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Abstract

We present a transcription system that takes a music
signal as input and returns its musical score. Two
stages of processing are used. The first employs
a fundamental frequency detector and an onset de-
tector to transform input signals into a sequence
of sound events. The onset detection is inherently
noisy. This paper focuses on the second stage, go-
ing from sound events to a notated score. We use a
family of graphical models for this task. We allow
the results of onset detection to be noisy, necessi-
tating a search over possible segmentations of the
sound events. We use a large corpus of monophonic
vocal music to evaluate our system. Our results
show that our approach is well-suited to the prob-
lem of music transcription. The initial onset detec-
tion reduces the number of observations and makes
the system less instrument specific. The search over
segmentations corrects the errors in the onset de-
tection. Without such reasoning, these errors are
magnified in subsequent rhythm transcription.

1 Introduction

Music transcription is the task of transforming a music signal
into a symbolic representation of the musical events it con-
tains. There are three levels of representation of music that
are relevant here. On the third level is the musical score in
common music notation. This consists of musical events with
attributes notated pitch (such as “A” in octave 4), notated du-
ration (such as quarter note), and notated rhythmic position
(such as the first beat of measure 22). On the second level is
the representation of performance in terms of sound events.
This is the level of MIDI data. The rhythmic attributes of
events on this level are the actual onset time (such as 3.4 sec-
onds from the beginning of the piece) and the actual duration
(such as 0.5 seconds). The pitch attribute on this level could
be discrete (such as MIDI note 66) or continuous (such as
66.46). On the first level is the representation of the sound
signal. It is a common practice to transform the signal into
a sequence of frames (through short-time Fourier transform),
which are snapshots of the signal over a short period of time
(e.g. 20 msecs). A frame captures the composition of the
sound by specifying the amplitude for every frequency.

The third level is the target representation of transcrip-
tion. Previous authors [Raphael, 2002b; Cemgil and Kappen,
2003] have proposed using graphical models for automated
music transcription, but their systems take MIDI data as input
and only go from the second to the third level. Our goal is to
build an end-to-end transcription system that goes all the way
from afirst level audio signal to a third level musical score. In
this work we focus on monophonic transcription from a com-
plex instrument such as voice. Monophonic transcription is a
difficult enough task, and well worthy of study. It raises many
issues that need to be addressed before polyphonic transcrip-
tion can be attempted. Going from level 1 to 3 is a much more
challenging task than going from level 2 to 3. In going from
level 2 to 3, there is a one-to-one mapping between musical
events. Furthermore, the input is often MIDI data where the
pitch is given and does not need to be detected. Therefore the
only work that needs to be done is to track the tempo of the
music, thereby transforming actual onset times and durations
into notated rhythmic positions and durations.

Going from level 1 directly to level 3 is too hard. Frames
are too small a unit and even short music signals will be repre-
sented by very long sequences of frames. Each musical event
consists of many frames that need to be grouped together.
Furthermore, the information in a frame needs to be summa-
rized. Instead of a frequency-amplitude spectrum, we need to
know the fundamental frequency of a given frame. Therefore
we use a preprocessing step in which we go from level 1 to
level 2. This step consists of a fundamental frequency detec-
tor, which determines the fundamental frequency sounding
in each frame, and an onset detector, which detects the be-
ginnings of musical events from the frame sequence. Once
a musical event has been identified, an overall pitch for the
event can be deduced by analyzing all the frames constituting
the event. We have previously built an onset detector capable
of handling the soft onsets prevalent in vocal music, in which
there is a smooth pitch change, or a vowel change [Kapanci
and Pfeffer, 2004]. While achieving state-of-the-art perfor-
mance, it is not completely reliable, and no perfect onset de-
tector exists. It might miss some onsets, causing it to merge
musical events, while reporting other spurious onsets, causing
it to separate events. Furthermore, the pitch data produced by
the onset detector is continuous-valued and noisy.

This paper focuses on the transformation from level 2 to 3
when the level 2 input is noisy. We do not assume a one-to-



one mapping between events at the two levels. Instead, we
allow for the possibility that reported onsets are false posi-
tives. The onset detector can be tuned to trade off the rate of
false positives with false negatives. We use a setting with a
very low false negative rate, so that most of the errors in onset
detection are false positives. We also detect the pitch, allow-
ing the tuning of the performance to change over time. So we
need to simultaneously (1) detect false positives in the seg-
mentation, (2) do tempo tracking and rhythm transcription,
and (3) do tuning tracking and pitch transcription.

