
QCSP-Solve: A Solver for Quantified Constraint Satisfaction Problems
Ian P. Gent and Peter Nightingale

School of Computer Science, University of St Andrews, Fife, KY16 9SS, UK
email:{ipg,pn}@dcs.st-and.ac.uk

Kostas Stergiou
Department of Information & Communication Systems Engineering

University of the Aegean, Samos, Greece, email: konsterg@aegean.gr

Abstract

The Quantified Constraint Satisfaction Problem
(QCSP) is a generalization of the CSP in which
some variables are universally quantified. It has
been shown that a solver based on an encoding of
QCSP into QBF can outperform the existing di-
rect QCSP approaches by several orders of magni-
tude. In this paper we introduce an efficient QCSP
solver. We show how knowledge learned from the
successful encoding of QCSP into QBF can be uti-
lized to enhance the existing QCSP techniques and
speed up search by orders of magnitude. We also
show how the performance of the solver can be
further enhanced by incorporating advanced look-
back techniques such as CBJ and solution-directed
pruning. Experiments demonstrate that our solver
is several orders of magnitude faster than existing
direct approaches to QCSP solving, and signifi-
cantly outperforms approaches based on encoding
QCSPs as QBFs.

1 Introduction
The Constraint Satisfaction Problem (CSP) is a very success-
ful paradigm that can be used to model and solve many real-
world problems. The CSP has been extended in many ways
to deal with problems that contain uncertainty. The Quanti-
fied Constraint Satisfaction Problem (QCSP) is an extension
in which some of the variables may be universally quanti-
fied. For each possible value of such variables, we have to
find values for the remaining, existentially quantified, vari-
ables so that all the constraints in the problem are satisfied.
The QCSP can be used to model PSPACE-complete decision
problems from areas such as planning under uncertainty, ad-
versary game playing, and model checking. For example, in
game playing we may want to find a winning strategy for all
possible moves of the opponent. In a manufacturing problem
it may be required that a configuration must be possible for all
possible sequences of user choices. Finally, when planningin
a safety critical environment, such as a nuclear station, we
require that an action is possible for every eventuality.

Interest in QCSPs is growing, following the development
of numerous efficient solvers in the closely related area of
Quantified Boolean Formulae (QBF or QSAT). However, the

existing direct approaches to solving QCSPs with discrete fi-
nite domains, i.e. approaches based on extending CSP tech-
niques, are at an early stage[Bordeaux and Monfroy, 2002;
Mamoulis and Stergiou, 2004]. As shown in[Gent et al.,
2004], such approaches are significantly outperformed by a
QBF solver applied on an encoding of QCSPs into QBFs.
Note that, in contrast to QCSPs with finite domains, there
is a significant body of work on quantified problems with
continuous domains (e.g.[Benhamou and Goualard, 2000;
Ratschan, 2002]).

In this paper we introduce an efficient QCSP solver, which
we call QCSP-Solve. To develop the solver we first im-
plemented extensions of standard CSP algorithms (FC and
MAC) and gradually enhanced them with new capabilities.
We started by repeating and analyzing the experiments of
[Gentet al., 2004] to discover the features of the QBF solver
that account for its effectiveness compared to existing direct
approaches. This lead us to identify the pure literal rule used
by the QBF solver as the main factor contributing to its ef-
ficiency. We devised the QCSP analogue of the pure literal
rule and incorporated into our basic solver. As a result we
achieved a speed-up of several orders of magnitude. We then
continued the development of QCSP-Solve by adding intelli-
gent look-back techniques such as conflict-based backjump-
ing and solution-directed pruning which also offer a signifi-
cant speed-up. Finally, we implemented a symmetry breaking
method based on value interchangeability.

