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Abstract

We consider the most realistic reinforcement learn-
ing setting in which an agent starts in an unknown
environment (the POMDP) and must follow one
continuous and uninterrupted chain of experience
with no access to “resets” or “offline” simula-
tion. We provide algorithms for general connected
POMDPs that obtain near optimal average reward.
One algorithm we present has a convergence rate
which dependexponentiallyon a certain horizon
time of an optimal policy, but haso dependence
on the number of (unobservable) states. The main
building block of our algorithms is an implemen-
tation of anapproximatereset strategy, which we
show always exists in every POMDP. An interest-
ing aspect of our algorithms is how they use this
strategy when balancing exploration and exploita-
tion.
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contain even asymptotic results for general POMDPs which
guarantee that the average reward of an agent will be near
optimal in the limit.

Part of the technical difficulty is that there are currently no
general results for belief state tracking with an approximate
model showing that divergence in the belief state does not
eventually occur. Crudely, the issue is that if a belief state
is being tracked in an approximate manner, then it is impor-
tant to show that this approximation quality does not contin-
ually degrade with time — otherwise the agent will eventu-
ally loose track of the belief state in the infinite horizon (this
of course is not an issue in an MDP where the current state
is observable). Boyen and Koller (1998) address the issue
of approximate belief state tracking, but in their setting the
model is known perfectly and their goal is to keep a compact
representation of the belief state. Note that approximate be-
lief state tracking is much simpler if the agent is only acting
over a fixed finite horizon, since then one can bound the error
accumulation as a function of the horizon.

We present new algorithms for learning in POMDPs which
guarantee that the agent will obtain the optimal average re-

We address the problem of lifelong learning in a partially ob-ward in the limit. Furthermore, we provide a finite time con-
servable Markov decision process (a POMDP). We consideyergence rates for one of our algorithms which hagx@po-
the most general setting where an agent begins in an unknowiential dependence on a certain horizon time (of an optimal
POMDP and desires to obtain near optimal reward. In thisstrategy) but haso dependencen the number of states in
setting, the agent is forced to obey the dynamics of the envithe POMDP. This result is reminiscent of the trajectory tree
ronment, which, in general, do not permit resets.

algorithm of Kearns et al. (1999) which has similar depen-

The problem of lifelong learning has been well studieddencies (though there they assumed access to a generative
for observable MDPs. Kearns and Singh (1998) provide thénodel, which allowed simulation of the POMDP). Given the
E3 algorithm, which has finite (polynomial) time guaranteesplethora of complexity results in the literature on planning in
until the agent obtains near optimal reward. UnfortunatelyPOMDPs (see Lusena et al. (2001)), we feel these depen-
such an algorithm is not applicable in the more challenginglencies are the best one could hope for in the most general
POMDP setting. In fact, none of the guarantees in the literasetting.
ture for learning in the limit for MDPs apply to POMDPs, for ~ Central to our algorithms is the implementation of an ap-
reasons which are essentially due to the partially observabiproximate reset strategy ort@ming strategy The idea of a
ity. reset strategy is not new to the literature — homing sequences

For POMDPs, the problem of balancing exploitation with were used in the learning of deterministic finite automata (see
exploration has received rather little attention in the literatureRivest and Schapire (1993), though there the sequence pro-
— typically most results in POMDPs are on planning (see forvided exactresets). Here, the agent follows a homing strat-
example Sondik (1971); Lovejoy (1991a, 1991b); Hauskrechegy in order to movapproximatelytowards a reset. We show
(1997); Cassandra (1998)). Most of the existing learninghat such a strategy always exists, and our finite convergence
algorithms such as Parr and Russell (1995); Peshkin et atates also depend on a characteristic time it takes to approx-
(2000) either assume a goal state or assume a reset buttomately reset. However, note that existence of such a strat-
In fact, to the best of our knowledge, the literature does noegy alone does not imply that such a strategy will be useful.



