1

QCSP-Solve: A Solver for Quantified Constraint Satisfaction Problems

lan P. Gent and Peter Nightingale
School of Computer Science, University of St Andrews, Fif¥1& 9SS, UK
email: {ipg,pn} @dcs.st-and.ac.uk

Kostas Stergiou
Department of Information & Communication Systems Engimegger
University of the Aegean, Samos, Greece, email: konsteeg@sn.gr

Abstract

The Quantified Constraint Satisfaction Problem
(QCSP) is a generalization of the CSP in which
some variables are universally quantified. It has
been shown that a solver based on an encoding of
QCSP into QBF can outperform the existing di-
rect QCSP approaches by several orders of magni-
tude. In this paper we introduce an efficient QCSP
solver. We show how knowledge learned from the
successful encoding of QCSP into QBF can be uti-
lized to enhance the existing QCSP techniques and
speed up search by orders of magnitude. We also
show how the performance of the solver can be
further enhanced by incorporating advanced look-
back techniques such as CBJ and solution-directed
pruning. Experiments demonstrate that our solver
is several orders of magnitude faster than existing
direct approaches to QCSP solving, and signifi-
cantly outperforms approaches based on encoding
QCSPs as QBFs.

Introduction

existing direct approaches to solving QCSPs with discrete fi
nite domains, i.e. approaches based on extending CSP tech-
niques, are at an early staffgordeaux and Monfroy, 2002;
Mamoulis and Stergiou, 2004 As shown in[Gentet al,,
2004, such approaches are significantly outperformed by a
QBF solver applied on an encoding of QCSPs into QBFs.
Note that, in contrast to QCSPs with finite domains, there
is a significant body of work on quantified problems with
continuous domains (e.gBenhamou and Goualard, 2000;
Ratschan, 2042

In this paper we introduce an efficient QCSP solver, which
we call QCSP-Solve. To develop the solver we first im-
plemented extensions of standard CSP algorithms (FC and
MAC) and gradually enhanced them with new capabilities.
We started by repeating and analyzing the experiments of
[Gentet al., 2004 to discover the features of the QBF solver
that account for its effectiveness compared to existingadir
approaches. This lead us to identify the pure literal rukdus
by the QBF solver as the main factor contributing to its ef-
ficiency. We devised the QCSP analogue of the pure literal
rule and incorporated into our basic solver. As a result we
achieved a speed-up of several orders of magnitude. We then
continued the development of QCSP-Solve by adding intelli-

The Constraint Satisfaction Problem (CSP) is a very sueces§ent look-back techniques such as conflict-based backjump-
ful paradigm that can be used to model and solve many reaind and solution-directed pruning which also offer a signifi

world problems. The CSP has been extended in many way&?

nt speed-up. Finally, we implemented a symmetry breaking

to deal with problems that contain uncertainty. The Quanti-nethod based on value interchangeability.
fied Constraint Satisfaction Problem (QCSP) is an extension The experimental evaluation of algorithms for QCSPs is

in which some of the variables may be universally quanti-difficult for two reasons: first, due to the young age of the
fied. For each possible value of such variables, we have tarea, there is a lack of benchmarks; and second, the general-
find values for the remaining, existentially quantified,ivar ization of known random generation models from related ar-
ables so that all the constraints in the problem are satisfiegas (CSP and QBF) can lead to flawed models. For example
The QCSP can be used to model PSPACE-complete decisian [Gentet al, 2004 it was noted that the generation method
problems from areas such as planning under uncertainty, adised in[Mamoulis and Stergiou, 2004uffers from a flaw
versary game playing, and model checking. For example, ithat makes all generated instances insoluble even for small
game playing we may want to find a winning strategy for allproblems sizes. This flaw is also present in other random
possible moves of the opponent. In a manufacturing problengeneration methods. We propose a random generation model
it may be required that a configuration must be possible for althat, while creating hard instances, can be used to comigol t
possible sequences of user choices. Finally, when planming probability of the flaw discovered ilGentet al., 2004. For
a safety critical environment, such as a nuclear station, weertain parameter settings all generated instances arargua
require that an action is possible for every eventuality. teed to be unflawed. On problems created using this model,
Interest in QCSPs is growing, following the developmentQCSP-Solve is several orders of magnitude faster than the ex
of numerous efficient solvers in the closely related area ofsting QCSP algorithms, and also significantly outperforms
Quantified Boolean Formulae (QBF or QSAT). However, thethe QBF encoding based method Gientet al., 2004.