The experimental evaluation of algorithms for QCSPs is
difficult for two reasons: first, due to the young age of the
area, there is a lack of benchmarks; and second, the general-
ization of known random generation models from related ar-
eas (CSP and QBF) can lead to flawed models. For example
in [Gentet al., 2004] it was noted that the generation method
used in[Mamoulis and Stergiou, 2004] suffers from a flaw
that makes all generated instances insoluble even for small
problems sizes. This flaw is also present in other random
generation methods. We propose a random generation model
that, while creating hard instances, can be used to control the
probability of the flaw discovered in[Gentet al., 2004]. For
certain parameter settings all generated instances are guaran-
teed to be unflawed. On problems created using this model,
QCSP-Solve is several orders of magnitude faster than the ex-
isting QCSP algorithms, and also significantly outperforms
the QBF encoding based method of[Gentet al., 2004].

2 Preliminaries
In standard CSPs all variables are existentially quantified.
QCSPs are more expressive than CSPs in that they allow uni-
versally quantified variables. They enable the formulationof
problems where all contingencies must be allowed for. We
now give a formal definition.

Definition 1 A Quantified Constraint Satisfaction Problem
(QCSP) is a formula of the formQC whereQ is a sequence
of quantifiersQ1x1 . . . Qnxn, where eachQi quantifies (∃ or
∀) a variablexi and each variable occurs exactly once in the
sequence.C is a conjunction of constraints (c1 ∧ . . . ∧ cm)
where eachci involves some variables amongx1, . . . , xn.

The semantics of a QCSPQC can be defined recursively
as follows. IfC is empty then the problem is true. IfQ is of
the form∃x1Q2x2 . . . Qnxn thenQC is true iff there exists
some valuea ∈ D(x1) such thatQ2x2 . . . QnxnC[(x1, a)]1

is true. If Q is of the form∀x1Q2x2 . . . Qnxn thenQC is
true iff for each valuea ∈ D(x1), Q2x2...QnxnC[(x1, a)] is
true. In this paper we restrict our attention to binary QCSPs2.
In a binary QCSP, each constraint, denoted bycij , involves
two variables (xi andxj) which may be universally or exis-
tentially quantified.

As an example consider the following QCSP whereQ is
a sequence of 7 quantified variables, andC is a conjunction
of 9 constraints. This problem will be used in Section 3.4 to
demonstrate the various features of QCSP-Solve.

Example 1
∃x1∃x2∀x3∀x4∀x5∃x6∃x7(x1 6= x6 ∧x1 6= x7 ∧x2 6= x6 ∧
x3 6= x6∧x3 < x7∧x4 6= x6∧x4 6= x7∧x5 6= x6∧x5 < x7)

A special case of a QCSP is Quantified Boolean Formula
(QBF). A QBF is of the formQC whereQ is defined as above
(however in this case the domain of each variable is0, 1). C
is a Boolean formula in conjunctive normal form (CNF), a
conjunction of clauses where each clause is a disjunction of
literals. Each literal is a variable and a sign. The literal is
said to be negative if negated and positive otherwise. The se-
mantic definition is the same as for QCSPs. Note that binary
QCSPs, unlike 2-QBF (i.e. QBF problems with at most two
literals per clause), are not trivial. Despite the restriction to
binary constraints, binary QCSPs are still PSPACE-complete
[Boerneret al., 2003].

In the rest of the paper we assume that for any constraint
cij , variablexi is beforexj in the quantification sequence, un-
less explicitly specified otherwise. We will sometimes refer
to universally and existentially quantified variables asuniver-
salsandexistentialsrespectively.

3 Description of QCSP-Solve
In this section we describe the basic features of QCSP-Solve.
First we discuss preprocessing. Then we analyze the look-
ahead and look-back capabilities of QCSP-Solve. In standard

1(x1, a) denotes the assignment of valuea to variablex1.
2QCSP-Solve can currently handle ternary and binary con-

straints. We are in the process of extending it to constraints of higher
arity.

CSPs look-ahead techniques try to detect dead-ends early by
pruning values from future variables, while look-back tech-
niques try to deal with dead-ends in an intelligent way by
recording and exploiting the reasons for failures. Note that
some of the techniques we will describe may delete values
from the domains of universal variables because they may
discover that, under the current assignments, these valueswill
definitely lead to a solution. This pruning is different than
standard pruning in CSPs.