We propose a family of graphical models to accomplish
these tasks. In the models, the properties of sound events de-
pend probabilistically on the properties of notated events to
which they are related. Because there may be false onsets,
several sound events may actually be related to the same no-
tated event. The segmentation determines which sound events
are grouped together into a single note event, and therefore
it determines the structure of the graphical model. We have
a different graphical model corresponding to each possible
segmentation. We use Markov Chain Monte Carlo (MCMC)
sampling to search over the different structures and parame-
ters.

We evaluate our model using a corpus of monophonic vo-
cal music. Our results show that in the absence of perfect
onset detectors, reasoning about segmentation is necessary
for a signal-to-score system. Without such reasoning, the er-
rors in the segmentation are magnified in subsequent rhythm
transcription. We also show that the transcription benefits
from musical knowledge, which is easily incorporated into
our graphical model as prior distributions over the scores.

2 Problem Statement

The input of our system is a music signal, and the output is
a musical score. The music signal is first processed using
an onset detector to yield the sound event observations y;.n
for the graphical model. Each sound observation ,, con-
sists of an observed duration ¢,, and a frequency f,. The
task is to find a segmentation sq.x and a score z1.x. Each
score event z;, consists of a notated duration pj and a pitch
. The segmentation variable sy, is the number of observed
events related to the kth score event. Thus the segmentation
determines the mapping between score events and observed
events. N is the number of observations (fixed), while K is
the number of note events (dependent on the segmentation).

The goal is to find the segmentation s;.x and the score
x1.x that maximize the posterior probability of the segmen-
tation and score given the observed data:

(s1:x,T1:Kx)* = arg max p(s1.x, T1:x |[y1:N)
S1: K Z1: K

= argmaXp(ylzN|$1:K;$1:K)p(51:K)P($1:K) (1)
S1: K, T1:K

assuming independence of the prior distributions over score
and segmentation. The graphical model detailed in section
3 defines p(y1.n|s1:x, 1:x). We have a style specific score
prior p(z1.x ), and a segmentation prior p(s1.x ) based on the
onset detector’s outputs. The output of the system is the score
x3.x and the mapping of observations to the score events
s1. k- We evaluate it using a metric presented in Section 5.

For our onset detector, we use our previously published
hierarchical method that detects onsets in a signal by com-
paring frames one to another [Kapanci and Pfeffer, 2004]. A
comparison function based on the fundamental frequencies
and amplitudes returns the dissimilarity of two frames. If this
value is above a threshold, an onset is declared over the region
delimited by the two frames. The system begins by compar-
ing adjacent frames, and then gradually increases the distance
between the compared frames. By comparing frames some
distance apart, the detector is able to detect soft onsets that
happen smoothly over time.

To reduce the number of missed onsets, we use a low dis-
similarity threshold. That way, we get many extraneous on-
sets (false positives) which need to be eliminated in later
stages, but missed onsets (false negatives) are infrequent. In
our experiments, 40% of the onsets were extraneous, while
only 1.39% of the onsets were missed.

Once the onsets are marked, the signal is segmented by
cutting it at these onsets. A continuous pitch attribute is com-
puted for each event by the average fundamental frequency.
The comparison value for each detected onset is also stored to
be used in assigning a prior segmentation probability to each
observation y,,, as described in the next section.

3 Mod€

The likelihood of a sequence of observed sound events is
given by a family of graphical models. Due to the possi-
bility of false onsets, there are many possible groupings of
sound events (observations) into note events. The segmenta-
tion determines which sound events are grouped together, and
therefore it determines the structure of the graphical model.
For each segmentation s;.x, the likelihood model defines
the probability of observations y1.nx = (t1.n, f1:n) given
z1.x = (p1:K,m:K). The probabilistic dependency of sound
events on the notated events is the same in different struc-
tures. The difference is in the connections between the two
layers as illustrated in Figures 1 and 2: the leaf nodes corre-
spond to the observations, and the segmentation determines
the structure of the graph above them. The mapping between
observation indexes (ns) and note event indexes (ks) is given
by g(n) = 1 4+ maxg, <n k, where Sj, = Ei-:ll Si.

The tempo and tuning are continuous processes changing
smoothly over time: we model both as first-order Gaussian
processes (Equations 2 and 5). The tempo determines how
notated durations become observed durations: the notated du-
ration is multiplied by the tempo to produce the observed
duration. In addition, we model the fact that durations will
deviate without reflecting a change in tempo. This is accom-
plished, first of all, by including a Gaussian noise (., in the
model for the observed duration (Equation 4).

