vex hull[Provost and Fawcett, 20D1
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Figure 3: A probabilistic ROC curve and its convex hull. Figure 4: Mirroring a concave part of the ROC curve.

Four points of the ROC curve (point a, b, c and d) are lo- . ] ]
cated on the convex hull. Each of these points corresponds The algorithm to produce the model with the repaired ROC
to a probability threshold, and thus each segment of the corfurve is given in Table 3. The procedure works for any model
vex hull corresponds to a probability interval. For instance that calculates a score; a probabilistic model is a special case.
the convex hull in Figure 3 has three segments corresponding
to three d|$]0|_nt probability mtervz_;\ls. Three out of these f|_ve_ Given a scoring moddW and two thresholds; S T, construct
segments delineate concave regions of the RQC curve, |r)d|- a scoring modeM’ predicting scores as follows. L&be the
cated as A, B and C. For example, area A is delineated by line gcore predicted bi:
ab and the ROC curve between point a and point b. Ingen- 1. |fS> Ty, then predics
eral, a concave area means that the ranking obtained fromthe2. If S< T,, then predicS
probabilistic model in this probability interval is worse than 3.  Otherwise, predicf; + T, — S.
random. For instance, consider area C which is the largest
concavity. One way to repair this concavity is by ignoring theTable 3: AlgorithmRepairSection. The algorithm effec-
_— tively inverts the ranking of all instances whose score as pre-

LFor illustration purposes, the test set contains only a few exdicted by M falls in the interval; < S< To.
amples and the resolution of the ROC curve is low. In practical

circumstances a step curve with much higher resolution is obtained.




4 Experimental evaluation 1. Train anaive Bayes or decision tree madedn the train-

. . ing data; construct a ROC curve C and its convex hull H
We describe a number of experiments to evaluate our ap- on the training data.

proach. We used 23 two-class data sets from the UCI repos- 2. Find adjacent points on H such that in this interval the

itory [Blake and Merz, 1998 Table 4 shows their numbers area between C and H is largest. [Tetand T, be the
of attributes, numbers of examples, and relative size of the corresponding score thresholds.
majority class. 3. Produce a new probabilistic modé{ by callingRepair-
Section(Ty, ).
Dataset #Attrs | #Exs | %MajClass 4. EvaluateM andM’ on the validation set, construct their
Australia 14 690 | 55.51 ROC curves and calculate their AUCs. If AUZ() <
Sonar 60 208 | 51.92 AUC(M) then go to 6.
Glass 9 214 | 67.29 5. EvaluateM andM’ on the test set, construct their ROC
German 20 1000 | 69.40 curves and calculate their AUCs.
Car 3 1728 | 69.68 6. Goto 1. until each fold has been used as a test set.
Anneal 38 798 | 74.44
Monk1 6 566 | 50.00 Table 5: ExperimenRepairSection.
Monk2 6 601 65.72
Monk3 6 554 | 55.41
Hepatitis 19 155 | 78.71 Dataset AUC AUC Better
House 16 435 | 62.07 (Original) | (Repaired) | ?
Tic-tac-toe 9 958 | 64.20 Australia 90.9+ 0.88 | 90.6+0.94 | x
Heart 13 270 | 55.56 Sonar 775£130 | 76.8% 1.31
lonosphere | 34 351 | 64.10 Glass 76.6L 143 | 80.6£1.36 | V
Breast Cancer | 9 286 | 70.28 German 79.3£0.88 | 78.9+088 | x
Lymphography | 17 148 | 56.81 Car 99.0+ 0.079 | 99.0% 0.08
Primary Tumor| 17 339 | 55.75 Anneal 86.7£0.48 | 90.2£ 047 | V
Soybean-large | 35 683 | 55.51 MonkL 75.4£0.70 | 77.4£0.70 |V
Solar-Flare | 12 323 | 56.35 Monk2 64.6L0.71 | 66.1£092 | V
Hayes-Roth | 4 133 | 60.91 Monk3 962+ 020 | 97.7L024 |V
Credit 15 690 | 55.51 Hepatitis 863+ 1.94 | 851+ 1.22
Balance 4 625 | 53.92 House 9631035 | 96.3+0.35
Bridges 12 108 | 66.67 Tic-Tac-Toe | 74.1+0.61 | 7565058 | V
. . Heart 91.0+1.04 | 90.24+1.08 X
Table 4: UCI data sets used in our experiments. lonosphere 9371069 | 93.1E0.690
. . . Breast Cancer | 76.1+1.63 | 77.7£157 | VvV
The experimental procedure for the first experiment was Tymphography| 90.3£ 1.39 | 91.0+1.49 | V
as follows. We split a data set into ten folds and use eight |[Primary Tumor| 79.6+ 1.02 | 80.6L 1.03 | V
of them for training, one for validation and one for testing. Soybean-Large] 91.9+ 0.46 | 91.9+ 0.46
We trained a naive Bayes model and a decision tree riodel [ Solar-Flare 91.1+0.71 | 91.2+0.74
on the training data, and chose two thresholds that delineate | Hayes-Roth 89.4+153 | 91.3+158 |V
a concavity. We then produced a new model by repairing | Credit 90.8+0.68 | 90.7+ 0.65
the probabilities between the thresholds; we only use the new | Balance 98.44+0.27 | 98.4+0.29
model if it improves AUC on the validation set. The detailed | Bridges* 92.7+1.66 | 92.9+1.89
procedure is given in Table 5. Average 86.41 87.1