3.1 Preprocessing
Arc consistency (AC) has been extended to QCSPs in[Bor-
deaux and Monfroy, 2002] and [Mamoulis and Stergiou,
2004]. QCSP-Solve always applies AC as a preprocessing
step. Apart from reducing the problem size by deleting values
from the domains of existentials, AC removes from the prob-
lem all constraints of the form∃ xi∀ xj , cij and∀ xi∀ xj , cij .
For the former kind, AC deletes every value ofD(xi) that
is not supported by all values ofD(xj). If D(xi) becomes
empty then the algorithm determines insolubility. For the lat-
ter kind, if there is a value ofD(xi) that is not supported by
all values ofD(xj) then the algorithm determines that the
problem is insoluble. After AC has been applied, all such
constraints can be safely removed from the problem since
they cannot have any further effect. A consequence of this
removal is that any universals after the last existential can be
ignored, since they participate in no constraints.

3.2 Look-Ahead
In QCSP-Solve we have implemented two basic forms of
look-ahead; forward checking (FC) and maintaining arc con-
sistency (MAC). FC (called FC0 in[Mamoulis and Stergiou,
2004] and hereafter) is an extension of standard FC to QC-
SPs. FC0 is a backtracking-based algorithm that can discover
dead-ends early by forward checking the current variable as-
signment (of an existential or universal) against values offu-
ture existentials constrained with the current variable. By
slightly modifying the forward checking phase of FC we get
an algorithm, called FC1 in[Mamoulis and Stergiou, 2004],
which can discover dead-ends earlier than FC0. FC1 has ex-
actly the same behavior as FC0 when the current variable is
an existential. If the current variablexi is a universal then
FC1 forward checks each value ofxi against all future vari-
ables before assigning a specific value to it. If one ofxi’s val-
ues causes a domain wipe-out then FC1 backtracks to the last
existential. Otherwise, it proceeds by instantiating the next
available valuea of D(xi) and removing all values of future
variables that are inconsistent with the assignment(xi, a). In
this way FC1 can discover dead-ends earlier and avoid fruit-
less exploration of search tree branches.

The MAC algorithm is also an extension of standard MAC
to QCSPs. After each variable assignment, MAC applies AC
in the problem using the AC algorithm of[Mamoulis and
Stergiou, 2004]. MAC has also been modified in the same
way as FC to yield MAC1, an algorithm analogous to FC1.
That is, when the current variablexi is a universal MAC1
applies AC for each instantiation(xi, aj), j ∈ {1, . . . , d} be-
fore committing to a particular instantiation. If one of the
instantiations causes a domain wipe-out then the algorithm

backtracks. Otherwise, it commits to one of the values and
proceeds with the next variable.

In the rest of the paper we will describe how various look-
ahead and look-back techniques are combined with an FC-
based look-ahead. Most of these techniques can be combined
with a MAC-based look-ahead in a very similar way.

The Pure Value Rule
In SAT and QBF a literall is calledpure(or monotone) if its
complementary literal does not appear in any clause. Such lit-
erals are important because they can immediately be assigned
a value without any need for branching[Cadoliet al., 2002].
This is what thepure literal rule does. For example, if an
existential literall only occurs positively, the pure literal rule
will set it to true. By repeating and analyzing the experiments
of [Gentet al., 2004] we discovered that the pure literal rule
has a profound impact on the search effort. When switching it
off, the search process was slowed down by orders of magni-
tude. This immediately gave rise to the following questions:
What does the pure literal rule correspond to in QCSPs, and
how can we exploit it to prune the search space? To answer
these questions, we use the notion of apure value.

Definition 2 A valuea ∈ D(xi) of a QCSPQC is pure iff
∀Qjxj ∈ Q, wherexj 6= xi and∀b ∈ D(xj), the assign-
ments(xi, a) and(xj , b) are compatible.

In a way analogous to the pure literal rule in QBF, we have de-
vised and implemented a look-ahead technique, which we call
thepure value (PV) rule, that detects and exploits pure values
to prune the search space. The actions taken are dual for exis-
tential and universal pure values. An existential variablewith
a pure value can be set to that value, while a pure value is re-
moved from the domain of a universal variable. This duality
reflects the dual semantics of existential and universal vari-
ables. Note that values can become pure dynamically during
search because of constraint propagation (see Example 2 in
Section 3.4). Therefore, the PV rule is applied both as a pre-
processing technique and as a dynamic look-ahead technique
during search. The PV rule works as follows.