The reason is that the agent must take actions to reset, whicdh Homing Strategies

might otherwise be better spent exploring or exploiting. It

turns out that our algorithms use the homing strategy whileClearly, having an action which resets the agent to some des-
both exploring and exploiting. In fact, they use the homing ignated state would be useful, as it would allow us to test and
strategies infinitely often, which, unfortunately, detracts fromcompare the performance of various policies, starting at the
exploiting. However, we are able to show that the ratio of thesame start state. However, in general, such an action is not at
time these homing strategies are used compared to the tinar disposal.

spent exploiting is decreasing sufficiently rapidly, such that |nstead our algorithms utilize an approximate reset, which

near optimal average reward can be obtained. we show always exists. There are a few subtle points when
o designing such a reset. First, we must select actions to
2 Preliminaries achieve the approximate reseg. the approximate reset is

A Patrtially Observable Markov Decision Process (POMDP)ﬂone. thr?#gh thetqse o_fﬂl]avomingl strategy Henlce_:t,_ Wh"g
is defined by a finite set of statés an initial statesy, a set oming, the agent 1S neither expioring nor exploiing. Sec-

of actions4, a set of observation®, with an output model ©nd: rather than moving to a fixed state, the homing strategy
Q, whereQ(o, s, a) is the probability of observing and can only hope to move to toward a fixed (unknown) belief
rewardr after performing actiom at states (we assume that state. .Th|rd, as we shall see, since the POMDth'ght be
r € [0,1]), and a set of transitions probabilitigs where ~Periodic the stopping time must be a random variableo
P(s'|a, 5) is the transition probability from to s’ after per- Implement this randomized stopping time, we introduie
forming actiona. We definer(s, a) as the expected reward titious 'stay’ actions, in which the agent does not take an ac-

underQ(-|s, a) after performing action in states. t|on_that period. B,y th|§, we mean that |f the hommg strategy
A history h is a sequence of actions, rewards demdes_to ta_lkea stay’ action at some time —_Whlch may not
and observations of some finite lengthe. & = be possible if the true POMDP do_es not permit 'stay’ actions
{(a1,71,01), oo, (g, 74, 00) }- A strategy (;r policy in then the.agent just ignores this 'stay’ action and obtains
a P7Ol\/iDP7 is’ dé’fin/éd/ as a mapping from histories toanother action from the homl_ng strategy to execute. Hence,
actions. We define aelief state B to be a distribu- 2iter the agent has takérhoming actiongwhich are either
tion over states. Given an initial belief statg, let _reaI or stay’ actions), the agent has takuenmlreal actions
Prlh|Bo] = Prlri,o1...., 7 05la1,...,a.,Bo] be the in the POMDP andn stay actions. We now define an approx-

probability of observing the sequence of reward—observationgnate reset strategy.

(r1,01,...1¢,0;) after performing the actions; . . . a;. o _ ) )
For each strategyr we define its ¢-horizon ex-  Definition 3.1 H is an (e, k)-approximate reset (or homing)
pected reward from a belief stat® as RF(B) = ﬁtrat?gy)# for eE/eQ;Htwo bellerf1 stateBl( a)nd Bﬁ' we haved
t . - ) Hg(By) — Hg(Bs2)||1 < ¢, whereHg(B) is the expecte
|(sl é\téﬁg?gg[%ﬁlt ggﬁéﬁé?@m} oﬁ]t.h :‘ ggﬁkﬁ;gﬁ?e—?g o Delief state reached frof after k homing actions off (so at
optimal --Markov strategy’s expected return from initial be- MOSt real actions have been taken) aff{ 5) is a random
lief stateB is defined ask} (B). variable such that/(B) = B (p)~u,5H (B)].

The only assumption we make is that the POMDRaa- The above definition only states thdtwill approximately

; ) . ;
nectedi.e. for all statess, s, there exists a strategywhich reset, but this approximation quality could be poor. We now

can reachs’ with posi_ti\_/e probabilit_y starti_ng from. (V\/_e do how how to amplify the accuracy of an approximate hom-
not make any ergodicity assumptions, since strategies are b&

definition non-stationary). Note that if the POMDP is discon-' ?afératz?\/}caagii?;g we show that an approximate homing
nected, then the best statement we could hope for is to obtaﬁ‘nt 9y y '

the optimal average reward for one of its connected compo- ) ,
nents. Lemma 3.1 Suppose tha# is an (¢, k) approximate reset

o . ¢ ¢ - ¢
Connectivity implies that there exists a strategy that ~thenH' is an (", k() approximate reset, whetd~ consec-

maximizes the average reward. More formally, there existd/tively implements? for / times. Furthermore, this implies
a7* such that: i) for everyB, lim,_.., R (B) exists and there exists a unique belief stafé; such thatH s (By) =

does not depend oB, which we denote byk*, and ii) for all B
mand B, R* > lim;_,. sup R (B). Hence, for alle > 0

there exist ar, such that for all3 andt > - Proof: The proof is a standard contraction argument, and

we use induction. Far = 1, the claim follows by definition.
|R* — RT (B)| < ¢ Assume now thall H5 ' (By) — Hg '(Ba)|l1 < =1, Let

-1 _ -1 _ _
and we refer to- as the:-horizon timeof the optimal strategy. Hy~ (B1) L,__lQl and Hp, ,(BQ) - Qf’ S0 Zs_|Q1(S)
Essentially,r is the timescale in which the optimal strategy @2(s)| < €~'. For an arbitrary state/, and using the fact
achieves close to its average reward.