We further model the fact that as the tempo remains con-
stant, successive deviations are likely to compensate for each
other, so that a note that sounds for shorter than its written
duration will be followed by a note that sounds for longer,
and vice versa. This may be the result of both intentional and
unintentional deviations. It is common in various styles to in-
tentionally produce this effect. For example, in swing rhythm,
given two successive eighth notes, the first is lengthened and



Figure 2: Pitch Model

the second is shortened. As another example, double-dotting
is a common effect in Baroque music. Here a dotted note is
lengthened and the subsequent note is shortened. This com-
pensation model is also a natural model of unintentional de-
viation. The performer is likely to maintain a constant beat,
so that the notes that subdivide a beat have a given amount of
time to fill. As a result, shorter notes will be compensated for
by longer notes to fill up the required time. We capture this
effect by including a first-order stealing process (Equation 3),
which allows successive durations to deviate in opposite di-
rections without affecting the overall tempo. This is accom-
plished by having a negative value for the stealing coefficient
¢x. The value —0.25 was used in our experiments. Given the
note duration pys, the observed durations depend linearly on
the tempo and stealing processes (Equation 4).

For the pitch process, the tuning is an additive offset that is
added to the notated pitch to produce the observed frequency
(Equation 6). In addition, we allow the frequency to deviate
independent of the tuning, so Equation 6 includes a Gaussian
noise term (¢, . The noise terms in Equations 4 and 6 model
observational errors as well as local deviations.

Tempo: wrp =wg—1 + C, Ffork>0 2
Stealing: A =cAp—1+(, Fork>0 3)
Duration: T = (wg + Ag)pk + Cry 4)

Tuning: Op =0k—1+ ¢, Tork>0 (5)

Frequency: fn =0k +m; +(p, Vk,n st k= g(n) (6)

We assume that wo is N(1,q,), Xo is N(0,qx), do
is N(O;qé)’ oy I8 N(OaQw)’ O I8 N(O,Q,\), Cr IS
N(0,Q7), (s, is N(0,Q5) and (s, is N(0,Qy), all inde-
pendent of each other. The variance values used in the ex-
periments were: q, = 1072, g = 1073, ¢s = 1071,
Q. = 1074, Qy = 1073, Q, = 1072, Qs = 1072 and
Qf =10"1.

Note that we don’t observe 7, directly, but only through
the durations ¢,, of the individual sound events, where 7, =

ik=+f+sk t». On the other hand, the model directly specifies
the observed frequency f,, of the individual sound events.

We define the rhythm prior p(p1,..., px) by a Hidden
Markov Model (HMM), learned offline using rhythm se-
quences of a corpus of music in the same style as our evalu-
ation data. For the pitch prior we use an n-gram model (with
n=3), which assumes that each element in a sequence only
depends on the previous n. — 1 elements. We define the prior
over intervals rather than individual pitches since this allows
for generalization to different keys. The probabilities in the
model are estimated offline by the n-gram frequencies in the
training data.

The segmentation prior indicates, for each observed sound
event, the probability that there is truly an onset immedi-
ately after the event. To obtain the segmentation prior, we
use the dissimilarity values returned by the onset detector
at each observation. The goal is to individually estimate
p(onset,|d,), the probability that there is an actual onset
right after the nth observation, given its dissimilarity d,, to
the following observation. Although not a formal density
estimation method, sigmoid fitting provides an appropriate
solution [Platt, 1999]. This was suggested to transform a
classifier’s output values into probabilities. Using a training
corpus for onset detection, we learned the following func-
tion: f(d) = (1 + exp(—2.64d + 2.59))~t. The shape of
the function makes sense: as the dissimilarity increases, it
assigns increasing probabilities in [0,1] to the presence of
an onset. In order to avoid probabilities close to 0 and 1,
we used a weighted average of f(d) and 0.5 as our prior:
p(onset, |d,) = 0.8f(d,) + 0.2 x 0.5.