• If a pure valuea of an existentialxi is discovered dur-
ing preprocessing (search), then the assignment(xi, a)
is made and all other values ofxi are permanently (tem-
porarily) removed fromD(xi). To check, during search,
if a valuea of an existentialxi is pure, we only need to
check if the assignment(xi, a) is compatible with all
values of future variables. FC (or MAC) guarantee that
(xi, a) is compatible with the values (i.e. the instantia-
tions) of the previous variables.

• If a pure valuea of a universalxi is discovered dur-
ing preprocessing (search), thena is permanently (tem-
porarily) removed fromD(xi). To check if a value of a
universal is pure, we only need to check against future
variables since preprocessing with AC guarantees that
there are no constraints between a universal and a previ-
ous variable. Note that if all the values of a universal are
pure then we can ignore this variable.

Symmetry Breaking
QCSP-Solve utilizes a technique for symmetry breaking
based on neighborhood interchangeability. A valuea of a

variablexi is fully interchangeablewith a valueb of xi, iff
every solution which contains the assignment(xi, a) remains
a solution if we substituteb for a, and vice versa[Freuder,
1991]. A valuea ∈ D(xi) is neighborhood interchangeable
(NI) with a valueb ∈ D(xi), iff for eachj, such thatcij ∈ C,
a andb are compatible with exactly the same values ofD(xj).
QCSP-Solve exploits NI to break some symmetries by prun-
ing the domains of universal variables. That is, for each set
of NI values we keep one representative and remove the oth-
ers, either permanently before search, or temporarily during
search3. If the algorithm proves that the representative is
consistent (i.e. satisfies the QCSP) then so are the rest.

3.3 Look-Back
Various look-back schemes have been developed for CSPs.
One of the most successful is conflict-based backjumping
[Prosser, 1993]. This algorithm has been successfully com-
bined with FC in CSPs[Prosser, 1993], and a DLL-based pro-
cedure in QBF[Giunchigliaet al., 2001]. We describe how
CBJ interacts with the FC-based look-ahead of QCSP-Solve.

As in standard CSPs, for each variablexi we keep acon-
flict set, denoted byconf set(xi), which holds the past vari-
ables that are responsible for the deletion of values from
D(xi). Initially all conflict sets are empty. When encoun-
tering a dead-end, CBJ exploits information kept in conflict
sets to backjump to a variable that is (partly) responsible for
the dead-end. Conflict sets are updated as follows. If the
current variablexi is existentially quantified and, during for-
ward checking, a value of a future variablexj is found to be
incompatible with the assignment ofxi thenxi is added to
conf set(xj). If the domain of a future variablexj is wiped
out then the variables inconf set(xj) are added to conflict
set of the current variable (existential or universal). Back-
jumping can occur in either of the following two cases:

• If the current variablexi is existential and there are no
more values to be tried for it then QCSP-Solve back-
jumps to the rightmost variablexk in Q that belongs
to conf set(xi). At the same time all variables in
conf set(xi) (exceptxk) are copied toconf set(xk)
so that no information about conflicts is lost.

• If the current variablexi is universal and a value is
deleted from its domain (because its forward checking
results in a domain wipeout) then QCSP-Solve back-
jumps to the rightmost variablexk in Q that belongs to
conf set(xi). Again all variables inconf set(xi) (ex-
ceptxk) are copied toconf set(xk).