We ran ExperimenRepairSection ten times and obtained ) ) ) ) ]
m pairs of AUC values. Since we use a validation set, we ard@ble 6: Results of ExperimefRepairSection with naive
able to decide whether or not repair resulted in a better moddtayes. *For the Bridges data set we used 5-fold cross-
— if not, we discard it and use the original, unrepaired modelvalidation.
For this reason, we only report results on the non-discarded
models, Sonmay be smaller than 100. The average AUCS Ofyqrefore conducted an experiment with two validation folds:
the unrepaired curve and the repaired curve for each data gk \you1d only use the repaired model if its AUC was higher
are given in Tables 6 and 7. We also performed a paired tteg,, ot validation folds. The results for naive Bayes are
with m—1 (_jegr_ees of freedom and Ie\(el of conﬁdence 0-15hown in Table 8. We now obtain 12 significant wins and
to test the significance of the average difference in AUC. The,y 1 significant loss, and the average increase in accuracy
results are favourable: the significance tests yield 10 wins anfl 1516 than a percentage-point. Interestingly, two validation
3 losses for repaired naive Bayes models and 11 wins and f4s didn’t work well for decision trees. '
losses for repaired decision tree models.

Experiments without using a validation set yielded worse h':e:?:llly’wv;ese‘:lzg%;tael?c?)rr;c(z\)\(}i)tiee”smzzfj \pgg]airr]:clivfhoBsiy?r?at
results, so the use of a validation set appears crucial, ccurred on two validation sets. The results were similar to

2Notice that decision trees can be viewed as scoring classifierthe results in the first experiment (11 significant wins and
[Ferriet al, 2002; Provost and Domingos, 2403 three losses), with some of the wins and losses occurring on



Dataset AUC AUC Better 5 Discussion and conclusions
(Original) (Repaired) ?

Australia 82.27+0.50 | 82.28+0.49 The work reported in this paper bears some similarity with en-

Sonar 87.35+1.20 | 88.92+1.01 |V semble methods. Bagging and boosting are two well-known
Glass 76.09£1.34 | 80.69£1.15 | v ensemble approaches. Both approaches are implemented by
German 80.78+0.55 | 81.01+0.54 | v re-sampling methods. In baggifiBreiman, 199§ the en-
,(A:r?:neal 22'3218'214 gggz&g'ggl 7 _semble is formed by making bootstrap replicates of the train-
NVonkl 75:8210:74 78:05i0:704 Y ing data sets and then mult_|ple genera.ted hypo;heses are used
Vonk? 66461066 679510660 to get an aggregated p_redlct_or. Boosting algorltlﬁﬁ’rx_eunc_i
Monk3 96300372 | 981419814 and Schapire, 199@ssign different weights to training in-

Hepatitis 91901284 | 91.9012.84 stances depending on whether they are correctly classified.
The approaches presented in this paper do not make use of

House 96.18+0.31 | 96.66+0.29 | Vv : ’
Tic-Tac-Toe | 74.81£0.54 | 75.9710.56 | V re-sampling techniques.
Heart 91.72+1.34 | 90.774+1.21 | x Another relevant ensemble method is majority voting
lonosphere 96.57+0.91 | 95.88+0.62 [Kimura and Shridar, 1991; Lam and Sue, 1997 which the
Breast Cancer | 74.82+1.71 | 75.75+1.51 class predicted by the ensemble is the most predicted class
Lymphography| 87.71+1.86 | 87.88+1.89 | V among the base classifiers. AlgoritfRepairPoint in this
Primary Tumor| 76.63+1.23 | 75.514+1.36 | x paper uses a kind of voting: when both Model 1 and Model
Soybean-Large] 90.93+0.50 | 91.10+0.52 | x 2 (see Figure 2) agree on the classification of an instance,
Solar-Flare 86.61+1.59 | 8565+1.65 | x then we choose that class. Otherwise, we choose the class
Hayes-Roth | 86.87+2.24 | 88.3312.08 | v not predicted by Model 3. In majority voting, on the other
g;?gr']tce g;g?ig?g gg'zgig'igg hand, we would choose the class predicted by Model 3. The
- : : - - difference is that majority voting does not take the quality of
Bridges 855/+4.36 | 81.7143.35 | x the different models into account, whereas our repair scheme
Average 86.16 86.71 ’