2 Preliminaries CSPs look-ahead techniques try to detect dead-ends early by
In standard CSPs all variables are existentially quantifiedPuning values from future variables, while look-back tech

QCSPs are more expressive than CSPs in that they allow urflidues try to deal with dead-ends in an intelligent way by
versally quantified variables. They enable the formulatbn recording and exploiting the reasons for failures. Noté tha

problems where all contingencies must be allowed for. We°™Me of the te'chniques'we will de.scribe may delete values
now give a formal definition. from the domains of universal variables because they may

B _)) discover that, under the current assignments, these vailies
Definition 1 A Quantified Constraint Satisfaction Problem definite]y lead to a solution. This pruning is different than
(QCSP) is a formula of the forr@C' whereq is a sequence standard pruning in CSPs.
of quantifiersQ,z; . .. Q,z,, where eacld); quantifies 8 or
V) a variablez; and each variable occurs exactly once in the3.1 Preprocessing

sequence(i_s a conjunction of_constraintsl(A - ANem) Arc consistency (AC) has been extended to QCSHSar-
where eacley; involves some variables among, . . ., z,,. deaux and Monfroy, 2032and [Mamoulis and Stergiou,
The semantics of a QCSPC can be defined recursively 2004. QCSP-Solve always applies AC as a preprocessing
as follows. IfC is empty then the problem is true.@f is of ~ step. Apart from reducing the problem size by deleting \&lue
the form3z1 Qs . .. Q,x, thenQC is true iff there exists from the domains of existentials, AC removes from the prob-
some valuer € D(z;) such thaQss . .. Q,2,C[(21,a)]* lem all constraints of the form «;V x;, ¢;; andV z;V x5, ¢;;.
is true. IfQ is of the formVz1Qazs ... Qnz, thenQC is For the former kind, AC deletes every value Bfz;) that
true iff for each valuer € D(z1), Qox2...Qnx,C|(x1,a)]is IS not supported by all values d?(z;). If D(z;) becomes
true. In this paper we restrict our attention to binary QGSPs empty then the algorithm determines insolubility. For taie |
In a binary QCSP, each constraint, denoted-jy involves ter kind, if there is a value ab(x;) that is not supported by
two variables ¢; andz;) which may be universally or exis- all values ofD(z;) then the algorithm determines that the
tentially quantified. problem is insoluble. After AC has been applied, all such
As an example consider the following QCSP whérés constraints can be safely removed from the problem since
a sequence of 7 quantified variables, @his a conjunction they cannot have any further effect. A consequence of this
of 9 constraints. This problem will be used in Section 3.4 toremoval is that any universals after the last existentiallwa
demonstrate the various features of QCSP-Solve. ignored, since they participate in no constraints.

Example 1 3.2 Look-Ahead

JwyJwaVasVaaVasIneder(zy # w6 Aa1 # a1 Av2 # 26 A |y QCSP-Solve we have implemented two basic forms of
T3 # T6/\T3 < w7AT4 F TeA\Ta F T7A\T5 F T6AT5 <27) |ook.ahead:; forward checking (FC) and maintaining arc con-
sistency (MAC). FC (called FCO iiMamoulis and Stergiou,

A special case of a QCSP is Quantified Boolean Formul&2004 and hereafter) is an extension of standard FC to QC-
(QBF). A QBF is of the formQC whereQ) is defined as above SPs. FCO is a backtracking-based algorithm that can discove
(however in this case the domain of each variablg i§. C dead-ends early by forward checking the current variable as
is a Boolean formula in conjunctive normal form (CNF), a signment (of an existential or universal) against valuesiof
conjunction of clauses where each clause is a disjunction alire existentials constrained with the current variabley B
literals. Each literal is a variable and a sign. The litegl i slightly modifying the forward checking phase of FC we get
said to be negative if negated and positive otherwise. The sean algorithm, called FC1 ifiMamoulis and Stergiou, 2004
mantic definition is the same as for QCSPs. Note that binarwhich can discover dead-ends earlier than FCO. FC1 has ex-
QCSPs, unlike 2-QBF (i.e. QBF problems with at most twoactly the same behavior as FCO when the current variable is
literals per clause), are not trivial. Despite the restitto an existential. If the current variable is a universal then
binary constraints, binary QCSPs are still PSPACE-corepletFC1 forward checks each value of against all future vari-
[Boerneret al, 2003. ables before assigning a specific value to it. If one f val-