Solution-Directed Pruning
[Giunchigliaet al., 2001] introduced solution-directed back-
jumping for QBF. This allows backjumps over universally
quantified literals once reaching a leaf node that is a solu-
tion. Inspired by this idea, we have implemented a technique
that can prune values from universal variables when reach-
ing a solution (i.e. a consistent leaf node). We call this
solution directed pruning(SDP). SDP is based on the fol-
lowing idea: Assume thatxi is the last universal inQ and

3Experiments have shown that NI during search is an overhead
when the PV rule is used.

q = {xi+1 . . . xn} ⊂ Q is the sequence of existentials to the
right of xi. Also, assume that the assignment(xi, ai) leads
to a solution (i.e. is part of a path to a consistent leaf node)
and{(xi+1, ai+1) . . . (xn, an)} are the assignments of vari-
ables{xi+1 . . . xn} along this path. Then any value ofxi that
is compatible with all these assignments will definitely also
lead to a solution. Such values can be pruned (i.e. ignored)
by the search algorithm. Based on this, SDP first computes
the values of the last universalxi that have the above prop-
erty. All such values are temporarily removed fromD(xi).
Now if there are no available values inD(xi), SDP proceeds
with the universal immediately beforexi in Q, sayxj , and
checks if its remaining values are compatible with the assign-
ments of all existentials afterxj . This is repeated recursively
until a universal is found which has available values left inits
domain after SDP has been applied. The algorithm then back-
tracks to this universal. In this way it is possible to perform
solution-directed backjumps.

3.4 The Algorithm of QCSP-Solve
A high level description of QCSP-Solve’s algorithm is shown
in Figure 1. It takes a QCSPQC and returns TRUE if the
problem is satisfiable, and FALSE otherwise4. The version
of QCSP-Solve shown in Figure 1 is based on FC. A MAC-
based version with all the features, except CBJ for the time
being, is also currently available. In Figure 1,

• c var is the current variable.

• preprocess() is a function that preprocesses the prob-
lem by applying AC, and computing pure and NI values.

• compute PV () computes the pure values ofc var dur-
ing search. Ifc var is existential and one of its values
(saya) is pure thencompute PV (c var) setsc var to
a and temporarily removes the rest ofD(c var)’s val-
ues. If c var is universal thencompute PV (c var)
temporarily removes all the pure values fromD(c var).
Whenever the algorithm backtracks, all values removed
by compute PV () are restored.

• fc0() implements the FC0-type look-ahead. It is called
after the current variable (existential or universal) is as-
signed and forward checks this assignment against all
future variables constrained withc var. If a value of
a future variablexi is deleted thenc var is added to
conf set(xi). If D(xi) is wiped out then∀xj , xj ∈
conf set(xi), xj is added toconf set(c var).

• fc1() implements the FC1-type look-ahead. It is called
beforec var is assigned (if it is a universal) and for-
ward checks all ofD(c var)’s valid values against the
future variables constrained withc var. If the domain
of a future variablexi is wiped out then∀xj , xj ∈
conf set(xi), xj is added toconf set(c var).

• SDP () implements solution directed pruning.SDP ()
prunes values from universals according to the rule de-
scribed in Section 3.3 and returns the universal that has
values left in its domain after SDP has been applied.

4The algorithm can be modified to return solutions in the form
of search trees.

BooleanQCSP-Solve(Q, C)
1: preprocess(Q, C)
2: c var ← leftmost variable in the quantification formula
3: while there is no backtrack from the first existential or universal
4: compute PV (c var)
5: if c var is existential
6: if no more values inD(c var)
7: c var ← rightmost variable inconf set(c var)
8: else
9: assignc var with next valid valuea ∈ D(c var)
10: DWO← fc(c var, a)
11: if DWO = FALSE
12: if there are no more unassigned variables
13: if there are no universals inQ return TRUE
14: else
15: c var ← SDP (Q)
16: restore values removed by all variables afterc var
17: elsec var ← next unassigned variable
18: elserestore values removed byc var
19: else//c var is universal//
20: if no more values inD(c var)
21: if c var is the first universalreturn TRUE
22: elsec var ← last assigned universal variable
23: else
24: DWO = FALSE
25: if no assignment toc var has been tried
26: DWO← fc1(c var)
27: if DWO = FALSE
28: assignc var with next available valuea ∈ D(c var)
29: fc(c var, a)
30: c var ← next unassigned variable
31: else
32: c var ← rightmost variable inconf set(c var)
33: restore removed values by all variables afterc var
34: if there is a backtrack from the first existentialreturn FALSE
35: return TRUE

Figure 1: The algorithm of QCSP-Solve.