Once individual segmentation priors of all observations are
computed, the prior probability of a segmentation s1.x is
computed by multiplying these together:

N-1 N-1
p(sl:KldlzN) = Hp(onsetnldn) X H(l_p(onSEtnldn))

n=1;9(n)#g(n+1) n=1;9(n)=g(n+1)

4 |Inference

Our goal is to compute the maximum a posteriori (MAP)
segmentation-score configuration as given in Equation 1. Let
‘R be the set of possible note durations and P the set of pos-
sible pitches. For a given observation sequence y1., there
are 2V—1 possible segmentations and (|R| x |P|)¥ possible
scores for each segmentation with K note events. The expo-
nential number of the possible (s1.x, z1.x ) pairs makes exact
computation of the MAP configuration intractable. We there-
fore use MCMC methods [Gilks et al., 1996] to sample from
the space of possible pairs.

Our inference procedure is similar to the handling of ref-
erence uncertainty in first-order probabilistic models [Pasula
and Russell, 2001]. We alternate between MCMC steps to
change the segmentation, and Gibbs steps to sample the dura-
tion and pitch for a given segmentation. When changing the
segmentation, reversible jump MCMC [Green, 1995] is em-
ployed since the model dimension changes whenever we split
or merge events.



4.1 ReversibleJump MCMC

MCMC methods are used to generate samples from a com-
plex target distribution where analytical or numerical tech-
niques are not applicable. In our case, the target is the pos-
terior distribution of the transcription given the observations,
p(z|y) = p(s,d,w|y), and we are trying to find the mode z*
of this distribution. There are well-known methods to con-
struct a Markov chain whose stationary distribution is guaran-
teed to be the target distribution. In the Metropolis-Hastings
algorithm, the candidate samples are generated from a pro-
posal distribution ¢(z'|z) and are accepted with probability
a(z,2') = min (1, %). This is not applicable
when p(z|y) does not have a fixed dimensionality, such as in
our problem: different segmentations may correspond to dif-
ferent numbers of notes, and therefore have different numbers
of parameters. The reversible jump MCMC method allows us
to sample from a target distribution even when the dimension-
ality of the model is not fixed. The acceptance probability of
moving from one model to another model of different dimen-
sion is given by:

Qmm (2,2') = min (1,

p(m') P (') P G (275 04") ‘3gmmr (z,u) ) o
p(m) pm(zly) Pmm! Gmm' (2, 1) 0z0u

where m and m' are model indicators that determine the num-
ber of notes, z and 2’ are the parameter vectors of sizes m and
m/' respectively, p(m) is the prior probability of model m, and
Pmm: 1S the probability of moving from model m to m'. The
function g, (z,u) = (2',4') is a mapping between the pa-
rameters of the two models. This mapping may entail random
decisions to generate the parameters z' of m' given the cur-
rent parameters z of m. These decisions are denoted by the
variable u, whose probability distribution is gp,m’ (2, w).

Since we assume that the segmentation, rhythm and pitch
priors are independent, for the first two terms of the fraction
in Equation 7 we have:

p(m) pm(2ly) o p(m, s) p(d) p(7) p(ylm,z)  (8)

The terms in the right hand side of Equation 8 are respectively
given by the segmentation prior, the rhythm prior, the pitch
prior and the likelihood model.

During our sampling, we allow two kinds of moves that
change the model dimension: merging two neighboring notes
together, or splitting a single note into two. The rhythm and
pitch components are sampled using Gibbs sampling without
a change in model dimension, so we don’t discuss the ac-
ceptance probability for those here and instead focus on the
segmentation component s of z. We have two possible values
for ppmy: it is equal to pgiic Wwhen m' = m + 1 and to pmerge
when m' = m — 1. The two functions gmerge and ggpiir define
the mappings between the models before and after, where the
move is a merge and a split respectively:

gmerge(sla 32) = (31 + s2, 31) (9)

gspiit(s,u) = (u,5 — u) (10)
In Equation 10, because we choose the splitting point ran-
domly from all possible boundaries between the observations

currently assigned to a note, « is a random variable with uni-
form density gspit(s, u) = -5

istic move, we don’t have a random variable in Equation 9 so
we simply have gmerge(s, w) = 1. Finally, it’s easy to see from

Equations 9 and 10 that both ‘agm*’g“z )| and ‘ Oggin(z,w)

0z0u
equal to 1.
Putting everything together, we have the following two ac-
ceptance probabilities for merge and split moves:

p(2) p(y|2) pspiit (s — 1)‘1>
p(2') p(y|2") Prmerge

(
o p(2) p(y|2) Prerge )
aspit(2, 2') = min (1’ p(z') p(y|2") pspit (sx — 1)1
(12)
where sy, is either the total number of observations associated
with the two notes we are merging, or it is the number of
observations associated with the note we are splitting.