When we say that weestarta t-Markov strategyr from Wwithout randomizing over the stopping timeise( allowing
a belief stateB we mean specifically that we reset the his-stay’ actions), the state transition matrix may be periodic and no

tory, i.e.,h = ), and runr starting from a state distributed  stationary distribution may exisé.g. if the states deterministically
according taB. alternate between statégand?2.



that /1 is a linear operator, we have Input : H /*a (1/2, K ;) approximate reset strategy *

B — HO(B for t =1toocodo
I _E( ”1]21 (QE)(_zgﬂzQ i [*Exploration in Phase */;
2(Q1 E(Q2)]|1 kL =0 (é log(tQ\HtD);

= |l Z(Ql(s) = Q2(s))He(s)[x foreach Policy  in II, do
° for i =1tok! do
= | Z(Ql(s) —Q2(s))HE(s")|1 Run for t steps;
s Repeatedly rut for log(1/e;) times;
1 D(@1(s) = Q) (Hls) — Hu ()]l o .
Letv™ be the average return afin from these
° Kt trials;
= 0+ ) [Qi(s) — Qa(s)|e end
s [*Exploitation in Phase */;
< ¢ Let 7} = argmaxy ey, v7;

t _ 1 H
where the first term i9) since for any two distributions ky = O(e—t([current time T

25 Q1(s) — Q2(s) = 1 =1 = 0 (and the vectorH (s') +[time int + 1-th exploration phas};e);
is constant in this sum), and we have used the fact that ) )
|H (s) — H(s")|ly < e (by definition of H). O for i =1tok; do

We now show that the random walk strategy (includ- Run7 for ¢ steps; )
ing 'stay’ actions) is an approximate reset strategy in every Repeatedly rur for log(1/e;) times;
POMDP (including periodic ones), though with prior knowl- dend
edge we might have better approximate reset strategies at el

disposal, Algorithm 1: Policy Search

Lemma 3.2 For all POMDPs, the random walk strategy (us-

ing 'stay’ actions) constitutes afe, k) approximate reset the homing sequence betwemreryrun of 7/, asymptotically
strategy for somé > 1 and0 < e < 1. we never stop homing. Nonetheless, we able to show that
there exists an algorithm which obtains near optimal reward
in a POMDP, since the ratio of the time spent exploiting vs.
homing decreases sufficiently fast.

Proof: By our connectivity assumption, for all stateand
s’, there exists some strategy that reacHidsom s with pos-
itive probability. This implies that undét (the random walk
strategy), there is positive probability of moving from one Theorem 4.1 There exists an algorithnd, such that in any
state to anotheid,e. the Markov chain is irreducible. Fur- connected POMDRA obtains the optimal average reward in
thermore, sincéd performs 'stay’ actions, then the Markov the limit, with probability1.

chain is aperiodic. Thus, there exists a unique stationary dis- \ye |ater provide an algorithm with a better convergence

tribution. We choosé: to be the time at which the error in rate (see Theorem 4.5). However, we start with a simpler pol-

convergence is less thar2, from all starting states. Hence, e search algorithm which establishes the above Theorem.
by linearity of expectation, the error is less thigt2 from all

belief states irk steps. O 4.1 Policy Search
. . . . Algorithm 1 takes as input &1/2, Ky )-approximate reset
4  Reinforcement Learning with Homing strategy, which could be the random walk strategy with a

We now provide two algorithms which demonstrate howvery crude reset. The algorithm works in phases, interleav-

near-optimal average reward can be obtained, with differening exploration phases with exploitation phases. Let us start

rates of convergence. The key to the success of these algby describing the exploration phases. [&tbe the set of

rithms is their use of homing sequencesbth exploration  all -Markov strategies. An estimate of the value of a policy

and in exploitation. For exploration, the idea is that eachr € 1I; can be found by first resetting and then runnirfgr ¢

time we attempt some exploration trajectory we do it aftersteps. The exploration phase consists of obtaining an estimate

implementing our reset strategy — hence our information isy” of the return of each policy < II;, where each estimate