QCSP-Solve works as follows. It takes as input a QCSP
QC and, after preprocessing the problem (line 1), it proceeds
by checking assignments of values to variables until the truth
of the QCSP is proved or disproved. Before assigning a value
to c var, QCSP-Solve callscompute PV (c var) to com-
pute the pure values ofc var (line 4). If c var is existen-
tial and a dead-end occurs then the algorithm backtracks to
the rightmost variable inconf set(c var) (lines 6–7). Other-
wise, the next valid value ofc var is forward checked against
future variables (lines 9-10). If there is no domain wipe-out
(DWO) and the algorithm has reached a consistent leaf node
(i.e. c var is the last variable inQ) then it callsSDP () to
perform solution-directed pruning (line 13). If QCSP-Solve
is not at a leaf node, it proceeds by moving to the next vari-
able (line 15). If there is a DWO, the next value ofc var will
be tried in the next iteration of thewhile loop.

If c var is universal and all of its values have been proved
to be consistent (according to the current assignments), then
there are two cases. Ifc var is the first universal, QCSP-
Solve terminates successfully (line 19). Otherwise, it back-
tracks to the last universal (line 20). Before assigning any
value to a universal variable, QCSP-Solve callsfc1(c var)
to perform FC1-type look-ahead (lines 23-24). If there is

a DWO, the algorithm backtracks to the rightmost vari-
able in conf set(c var) (line 30). If there is no DWO, or
fc1(c var) has already been called at this level,c var is
assigned with its next available value (line 26), the assign-
ment is forward checked against future variables (line 27),
and QCSP-Solve proceeds with the next variable (line 28).

To better understand how the algorithm of QCSP-Solve
works, consider the following example.

Example 2 Assume that the domains of the variables in the
problem of Example 1 are as follows:D(x1) = {2, 3},
D(x2) = {0, 1, 2}, D(x3) = {0, 3}, D(x4) = {0, 1, 6},
D(x5) = {4, 5}, D(x6) = {0, 1, 2, 3}, D(x7) = {0, 2, 3, 6}.
Let us trace the execution of QCSP-Solve for a few steps.

1) Preprocessing is applied. There are no arc incon-
sistent or pure values, so no pruning is performed.5 2)
The assignment(x1, 2) is made. FC reducesD(x6) and
D(x7) to {0, 1, 3} and{0, 3, 6} respectively. We now have
conf set(x6) = conf set(x7) = {x1}. 3) Now, value 2
of x2 becomes pure because it is supported by all values in
future variables. The PV rule will immediately make the as-
signment(x2, 2). 4) FC1 does not wipe out any future do-
main, so the assignment(x3, 0) will be made. FC reduces
D(x6) andD(x7) to {1, 3} and{3, 6} respectively.5) Value
0 of x4 is pure. Therefore, it is removed and the assignment
(x4, 1) is made. FC reducesD(x6) to {3}. 6) FC1 does not
wipe out any future domain, so the assignment(x5, 4) will
be made. FC reducesD(x7) to {6}. 7) x6 andx7 are as-
signed their only available values and a solution is found.8)
Now function SDP() is called (line 13). SDP() discovers that
value 5 of the last universal (x5) is compatible with the as-
signments of all the existentials afterx5. Therefore, this value
is removed fromD(x5) and a solution-directed backjump to
x4 is performed.9) The assignment(x4, 6) is made. FC re-
ducesD(x6) andD(x7) to {1, 3} and{3} respectively.10)
FC1 applied atx5 wipes outD(x7) (value 4 ofx5 is incom-
patible with the only value inD(x7)). Therefore, we have
a dead-end.conf set(x7) will be added toconf set(x5)
and the algorithm will backjump to the rightmost variable in
conf set(x5), which isx1.

Figure 2 shows part of the search tree generated by QCSP-
Solve and illustrates how subtrees are pruned.