In the rest of the paper we assume that for any constrainies causes a domain wipe-out then FC1 backtracks to the last
cij, variablex; is beforex; in the quantification sequence, un- existential. Otherwise, it proceeds by instantiating te&tn
less explicitly specified otherwise. We will sometimes refe available value: of D(z;) and removing all values of future
to universally and existentially quantified variablesiass/er- variables that are inconsistent with the assignnienta). In

salsandexistentialgespectively. this way FC1 can discover dead-ends earlier and avoid fruit-
less exploration of search tree branches.
3 Description of QCSP-Solve The MAC algorithm is also an extension of standard MAC

In this section we describe the basic features of QCSP—SoIvé0 QCSPs. After each variable assignment, MAC applies AC

First we discuss preprocessing. Then we analyze the loo n the problem using the AC algorithm ¢Mamoulis and

y . i _tergiou, 2001 MAC has also been modified in the same
ahead and look-back capabilities of QCSP-Solve. In stahdarway as FC to yield MAC1, an algorithm analogous to FCL.

(21, a) denotes the assignment of vakuéo variablez; . That is, when the current variablg is a universal MAC1

2QCSP-Solve can currently handle ternary and binary con@pplies AC for each instantiatid;, a;), j € {1,...,d} be-
straints. We are in the process of extending it to constraints of higheiore committing to a particular instantiation. If one of the
arity. instantiations causes a domain wipe-out then the algorithm

backtracks. Otherwise, it commits to one of the values andariablex; is fully interchangeablevith a valueb of x;, iff
proceeds with the next variable. every solution which contains the assignment a) remains

In the rest of the paper we will describe how various look-a solution if we substituté for a, and vice versdFreuder,
ahead and look-back techniques are combined with an FCt991l. A valuea € D(x;) is neighborhood interchangeable
based look-ahead. Most of these techniques can be combiné€nl) with a valueb € D(x;), iff for eachy, such that;; € C,
with a MAC-based look-ahead in a very similar way. a andb are compatible with exactly the same value®xf: ;).
QCSP-Solve exploits NI to break some symmetries by prun-
ing the domains of universal variables. That is, for each set
of NI values we keep one representative and remove the oth-
ers, either permanently before search, or temporarilynduri
earch®. If the algorithm proves that the representative is
consistent (i.e. satisfies the QCSP) then so are the rest.

The Pure Value Rule

In SAT and QBF a literal is calledpure (or monotongif its
complementary literal does not appear in any clause. Stich li
erals are important because they can immediately be askign
a value without any need for branchit@adoliet al., 2003.
This is what thepure literal rule does. For example, if an
existential literal only occurs positively, the pure literal rule 3 3 | gok-Back

will setitto true. By repeating and analyzing the experitsen .
of [Gentet al,, 2004 we discovered that the pure literal rule Various look-back schemes have been developed for CSPs.

has a profound impact on the search effort. When switching ifne of the most successful is conflict-based backjumping

Prosser, 1993 This algorithm has been successfully com-
off, the search process was slowed down by orders of magn) X
tude. This immediately gave rise to the following questions ined with FC in CSPEProsser, 1993and a DLL-based pro-

What does the pure literal rule correspond to in QCSPs, anfedure in QBHGiunchigliaet al, 2001. We describe how

o BJ interacts with the FC-based look-ahead of QCSP-Solve.
h | h h ? T ; .
ow can we explolt it to prune the search space? 1o answ As in standard CSPs, for each variablewe keep acon-

these questions, we use the notion giae value _flict set denoted byon f_set(x;), which holds the past vari-
Definition 2 A valuea € D(z;) of a QCSPQC is pureiff ghjes that are responsible for the deletion of values from
VQjr; € Q, wherex; # x; andvb © D(z;), the assign- ;) Initially all conflict sets are empty. When encoun-
ments(z;, a) and(z;, b) are compatible. tering a dead-end, CBJ exploits information kept in conflict
In away analogous to the pure literal rule in QBF, we have desets to backjump to a variable that is (partly) responsibte f
vised and implemented a look-ahead technique, which we cathe dead-end. Conflict sets are updated as follows. If the
thepure value (PV) rulethat detects and exploits pure values current variable; is existentially quantified and, during for-
to prune the search space. The actions taken are dual fer exiward checking, a value of a future variablgis found to be
tential and universal pure values. An existential variatith ~ incompatible with the assignment of thenz; is added to

a pure value can be set to that value, while a pure value is reon f _set(z;). If the domain of a future variable; is wiped
moved from the domain of a universal variable. This dualityout then the variables ivon f_set(z;) are added to conflict
reflects the dual semantics of existential and universat var set of the current variable (existential or universal). IBac
ables. Note that values can become pure dynamically duringimping can occur in either of the following two cases:
search because of constraint propagation (see Example 2in ;¢ yne current variabler, is existential and there are no