(approximately) grounded with respect to the belief sfage  consists of an average &f trials (followed by approximate

(recall Hg(By) = Bg). The idea of exploration is to find resets).

a goodt-Markov strategyir; from By . During exploitation, These estimates have both bias and variance. The variance

the goal is to use this-Markov strategy. Unfortunately, we is just due to the stochastic nature of the POMDP. The bias is

have only guaranteed that performs wellstarting fromBy ~ due to the fact that we never can exactly reseBp. How-

and only fort steps. Hence, after each time we exploit with ever, if we runH for log 1/¢, times (where:, is an error pa-

7%, we run our homing sequence to get back closBo(and  rameter in the-th phase, which will be fixed latter) then, by

then we rerurfr;). We gradually increasein the process. lemma 3.1, all expected belief states we could approach will
The problem is that while homing, we are wasting time andbe (1/2)'°¢ /¢t = ¢, close toBy. The following lemma

neither exploiting nor exploring. Furthermore, since we useshows that accurate estimates can be obtained.



Lemma 4.2 In phase, if ki = O (LQ log(tQIHtl)) and each than previous amount of time spent in the MDP time plus the
o amount of time that will be spent in the next exploration phase
(this latter factor accounts for the case in which tifnkes in
the exploration phase immediately aftgr
Now we bound the average reward obtained in the exploita-
tion phase. First. let us show that thaverage reward of the
Proof: First, let us deal with the bias. Any expected belief _ ; u e fiaa* L i
’ ) : policy used,R,*, satisfiesR; (By) — R, (Bp) < 4e; with
statesh that results from using the hg”l'/rlg sequehgel/c  pronability at least — 2. By Lemma 4.2 for each policy
times must satisfyib — By || < (1/2)¢ /< < . Nowitis 7 c 11, we have|RF (By) — v™| < 2¢ with probability at
straightforward to see that #éfand By are belief states such |ga5t1 — W . Therefore 7} is 4¢;-optimal with probabil-

— < () — . .
that||b = Bul1 < «, then for every strategy, |Ft; (b) ity 1 —1/(2t%). Now the observed average returmgfin the

RT(Bpy)| < e. To see this, let the belief states at titige b* L S . ; o
arﬁd(Bg?‘vv_hich result from following either starting from ~ Xploitation period i, close tot} (B with probability at.
b or By, respectively. By linearity of expectation, it follows leastl — 55, since our observed average return in exploitation

that |bt — BL||; < e. This directly implies thatRT(b) — IS leastas good as those used to fifid (sincekt > kb).
RF(Bg)| <e. However, the average return during the exploitation phase
For the variance, the Hoeffding bound and our choicelof is not the observed average return ®f, since we re-
imply that the average return of each policyjsclose to its ~ set after eacht exploitation steps for a number of steps
expectation (the expectation is both over the initial state anéhat is Ky log(1/¢;). The resets in the exploitation pe-
on the policy trajectory) with probability — 1/(2t2). O riod can change the average reward by at most a fraction
Now during exploitation, the algorithm uses the policy K log(1/e;). a
which had the highest return in the exploration phase (and by
the previous lemma this is close to the policy with largest re4.2 A Model Based Algorithm
turn). Note that we have only guaranteed a large return fo
executingr; from By for ¢ steps. However, we would like to
exploit for a longer period of time than The key is that we
again reselog(1/e;) times after each time we ruty, which
resets us close close toBy . Unfortunately, this means we

reset consists of using the homing sequelogd /¢, times,
then for all policiesr € II;, the estimated-horizon reward,
v™, satisfie§RT (By) — v™| < 2¢ with probability greater
thanl — 5.

The previous algorithm was the simplest way to demonstrate
Theorem 4.1. However, it is very inefficient, since it is testing
all t-Markov policies — there are doubly exponential,tin
such policed Here, we provide a more efficient model based
algorithm, which resembles the algorithms given in Kearns

zsgp;iﬁelz?fr;/ééSltgil?:é(bleftgveﬁ)eaf/heﬂ;r;ecgsﬂtﬁaﬂ?/\r/]ecs\’/é)lﬁ:j et al. (1999); McAllester and Singh (1999), and is exponen-
9 ¢ MH 108 /€ tial in the horizon time, yet it still has no dependence on the

like, sinceO(1 Ky log 1/¢,) is the fraction of time we spend number of states in the POMDP.
resetting. Note that this fraction could be large if we desire
thate; be very small (thought this would guarantee very ac-,
curate resets).