4 Experiments
[Gentet al., 2004] showed that the model for random gener-
ation of QCSPs used in[Mamoulis and Stergiou, 2004] can
suffer from a local flaw that makes almost all of the generated
instances false. In this model there arek alternating quanti-
fiers applied to disjoint sets of variables, with the innermost
quantifier being existential. Let us briefly describe the flaw.
Suppose we have a series ofk universalsx1, . . . , xk assigned
to valuesa1, . . . , ak respectively. If there is an existentialxi

later inQ than thek universals and each one of its values is in
conflict with one of the values assigned to the universals then
the assignment of valuesa1, . . . , ak to variablesx1, . . . , xk is

5Values 4 and 5 ofx5 are NI, but let us ignore this for the sake
of the example.

∃
x1

∃
x2

∀
x3

∀
x4

∀
x5
 SDP

PV

PV

∃
x6

∃
x7

FC

FC

CBJ

FC

DWO
 of
 x7

2
 3

0
 1
 2

0
 3

0
 1
 6

4
 5
 4
 5

0
 1
 2
 3

0
 2
 3
 6

Figure 2: Search tree of Example 2. Dark
nodes are pruned by QCSP-Solve. Such
nodes together with the feature responsible
for their pruning are included in dashed ovals.

inconsistent. This assignment will remain inconsistent irre-
spective of the assignments to other universals or existentials,
and therefore the problem is unsatisfiable. We now propose a
generator that can be used to control the probability of flaws.

Variables are quantified in three blocks, a block of ex-
istentials followed by a block of universals then another
block of existentials.The generator takes 7 parameters:<
n, n∀, npos, d, p, q∀∃, q∃∃ > wheren is the total number of
variables,n∀ is the number of universals,npos is the position
of the first universal inQ, d is the uniform domain size, and
p is the number of binary constraints as a fraction of all pos-
sible constraints.q∃∃ is the number ofgoodsin ∃ xi∃ xj , cij

constraints as a fraction of all possible tuples, andq∀∃ is a
similar quantity for∀ xi∃ xj , cij constraints, described fur-
ther below. The other two types of constraints that can be
removed by preprocessing are not generated.

Since the flaw is a characteristic of∀ xi∃ xj , cij con-
straints, we restrict these in the following way: we generate
a random total bijection from one domain to the other. All
tuples not in the bijection are goods. Nowq∀∃ is the fraction
of goods from thed tuples in the bijection.

To control the probabilitypf of the flaw, we write down
an expression forpf , approximating proportionsp, q∀∃, q∃∃
as probabilities.n∀ is the number of universal variables, and
n∃ is the number of inner existential variables. For each ex-
istential assignment(xi, a), the probability that it is covered
by a universal isp(1− q∀∃). If the variablexi is flawed, then
all its values are in conflict with some value of some univer-
sal variable. However, each universal variable can only cover
one value (since we use a bijection). Therefore (representing
existential values using integers) the probability that variable
xi is flawed is given by the following.

p(xi flaw) = p(1)p(2|1)p(3|1 ∧ 2) . . . (1)

The probability that valuea is flawed, given that the previ-
ousa − 1 values are flawed, is given by formula 2.

p(a|1 . . . a − 1) = 1 − (1 − p1(1 − q∀∃))
n∀−a−1 (2)

Substituting equation (2) into equation (1) gives the proba-
bility of one variable being flawed.

p(xi flaw) =
d−1
∏

i=0

(

1 − (1 − p1(1 − q∀∃))
n∀−i

)

(3)

The probability that no existential variables are flawed is
given below. This formula is undefined whend > n∀. In this
case,pf = 1.

pf = (1 − p(xi flaw))
n∃ (4)

Experimental Results
Figure 3 presents a comparison of algorithms FC1, FC1+PV,
MAC1+PV, and full QCSP-Solve on problems generated ac-
cording to the model described above. All algorithms apply
AC, and NI preprocessing. For each value ofq∃∃ shown in the
figures, 100 problem instances were generated and we use
the mean average. We include FC1+PV and MAC1+PV in
the comparison to illustrate the power of the PV rule. In the
problems of Figure 3 the execution of FC1 was stopped at the
cut-off limit of 2 hours in more than 50% of the instances. As
we can see, QCSP-Solve is many orders of magnitude faster
than FC1. The speed-up obtained is largely due to the ap-
plication of the PV rule. Similar results were obtained with
various parameter settings.