Section .3'4)t' Trr]we_refore, (tjhe PVdruIe s a?plifd ﬁmtg ?S {;\]p_re- more values to be tried for it then QCSP-Solve back-
processing technique and as a dynamic look-ahead technique jumps to the rightmost variable, in @ that belongs

during search. The PV rule works as follows. to conf_set(z;). At the same time all variables in
e If a pure valuea of an existentiak; is discovered dur- conf_set(x;) (exceptz;) are copied taconf_set(xy)
ing preprocessingsgarch), then the assignmerit:;, a) so that no information about conflicts is lost.
is made and all other values of are permanenthyt¢m- . : : _
e |f the current variabler; is universal and a value is

porarily) removed fromD(x;). To check, during search, d ; : ! X
: ; o eleted from its domain (because its forward checking
if a valuea of an existentialk:; is pure, we only need to results in a domain wipeout) then QCSP-Solve back-

check if the assignmertc;,a) is compatible with all . ; : ;
values of future variables. FC (or MAC) guarantee that ~ JUMPS 1o the rightmost variable, in @ that belongs to
conf_set(z;). Again all variables ircon f_set(z;) (ex-

(z;,a) is compatible with the values (i.e. the instantia- :
tions) of the previous variables. ceptz;) are copied t@onf_set(zx).

e If a pure valuea of a universalz; is discovered dur- Solution-Directed Pruning

ing preprocessingsgarch), thena is permanentlytem- [Giunchigliaet al, 2001 introduced solution-directed back-
porarily) removed fromD(z;). To check if a value of a jumping for QBF. This allows backjumps over universally
universal is pure, we only need to check against futurequantified literals once reaching a leaf node that is a solu-
variables since preprocessing with AC guarantees thdion. Inspired by this idea, we have implemented a technique
there are no constraints between a universal and a previbat can prune values from universal variables when reach-
ous variable. Note that if all the values of a universal areing a solution (i.e. a consistent leaf node). We call this
pure then we can ignore this variable. solution directed prunindSDP). SDP is based on the fol-

: lowing idea: Assume that; is the last universal i) and
Symmetry Breaking wing | u i univ 9]

QCSP-Solve utilizes a technique for symmetry breaking 3Experiments have shown that NI during search is an overhead
based on neighborhood interchangeability. A valuef a when the PV rule is used.

q = {xiy1... .} C Qis the sequence of existentials to the BooleanQCSP-Solve(Q, C)

right of z;. Also, assume that the assignmént, a;) leads 1: Ic)r;c{):(ﬁefgf(tgbi)variable in the quantification formula

to a solution (i.e. is part of a path to a co_n5|stent leaf no_de : while there is no backtrack from the first existential or universal
and{(zit1,ai41) ... (zn,an)} are the assignments of vari- ;- compute_PV (c.var)

ables{z; 1 ...xz,} along this path. Then any valueofthat 5. if . ,ur is existential

is compatible with all these assignments will definitelyoals 6: it no more values itD(c_var)

lead to a solution. Such values can be pruned (i.e. ignored): c_var « rightmost variable ircon f_set(c_var)
by the search algorithm. Based on this, SDP first compute8: else
the values of the last universaj that have the above prop- 9: assigre_var with next valid valuez € D(c-var)

erty. All such values are temporarily removed frdbfz;). 10: DWO— fc(cvar, a)
Now if there are no available values In(z;), SDP proceeds 11: if DWO =FALSE

with the universal immediately befote in Q, sayz;, and 1% if there are no more unassigned variables
checks if its remaining values are compatible with the assig ﬁj glgéere are no universals @ retum TRUE
ments of all existentials after;. This is repeated recursively ¢ cvar — SDP(Q)
until a universal is found which has available values leftsn 14 restore values removed by all variables afterr
domain after SDP has been applied. The algorithm then back-7: elsec_var — next unassigned variable
tracks to this universal. In this way it is possible to pemfor 18: elserestore values removed byvar
solution-directed backjumps. 19: elsel/c_var is universal/

20: if no more values itD(c_var)
3.4 The Algorithm of QCSP-Solve 21: if c_var is the first universaleturn TRUE