knows that Model 3 is sub-optimal and therefore corrects it

Table 7: Results of ExperimeRepairSection with decision ~ Predictions in the relevant region. - ,

trees. ROC curves contain a wealth of information about the per-

formance of one or more classifiers, which can be utilised to

construct better models. They have been used to find optimal

Dataset '(A‘gr? inal) ngvCa ed) Better labelling of decision treelf=erriet al, 2004 and to find good
Australa 87.1g7i2.28 86.861[)2.33 ™ decision thresholds for probabilistic classifificachiche and
Sonar 8134246 | 8461266 |V Flach, 2003. In this paper we have proposed a novel ap-
Glass 7467161 | 74755142 |V proach to construct new models by repairing concavities in
German 82331062 | 82.720060 | v a ROC curve. The first metho®epairPoint, works on a

Car 99.25:0.091 | 99.29:0.098 probabilistic classifier with three probability thresholds, and

Anneal 87.06£0.53 | 90.32:0.48 | Vv tries to improve the poorest model with help of the other two.
Monk1 75.68:1.12 | 78.65t0.92 | V Preliminary experimental results (not reported) showed that
Monk2 65.74-0.89 | 67.24:0.95 | V this didn’t work too well, but this may be due to the fact that

Monk3 96.75:0.47 | 98.54:0.25 | V the selection of the threshold for Model 3 is not easy. The

Hepatitis 92.6/3.79 | 93.19:3.37 threshold is a point chosen based on the ROC curve of the
House 96.76:0.37 | 96.76£3.44 training data set; this point (see point ¢3 in Figure 3) has the
Tic-Tac-Toe 75.62£0.69 | 76.92£0.71 farthest distance to the convex hull. If this threshold is not
Heart 9291129 | 92.98:1.42 optimal on the test data (for instance, the position ¢3 in the
lonosphere | 97.0#0.77 | 97.53£0.57 ROC curve on the test data set unfortunately is located in the
Breasrt] Can(:ﬁr 78.20+2.43 | 79.16:2.12 position c2), the AUC after repair becomes worse. Still, we
Lymphography| 86.94£2.41 | 90.49£1.94 | v believe that the idea of mirroring models around lines in ROC

Primary Tumor| 78.14+1.31 | 80.19:1.27 | Vv . - L .
Soybean-Large| 91.36L0.45 | 91.63:0.44 space will prove to be very useful. An interesting investiga-

<<

Solar-Flare 8969:1.90 | 89 94-1.88 tion for future work is whether a similar method can be made
Hayes-Roth 84.8953.56 | 88.33t3.09 | v to work if the models are not obtained from a single scoring
Credit 89.03:156 | 88.67L1.70 model (this would invalidate Theorem 1, i.e., the position of
Balance 99.53:0.027 | 99.10:0.078 Model 4 may be different from the point obtained by point-

Average 86.49 87.63 mirroring).

The second methodRepairSection, locates and repairs
Table 8: Results with naive Bayes using two validation folds.an entire concave region of a ROC curve. Experimental re-
sults were very encouraging for both naive Bayes and de-
cision trees. For naive Bayes we were able to improve re-
different data sets. It appears that repairing only the largestults even further by using two validation folds, but this didn’t
concavity and using two validation sets is the best strategy (atork for decision trees. We are currently investigating why
least for naive Bayes). this is so. One possible explanation is that ROC curves ob-



tained from decision trees have lower resolution (because alFreund and Schapire, 199¢. Freund and R. E. Schapire.
instances in a leaf receive the same predicted probability), Experiments with a new boosting algorithm. In L. Saitta,
which may mean that concavities are less stable across sam- editor, Proceedings of the 13th International Conference
ples. Pruning may be another factor, as it has been shown that on Machine Learningpages 148—-156. Morgan Kaufmann,
pruning is detrimental for probability predicti¢Rrovost and 1996.

Domingos, 2003; Feret al, 2003'. . . [Hand and Till, 2001 D. Hand and R. Till. A simple gener-

There are several other ways in which this work could be™ " 5jisation of the area under the ROC curve for multiple class
taken further. One is to investigate how much repair is possi-  ¢|assification problems.Machine Learning 45(2):171—
ble, by concentrating on ROC curves with large concavities, 1gg 2001.

possibly from artificial data sets. Another is to work with

averaged ROC curves that are obtained by cross-validatio'hl""CObS‘_et al, 1991 R. Jacobs, M. Jordan, S. Nowlan, and

(since each instance occurs in the test fold exactly once, an G- Hinton. Adaptive mixtures of local expertsNeural

averaged ROC curve can be simply constructed by combin- Computation3(1):79-87, 1991.

ing all instances with their predicted probabilities). [Kimura and Shridar, 1991F. Kimura and M. Shridar.
Handwritten numerical recognition based on multiple al-
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