Now, when we do exploit (and reset), we run the exploita
tion phase long enough (fde, time) such that oupverall

average reward is comparable to the average reward in theheorem 4.5 There exists an algorithml, such that in any
last exploitation phase. connected POMDP and with probability greater than- 4,

Lemma 4.3 At any timeT after phase, the average reward -A achieves an average reward thatisclose to the optimal
from time1 to time T satisfies: 2 7, > R:(By) — average reward in a number of steps in the POMDP which is
ST Zui=1"1 = A

1 . ! 1 polynomial in|A|,|O|,Kx andlog(1/6) and exponential in
Ofet + 7K log(1/et)) with probability at leastl — 5. 7. Furthermore the computational runtime of this algorithm
Before proving this lemma, let us state a corollary fromis polynomial in|A[,|O], andlog(1/§) and exponentiat.
which Theorem 4.1 follows.

We now state a convergence rate in termsrpfthe e-
orizon time of an optimal policy (see Section 2) and and
in terms of the homing timd(y (recall, such a time exists
“for every POMDP using a random walk policy).

We provide such an algorithm in the next page. In explo-
Corollary 4.4 Lete, = 1/t. ThenL ST ri > Ri(Bu)—  ration phase, the algorithm builds an approximate model of
o(Xx ltog(t)) with probability at leastl — 5. the transition probabilities after some history has occurred
s starting fromBpy. In thet-th phase, it builds a model with
_Importantly, note the loss term goestast goes to infin-  regpact to the set of alflength histories, which we denote by
ity. Furthermore, for a large enough phaseve know that 44, "I the exploitation phase, it uses the bieMtarkov strat-

ki (Bg) will approach the optimal average rewaid (since  gqy with respect to this model. The use of homing strategies
R* is independent of the starting). Theorem 4.1 follows. jg'gimilar to that in the previous algorithm.

tEssefrltt_ially, althct)uhgh we hflv?hto thome infintitely often, the ra- Let L = |A||0|, and note thaRL! > |H,|. In the ex-
0 of time spent homing to the time spent using éstep ploration phase, the algorithm takes actions uniformly at ran-

ot iniae ie A0 logt - , ;
exploitation policies is going a8 (=-), which goes td. dom fort steps and then resets (running the homing strategy
Proof: First, let us show that the average reward,
T . -
T >i—17i = R;(Bm), is no less than, from the average 2The number of histories of lengthis exponential irt, and the

reward obtained in th&th exploitation phase. To do this, we number of:-Markov polices is exponential in the numbertdength
set the time of exploitation phasé,, to bel/e; times greater  histories



Input : H /*an (1/2, K ;) approximate reset strategy ¥/ £ t0l%: Bo, al|, is then
Let L = |A] - |O]; .
for + — 11000 do Pr[h(a, 0)|By] B Pr[h(a, 0)|Bo]
kt =0 (L 1Og(t2mt|)); Pr[h|Bo|Pr[a]  Pr[h|By)Pr]a]
t
for k! timesdo <~ _ 1 |Prlh(a,0)|Bo] + 7= Prih(a,0)|Bo]
SunZAfNDI({Jmirt(sLtte/ps;) t = Prla]| Pr[h|Bo] - Pr[h|By]
unH for og(Lt/¢;) steps. . .
end 1 +) SIep _ ey 2 Pr{h(a, 0)| Bo) %
for h € H,a € Aando € O do Prla] | Pr[h|Bo] — 15  Pr[h|Bol(Pr[h|Bo] — 1)
Prlo|h, By, a] = 0; 2| A
it Pr(h(a,0)|Bo] > % then S i
3 _ Pr[h(a,0)|Bo]
Prlolh, By, a] = Be{h| BoJPrla] where the first inequality holds with probability— %, and
end in the last inequality we used the fact thath|By| > 7. O
end Y The exploitation policy can be found using dynamic pro-
Computer; usingPro| By, h, al; gramming with the model. Note that the POMDP is equiva-
kb =0 (Ei([current time T lent to an MDP where the histories are states. In the exploita-
o . tion phase, the algorithm uses the bedtarkov policy, 7},
+[time int¢ + 1-th exploration phas}ée); (with respect to the approximate model) interleaving it with
for k% timesdo K log(1/e;) homing steps.
Sung‘ffor;{st?ps(;l/ ) st Lemma 4.7 In phaset, the exploitation policyt;, satisfies
unH for steps; ; #r o
o ulog(1/e;) step IR} (Bi) — R (B)| < t(e + 251) + (2e + 2%) with
end probability at leastl — ;.