A high level description of QCSP-Solve’s algorithm is shown22: €lsecvar « last assigned universal variable

S . 23: else
in Figure 1. It takes a QCSRC and returns TRUE if the o4 DWO = FALSE

problem is satisfiable, and FALSE otherwfiseThe version 25 if no assignment to_var has been tried

of QCSP-Solve shown in Figure 1 is based on FC. A MAC-5. DWO— fel(cvar)

based version with all the features, except CBJ for the time7: if bwoO = FALSE

being, is also currently available. In Figure 1, 28: assigre_var with next available value € D(c_var)
e c_var is the current variable. 29: fe(cvar, a)

]) 30: c_var < next unassigned variable
e preprocess() is a function that preprocesses the prob-31: else

lem by applying AC, and computing pure and NI values.32: c_var «— rightmost variable ircon f _set(c_var)

33: restore removed values by all variables aftenr
* gompute-PV() Com.pUte.S the pure values @.fvgr dur- 34:if there is a backtrack from the ?i/rst existentieiurn FALSE
ing search. Ifc_var is existential and one of its values 35 return TRUE
(saya) is pure thercompute_PV (c_var) setsc_var to '
a and temporarily removes the rest bf{c_var)’s val- Figure 1: The algorithm of QCSP-Solve.
ues. If covar is universal thercompute PV (c_var)
temporarily removes all the pure values frdbtc_var).
Whenever the algorithm backtracks, all values removed QCSP-Solve works as follows. It takes as input a QCSP

by compute_PV () are restored. QC and, after preprocessing the problem (line 1), it proceeds

o fc0() implements the FCO-type look-ahead. It is called by checking a_issignments qf values to variables_until thé tru
after the current variable (existential or universal) is as Of the QCSP is proved or disproved. Before assigning a value
signed and forward checks this assignment against alP ¢-var, QCSP-Solve callgompute PV (cvar) to com-

future variables constrained withvar. If a value of ~ PUte the pure values afvar (line 4). If cvar is existen-
a future variabler; is deleted then:_var is added to tial and a dead-end occurs then the algorithm backtracks to

conf_set(z;). If D(z;) is wiped out thervz;, z; € th_e rightmost vari_able ionf,set(_c,var) (lines 6-7). Oth(_er—
conf_set(x;), v; is added taon f_set(c_var). wise, the next vall_d value afvar is forV_/ard checke_d against
. . future variables (lines 9-10). If there is no domain wipg-ou

e fcl() implements the FC1-type look-ahead. Itis called (p\wo) and the algorithm has reached a consistent leaf node
before c_var is assigned (|f, it is a universal) and for- (j o "¢ a7 is the last variable ig) then it callsSDP() to
ward checks all ofD(c_var)’s valid values against the herform solution-directed pruning (line 13). If QCSP-Solv
future variables constrained withvar. If the domain s not at a leaf node, it proceeds by moving to the next vari-
of a future variablex; is wiped out thenVz;,z; € gple (line 15). If there is a DWO, the next valuecbar will
conf_set(z;), x; is added taon f_set(cvar). be tried in the next iteration of thehile loop.

e SDP() implements solution directed pruning.D P() If c_var is universal and all of its values have been proved
prunes values from universals according to the rule deto be consistent (according to the current assignmengs), th
scribed in Section 3.3 and returns the universal that hathere are two cases. Hwvar is the first universal, QCSP-
values left in its domain after SDP has been applied. Solve terminates successfully (line 19). Otherwise, itkbac

tracks to the last universal (line 20). Before assigning any

“The algorithm can be modified to return solutions in the formvalue to a universal variable, QCSP-Solve cgitd (c_var)

of search trees. to perform FC1-type look-ahead (lines 23-24). If there is

a DWO, the algorithm backtracks to the rightmost vari-
able inconf_set(c_var) (line 30). If there is no DWO, or
fel(cwar) has already been called at this levelpar is Ixl

assigned with its next available value (line 26), the assign “
ment is forward checked against future variables (line 27), =0 :
and QCSP-Solve proceeds with the next variable (line 28).

To better understand how the algorithm of QCSP-Solve v x3

works, consider the following example. CBI :

Example 2 Assume that the domains of the variables in the Vx4
problem of Example 1 are as followsD(z;) = {2,3},
D(xy) = {0,1,2}, D(zs5) = {0,3}, D(zs) = {0,1,6}, xS
D(I5) = {4’ 5}’ D(‘TG) = {07 1a 27 3}’ D(I7) = {0’ 27 35 6}
Let us trace the execution of QCSP-Solve for a few steps.