4.2 Generating Samples

Given a sample C' =
ated as follows:
1. Pick an index k.

2. Resample the kth note, keeping the segmentation and all
other notes the same:
sgz“) «— s() Vj € [1; K]
RS m“) Vj € [1; K)\{k}
Sample a value for :v(’+ ) from p(Tk|S1:K, Tk, Y1:N)-

Let z = (sﬁ’}l),wg’}?)) It is accepted automatically as a

sample since it was generated by Gibbs sampling.

3. Change segmentation in one of two ways:
a. With probability pmerge, merge the kth note with its suc-
cessor:

are

amerge(zazl) = min (17

11)

(s§ )K, x?)K) new samples are gener-

K «K-1
N U NCR

mw”<”% Fhﬂ,ﬂ vj €[k —1]

(22} ) 2y Ve k1K
Pick a value for ;c(’+ ) using Gibbs sampling.
b. With probability pgiit = 1 — Pmerge, SPlit the kth note

into two at r, an integer chosen uniformly at random from
[1,s — 1] (only possible if s, > 1).

K «K+1
s(g”) “—r
i+2) (@)
— S T
(i+2) (115) fo o -
{s( 2) a:%+2) (—{5%), ](% Vje[l;k—1]
{s; " Y A{snml Y Viek+ 25K

Jomtly sample values for mS“) and :1;5::12) from

P($k7$k+1|81:K7$ (k:k+1) > Y1:N)-

4. Let 2/ = (s$72), 2{12)) 1t is a candidate sample that
has a different segmentation than z. The acceptance proba-
bility of 2’ as the next sample is given by one of Equations
11 and 12, decided by whether it corresponds to a merge or a
split move.



In step 1 above, although we could pick a random k, pro-
cessing the events sequentially (¥ = 1, ..., K) allows compu-
tational savings. We can factorize the likelihood as:

p(yl:N|31:Ka ml:K) = p(y1:5k+1 |31:k: xl:k)

X /h P(Y14S441:N |Sk1:K s Thop1:K 5 e )dhp. - (13)
k:K

where h denotes the hidden variables w, A, and §. The first

factor is computed incrementally as new samples are taken

for k = 1to K. The second factor depends only on the future

observations, and can be efficiently computed in advance for

all ks by a backward filtering pass.

Given (s1.x, 1.k ), the relationships between the continu-
ous variables of our model are linear, and the additive change
or noise variables are all Gaussian. So, it is a linear dynami-
cal system where the integration over the hidden variables (in
Equation 13) can be computed analytically using Kalman fil-
tering. All the necessary probabilities can be represented by
Gaussian potentials, over which multiplication, conditioning
and marginalization are three basic operations.

A problem with this individual sampling of z;s is that
sometimes the neighboring notes will be such that it is very
unlikely to sample a good value for either one with the cur-
rent assignment of the other. To overcome such deadlocks, we
randomly sample some score pairs (zx, Zx+1) jointly in Step
2. Steps 3 and 4 are not performed for joint samples. Ideally,
one would like to sample all events jointly given a segmenta-
tion, but this would result in an exponential sampling space.

We define an MCMC iteration as one sequence of sam-
plings from k£ = 1 to K. After some iterations, we randomly
propose a global sampling step. We have two global oper-
ations: one that shifts all the pitches in the sample by +1,
and one that halves or doubles all durations. If the result of
halving produces a duration not in R, we randomly select the
closest element in R |J{0}. When a zero duration is assigned
to an observation, it is grouped with one of its neighbors. In
the experiments we used 20 chains with 250 iterations per
chain. Each chain starts with an initial sample that is ob-
tained by matching the observations as closely as possible: If
the segmentation prior of an observation is less than 0.5, we
group it with its successor. The durations are rounded to the
closest duration in R, and the frequencies are rounded to the
closest pitch in P. Starting with this sample, as opposed to a
random one, allows us to get to a good transcription faster.