Algorithm 2: Model based Proof: (sketch) We observe that by ignoring all histories

(which we view as nodes in a tree) such tRath|B,) < %,
the return of an optimal strategy in this empirical model is
for log(L!/e;) times). This is doné! times3 Then using decreased by at most(e; + ), due to the fact that the true

the empirical frequencies in these trajectories the algorithniiistory probability is bounded by; + 74, the return from
forms estimatesﬁr[om,BH,a], which is just the empirical each node is bounded byand the total number of such nodes

. . ;
probability of observing conditioned on history: followed 'S Pounded b2.L". Next we prove that the return of tglilopt"
by taking actiona. For histories: which are unlikely, these mal policy in the empirical model loses at me3te, + =)
empirical estimates could be very bad, though, as we shaflue to the tree approximation on the other nodes (the other
see, we do not need accurate estimateBigs|h, By, a] for histories). Using backward induction, we show that the pol-
such histories. Leb(a,0) be a history withi followed by  icy #; has return not less tha (¢, + 241) in comparison to
(a,o0). the true optimal value, starting fro — £ + 1)-length his-
tories. The base case, for the leaves (thength histories),
holds since the reward (which is encoded through the obser-
ot LA 2 vations) is withine; + QIL‘?‘ , Where the first error is due to the
Lemma 4.6 In phaset, If_kl =0 ( < log(t |Ht|)>tand imperfect reset and the second is due to the marginal distribu-
each reset consists of using the homing sequéndd.’/<.)  tion error that is bounded b by Lemma 4.6. Assume the
times, then: (1YPr[h|Bo] — Pr[h|Bo]| < {4, and (2) for  induction assumption holds far— 1. There are two sources
everyh(a,o) € H; such thatPr(h(a,0)|Bo] > 1%, we have  of error, the first is due to the current estimation error (of both
|Prlo|h, By, a] — Pro|h, By, a]| < 241, with probability at  the marginal distribution and the immediate reward) which is
leastl — t% bounded by(e; + 2‘;}' )k and the second is due to errors from

the previous levels and is bounded (@y— 1)%(e; + %) by

the induction assumption. Summing the terms completes the

Proof: We first note that, with probability — 1/t2, for

. . . induction step. O
every historyh € H, we have|Pr[h|Bo] — Pr[h|Bo]| < 14 Similarly to Subsection 4.1, we exploit long enough such
(using the Hoeffding bound). The errdr[o|h, Bo,a] —  that the overall average reward is essentially the average re-

ward in the last exploitation period.

Lemma 4.8 At any timeT" after phase, the average reward

SWe can use in the algorithm any approximate homing strateg¥from time 1 to time 7' satisfies: % Z'T—1 ri > R (Bm) —
H. However, if H is simply the random policy, then the reset and |Alt =

exploration would both use the same policy, and the algorithm would? (ter + 7+ + (1/t) K log(1/€;)) with probability at least

slightly simplify. 1- 5.




Using the above lemma, Theorem 4.5 follows immediatelyR. Parr and S. Russell. Approximating optimal policies for

if we sete; = 1/t2. partially observable stochastic domains. Rroceedings
Proof: (sketch) We first note that all exploitations and ex-  of the International Joint Conference on Artificial Intelli-
plorations from phasesto 7" and from the next(T" + 1)-th, gence 1995.

exploration phase can effect the average reward by at mogt peghkin, K. Kim, N. Meuleau, and L.P. Kaelbling. Learn-
€;. By Lemma 4.7, thehe*xplmtatlon policy is near optimal and ing to cooperate via policy search. 16th Proceedings of
satisfies| R} (By) — R;' (B )| < t(e; + 2‘;}') + (et + %) UAI, pages 307-314, 2000.

with probability 1 — 1/(2¢*). As in Lemma 4.2, we observe R Rivest and R. Schapire. Inference of finite automata using

due to Hoeffding’s bound and the large exploitation time is  299_347, 1993.

bounded by, with probability 1 — 1/(2t?). The last source
for loss is the resets in the exploitation period and its effec

£. Sondik. The optimal control of partially observable pro-
cesses over a finite horizof®hD thesis, Stanford Univer-

b{é log(1/et)

can b.e bounded. o ) . U sity, Stanford, California, 1971.
A direct and simple corollary from which Theorem 4.1 fol-

lows as well.

Corollary 4.9 Lete, = 1/t. Then: S0 r; > R (By) —

O(Xulalt)) with probability at leastl — -
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