Having established that QCSP-Solve is considerably faster
than existing direct approaches, we compared it with the
state-of-the-art approach of[Gent et al., 2004], using the
adapted log encoding with the CSBJ QBF solver. Figure 4
presents indicative results of this comparison. In this case,
we used the median because of high outliers. As we can see,
QCSP-Solve is significantly faster than CSBJ (more than one
order of magnitude), except for very high values ofq∃∃.

5 Conclusion
We introduced QCSP-Solve, an efficient solver for QCSPs.
QCSP-Solve incorporates a variety of techniques that are ei-
ther extensions of techniques used in CSPs and QBF, or are
specifically designed for QCSPs. To our knowledge, this is
the first time these techniques have been devised and im-
plemented in QCSPs. We also proposed a random genera-
tion model that can be used to create instances that are free
from the flaw discovered in[Gentet al., 2004]. Experiments
showed that QCSP-Solve is several orders of magnitude faster
than the existing state-of-the-art direct algorithms for QCSPs,
and also significantly outperforms approaches based on en-
coding QCSPs into QBFs. Current and future work includes
extending the solver to handle constraints of any arity, and
incorporating other advanced techniques, such as learning.

References
[Benhamou and Goualard, 2000] F. Benhamou and F. Goualard.

Universally Quantified Interval Constraints. InProceedings of
CP-2000, pages 67–82, 2000.

10

100

1000

10000

100000

1e+006

1e+007

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

cp
u

tim
e

(m
s)

q_ee

FC1
FC1+PV

QCSP-Solve
MAC1+PV
cutoff limit

Figure 3:n = 21, n∀ = 7, d = 8, p = 0.20, q∀∃ = 1/2.
.

 100

 1000

 10000

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

cp
u

tim
e

(m
s)

q_ee

QCSP-Solve median
CSBJ median

Figure 4:n = 24, n∀ = 8, d = 9, p = 0.20, q∀∃ = 1/2.
.

[Boerneret al., 2003] F. Boerner, A. Bulatov, P. Jeavons, and
A. Krokhin. Quantified Constraints: Algorithms and Complexity.
In Proceedings of CSL-2003, pages 244–258, 2003.

[Bordeaux and Monfroy, 2002] L. Bordeaux and E. Monfroy. Be-
yond NP: Arc-consistency for Quantified Constraints. InPro-
ceedings of CP-2002, 2002.

[Cadoliet al., 2002] M. Cadoli, M. Schaerf, A. Giovanardi, and
M. Giovanardi. An Algorithm to Evaluate Quantified Boolean
Formulae and its Experimental Evaluation.Journal of Automated
Reasoning, 28(2):101–142, 2002.

[Freuder, 1991] E. Freuder. Eliminating Interchangeable Values in
Constraint Satisfaction Problems. InProceedings of AAAI-91,
pages 227–233, 1991.

[Gentet al., 2004] I. Gent, P. Nightingale, and A. Rowley. Encod-
ing Quantified CSPs as Quantified Boolean Formulae. InPro-
ceedings of ECAI-2004, pages 176–180, 2004.

[Giunchigliaet al., 2001] E. Giunchiglia, M. Narizzano, and
A. Tacchella. Backjumping for Quantified Boolean Logic Sat-
isfiability. In Proceedings of IJCAI-2001, pages 275–281, 2001.

[Mamoulis and Stergiou, 2004] N. Mamoulis and K. Stergiou. Al-
gorithms for Quantified Constraint Satisfaction Problems. InPro-
ceedings of CP-2004, pages 752–756, 2004.

[Prosser, 1993] P. Prosser. Hybrid Algorithms for the Constraint
Satisfaction Problem.Computational Intelligence, 9(3):268–299,
1993.

[Ratschan, 2002] S. Ratschan. Quantified Constraints under Pertur-
bations.Journal of Symbolic Computation, 33(4):493–505, 2002.