5 Experiments

5.1 Training and Evaluation Data

A corpus of monophonic vocal music was used to evaluate
the system and its various components. The corpus consisted
of two parts. One part contained both scores and audio data,
and was used to evaluate the system. The test data had a to-
tal duration of 60 minutes, composed of 55 audio segments
containing a total of 3606 notes. All pieces were by the Re-
naissance composer G.P. Palestrina (16th century), and sung
by the same singer. The second part of the corpus consisted
only of scores without audio data. This part was used to learn
the rhythm and pitch priors. There were 78 pieces by Palest-
rina in this part, none of which appeared in the first part. Two

audio fragments were removed from the first part for the pur-
pose of tuning the eight variance parameters of the graphical
model and the two sigmoid parameters of the segmentation
prior. These were not used in the evaluation.

5.2 Evaluation Metric

Given the true score z{, ;. and segmentation s, . for obser-
vations y;.n, we evaluate the system’s result =7, and s7.
as follows:

Segmentation: We count the number of correct onset/no-
onset decisions over the number of possible segmentation lo-
cations (IV — 1).

Musical Score: Since the system’s segmentation might be
different from the reference segmentation, comparing 7. .
directly to =¥, K, 18 not very meaningful. We instead evalu-
ate the score by looking at the number of rhythm and pitch
errors remaining once the segmentation errors are fixed. For
instance if a half note is transcribed as two successive quarter
notes of the same pitch, we consider this to be a segmentation
error (extra onset), and not a rhythm transcription error. Sim-
ilarly, if two successive quarter notes of the same pitch are
transcribed as a half note, this is only a segmentation error
(missed onset). If, on the other hand, two successive quarter
notes of different pitches are transcribed as a half note, there
is a pitch error in addition to the segmentation error. This is
because even after correcting the missed onset by splitting the
half note in two, our transcription would have a pitch different
from the real score.

Returning to the extra onset case, if a half note is tran-
scribed as two separate quarter notes of different pitches,
then when the segmentation error is corrected the two quarter
notes are replaced by a half note with a single pitch. We need
to choose one of the pitches of the two quarter notes as the
pitch of the half note. There may or may not be a pitch er-
ror in addition to the segmentation error, depending on which
pitch is chosen for the half note. We choose to go with the
pitch whose related observation is longer in duration. If this
is equal to the real pitch, there is no pitch error. This general-
izes naturally to cases where a single true note is transcribed
as multiple notes.

For the evaluation of durations, if a note is transcribed as
multiple notes (extra onsets), we compare the sum of these
durations to the reference duration. If multiple notes are tran-
scribed as a single note (missed onset), we compare the dura-
tion of this note to the sum of the reference durations. We can
extend this idea to evaluate cases of misplaced onsets, where
the computed transcription contains an onset in a different
place from the reference transcription. In both the reference
and computed transcriptions, we only keep the onsets that ap-
pear in both, and compute durations for these new segments
by summing the durations of their constituents. These are
then compared to evaluate the rhythm transcription.

5.3 Resaults

We present the results for the evaluation of our system in Ta-
bles 1 and 2. Table 1 contains the results obtained by the sam-
pling process described in Section 4. This process generates
samples from the posterior distribution of the transcription.



Table 1: Results
| | Seg. | Pitch | Dur.

| Comb. || Time

All 87.28 | 86.11 | 85.42 || 86.26 | 82.25
All-R 87.63 | 95.08 | 49.81 || 71.42 | 25.60
All-P 86.85 | 86.67 | 86.29 || 86.60 | 75.44
All-SG 83.30 | 87.01 | 82.65 || 84.28 || 82.88
All-ST 86.98 | 83.21 | 85.36 || 85.16 || 67.48
All-J 86.11 | 81.52 | 79.14 || 82.16 | 99.67
None 71.27 | 93.81 | 36.60 || 57.68 | 9.10
All-RG 65.19 | 92.38 | 62.09 || 70.97 | 71.17
None-RG | 62.15 | 92.27 | 19.61 || 38.50 || 4.93

Table 2: Results (Non-Reversible)
| Seg. | Pitch | Dur. ]| Comb. | Time ]

All 87.08 | 89.60 | 87.15 || 87.93 || 81.02
All-R 89.32 | 93.76 | 50.06 || 71.71 || 32.44
All-P 87.53 | 88.27 | 87.68 || 87.83 | 69.55
All-SG 83.08 | 87.15 | 83.16 || 84.42 | 82.17
All-ST 86.98 | 88.22 | 87.47 || 87.55 || 66.82
All-J 85.24 | 84.36 | 80.26 || 83.23 || 99.93
None 75.69 | 91.56 | 46.12 || 65.48 | 8.85
All-RG 65.19 | 92.38 | 62.09 || 70.97 | 71.1/
None-RG | 62.15 | 92.27 | 19.61 || 38.50 | 4.93

However, we are mainly interested in the mode of this distri-
bution, so we do not really need to ensure that our sampling
has the posterior as its stationary distribution. We could em-
ploy any search process over the space of transcriptions, and
output the one with the highest posterior. Since we know that
our input is over-segmented, a simple modification is to bias
our sampler towards merging segments. We implement this
by removing the (sx — 1)~ factors from Equations 11 and
12. Other approaches such as simulated annealing can also
be used to generate samples concentrated around the modes.
However, we were able to obtain slightly higher posteriors
with the same number of iterations using this simpler modi-
fication. The results using the modification are presented in
Table 2, and we use that table to discuss our results. It is im-
portant to keep in mind that both Tables 1 and 2 use samples
to approximate the MAP transcription. It is likely that the ex-
act MAP configurations would have higher posteriors, with
possibly higher or lower evaluation scores. However, given
the high number of iterations, the values are still representa-
tive of the performance of their respective models.

In both Tables 1 and 2, the first three columns contain the
success rates for the segmentation, pitch transcription and
rhythm quantization, using the metric defined in Section 5.2.
The next column contains the harmonic mean® of these three
as a combined metric. The last column gives the average time
per iteration (in msecs) for a 24.92 seconds input signal. The
first row (All) refers to the system with all of the priors de-
scribed in Section 3. The next three rows show the results
when either prior is removed: rhythm (All-R), pitch (All-P),
or segmentation (All-SG). We then present results where we
don’t include the stealing process given in Equation 3 (All-

YH(x,y,2) = —2¥2__ jssimilar to F-measure for 3 numbers.
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ST), and where we don’t allow joint sampling (All-J). The
next row contains the results when none of these five com-
ponents is used (None). The final two rows (All-RG and
None-RG) show the results when we don’t allow regrouping
of observations, so that every observation is a separate seg-
ment. This is what we would get if we did not reason about
segmentation, and instead assumed that the onset detector is
perfect. Notice that these two rows are the same in the two
tables since the segmentation is fixed.

The most instructive comparison is between All and All-
RG. We see that not only does All-RG do significantly worse
on segmentation, which is expected, its score for duration is
also much lower. It seems to be the case that errors in segmen-
tation spill over, causing significant errors in rhythm as well.
Surprisingly, however, All-RG does a little better on pitch
transcription. This may be because it is not subject to missed
onset errors, which as we saw earlier always results in a pitch
error when two notes of different pitches are transcribed as
a single note. Comparison of None and None-RG is similar.
Again, the system that allows regrouping greatly outperforms
the one that does not on segmentation and rhythm, but does
slightly worse on pitch.

Now we consider the effect of individual components of
the model. We see that the rhythm prior greatly improves the
performance on duration, while slightly hurting the segmen-
tation and pitch scores. It could be that without a rhythm
prior, the segmentation prior and observed pitches have a
greater effect on the segmentation, and the pitches can match
the observations more closely. Overall, however, the small
negative effect on pitch and segmentation is well compen-
sated for by the improvement in duration. The pitch prior has
only a very small effect. It leads to a slight improvement in
pitch, and a slight degrading of the segmentation and duration
scores. The segmentation prior and joint sampling lead to an
improvement in all three scores. The stealing process has lit-
tle effect, increasing the pitch score and slightly decreasing
the other two scores. It might be more useful in other styles
of music.

In Figure 3, we show the transcription results for a short
audio segment. The true transcription is given first, followed
by the transcriptions returned by each of the systems in Table
2. The errors are indicated by the arrows above them. The
complete system (All) is able to transcribe the piece with no
mistakes. We see that by removing the rhythm prior (All-R),
we get many stylistic errors: the notated durations of the first,
forth and fifth errors are very unlikely, and they induce an
unlikely rhythmic pattern. Removing the segmentation prior
(All-SG) results in segmentation errors, which are often ac-
companied by pitch and/or rhythm mistakes. We see this in
the second error, where the pitch has been transcribed incor-
rectly once the note is split into two. The stealing prior pro-
vides flexibility to transcribe local expressive or motor devia-
tions correctly. Without it (All-ST), we are unable to correctly
transcribe the first note at the beginning of the fourth measure:
its elongated performance requires a too large deviation in the
global tempo to be transcribed correctly. In the bottom two
rows of Figure 3, we clearly see that the two systems without
reasoning about the segmentation have many mistakes, and
the quality of transcription is really poor, especially for the
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Figure 3: Transcription example

last row. Even in the All-RG system that includes rhythm
and pitch priors, we can see that segmentation errors result
in many additional pitch and rhythm errors. So, we clearly
see the benefits of reasoning about the segmentation in this
example.

6 Related Work

Transcription of music signals to scores is a difficult problem.
Most related work consists of addressing subproblems such
as pitch tracking, onset detection, beat tracking, level 1-to-
2 (audio to MIDI or piano-roll), and level 2-to-3 (MIDI to
score).

There are a number of related works on the level 1-to-2
problem. Most systems transform the signal into a time-
frequency representation, followed by heuristic methods to
segment the signal and label segments with pitch or chord
names (see [Klapuri, 2004] for a more detailed literature re-

view). Sterian (1999) proposes heuristics to pick peaks from
the time-frequency image. He then uses a Kalman filter to
extract partial tracks and searches over hypotheses for the as-
sociation of the tracks to notes. Marolt (2004) presents a con-
nectionist approach: oscillator networks for partial tracking
and neural networks for note recognition. Raphael (2002a)
computes a set of features from each frame of the time-
frequency image, and takes these as observations from an
HMM. Cemgil et al. (2004) propose a graphical model whose
observation is directly the time domain signal.

Beat tracking is another problem related to rhythm tran-
scription. Dixon (2001) proposes a rule-based system to es-
timate beats from a sequence of onset times. Goto and Mu-
raoka (1998) take an audio signal as input and use DSP meth-
ods to construct and select from multiple beat hypotheses. We
consider beats to lie somewhere between levels 2 and 3: given
perfect onset times, the beats could be used to assign discrete



durations to observed events. However, onset detection ac-
curacy is not crucial for beat trackers. On the contrary, poor
onset detection seems to help beat tracking by filtering out
less salient onsets. This is clearly undesirable for a transcrip-
tion system.

There have been systems employing graphical models for
level 2-to-3 problem: Given a list of onset times, Cemgil and
Kappen (2003) use MCMC methods to sample most likely
note durations. Raphael (2002b) proposes an exact method
for the joint estimate of the tempo and note durations. He
introduces a “thinning” operation that removes a value from
consideration for a discrete variable, if that variable is guar-
anteed not to have that value in the MAP configuration. This
seems to keep the search space from growing exponentially.
However, both of these systems assume that their list of on-
set times is accurate, so they have a one-to-one mapping be-
tween observations and score events. In our case, the number
of mappings alone is exponential, which is why we chose ap-
proximate methods.

We believe that exploiting the advances in DSP to get to
level 2 (even a noisy one), and then using graphical models
for level 2-to-3 is appropriate. Level 2 data is much more in-
strument independent, and it is much shorter. However, with-
out perfect onset detectors in sight, level 2 data will inevitably
have errors, and our experiments have shown that these errors
are magnified in the subsequent analysis to get to level 3. The
most important contribution of our system is its ability to ac-
cept and reason about noisy input. To the best of our knowl-
edge, it is the first music transcription system to go from level
1 to level 3 without assuming a perfect level 2.

7 Discussion and Conclusion

We have presented a transcription system that takes a music
signal as input and returns its musical score. We use a noisy
onset detector as our front-end, which computes the input to
a family of graphical models. Each regrouping of this input
corresponds to a specific model from this family. Our infer-
ence procedure jointly searches over models and scores that
may have produced the observed sound events. Our results
show that this is a very well-suited approach to the problem
of music transcription.

The constraint on our onset detection noise is that we can
have extra onsets but not many missed onsets, since these will
be reflected as merged notes in the final score. This is a rea-
sonable requirement, as most detectors can be tuned to re-
duce missed onset at the cost of increased extra onsets. We
can therefore use a variety of onset detectors as our front-
end. Also, in theory we could apply our system to individual
frames, although the inference would take much longer.

In our models, the pitch and rhythm variables are condi-
tionally independent given the segmentation. This keeps the
sampling over the two spaces separate. A more sophisticated
model could combine the rhythm and pitch processes as well
as the priors. Also, the rhythm and pitch priors we learn
are style-specific due to the homogeneity of the training data.
This makes sense, as a trained musician would transcribe the
same audio signal differently under different stylistic assump-
tions. Ultimately, we would like to have rhythm priors for

various styles and make the choice of style a variable that
needs to be optimized as well.
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