1) Preprocessing is applied. There are no arc incon-

Ix6 . DWO of x7,"

sistent or pure values, so no pruning is perfored) 3x7

The assignmenfxy,2) is made. FC reduce®(zs) and “ -

D(z7) to {0,1,3} and{0, 3,6} respectively. We now have Figure 2: Search tree of Example 2. Dark
conf_set(zg) = conf_set(xr) = {x1}. 3) Now, value 2 nodes are pruned by QCSP-Solve. Such
of o becomes pure because it is supported by all values in nodes together with the feature responsible
future variables. The PV rule will immediately make the as- for their pruning are included in dashed ovals.

signment(x2,2). 4) FC1 does not wipe out any future do-
main, so the assignmeiits, 0) will be made. FC reduces

D(z¢) andD(x7) to {1,3} and{3,6} respectively5) Value inconsistent. This assignment will remain inconsistere-ir

0 of z4 is pure. Therefore, it is removed and the assignmengpective of the assignments to other universals or exiatent
(z4,1) is made. FC reduceB(z¢) to {3}. 6) FC1 does not and therefore the problem is unsatisfiable. We now propose a
wipe out any future domain, so the assignmery, 4) will generator that can be used to control the probability of flaws
be made. FC reduceS(z7) to {6}. 7) z¢ andx7 are as- Variables are quantified in three blocks, a block of ex-
signed their only available values and a solution is folB)d. jstentials followed by a block of universals then another
Now function SDP() is called (line 13). SDP() discovers thatpjock of existentials.The generator takes 7 parameters:
value 5 of the last universak{) is compatible with the as- 1, My; Npos ds P, w3, g3z > Wheren is the total number of
TSignmentS of all the existentials aftej’ Therefore, thlS value variablesny is the number of universajﬁpos is the position

is removed fromD(x5) and a solution-directed backjump to of the first universal inQ, d is the uniform domain size, and
x4 is performed.9) The assignmentz,, 6) is made. FC re-), js the number of binary constraints as a fraction of all pos-
ducesD(xg) and D(z7) to {1,3} and{3} respectively.10) sible constraintsyss is the number ogoodsin 3 ;3 z;, ¢;;
FC1 applied atr5; wipes outD(z7) (value 4 ofzs is incom- constraints as a fraction of all possible tuples, apglis a
patible with the only value inD(z7)). Therefore, we have similar quantity fory ;3 z;, ¢;; constraints, described fur-

a dead-end.con f_set(z7) will be added toconf_set(z5) ther below. The other two types of constraints that can be
and the algorithm will backjump to the rightmost variable in removed by preprocessing are not generated.

Conf—set(%), which isz;. Since the flaw is a characteristic of z;3 z;,¢;; con-
Figure 2 shows part of the search tree generated by QCSRtraints, we restrict these in the following way: we gererat
Solve and illustrates how subtrees are pruned. a random total bijection from one domain to the other. All

tuples not in the bijection are goods. Ngws is the fraction
. of goods from thel tuples in the bijection.
4 Experiments To control the probability s of the flaw, we write down

[Gentet al, 2004 showed that the model for random gener- N €xpression fop, approximating proportions, gvs, ¢33
ation of QCSPs used ifMamoulis and Stergiou, 20D4an as probabilitiesny is the number of universal variables, and
suffer from a local flaw that makes almost all of the generated3 IS the number of inner existential variables. - For each ex-
instances false. In this model there aralternating quanti- 1Stential assignmeritz;,), the probability that it is covered
fiers applied to disjoint sets of variables, with the innesmo PY & universal ig(1 — gv3). If the variablez; is flawed, then
quantifier being existential. Let us briefly describe the flaw @l its values are in conflict with some value of some univer-
Suppose we have a seriesiafiniversalsey, .. . , 25, assigned sal variable. _However, each _l_mlv_ersal variable can onlyecoy
to valuesas, .. ., ay, respectively. If there is an existentia) ~ ON€ value (since we use a bijection). Therefore (represgnti
later in() than thek universals and each one of its values is in €XiStential values using integers) the probability thatalzle
conflict with one of the values assigned to the universals the%: IS flawed is given by the following.

the assignment of values, . . . , a; to variablesty, . .., x; is
' p(ai flaw) = p(1)p(2[1)p(3[1 A 2)... (1)

®Values 4 and 5 ofs are NI, but let us ignore this for the sake ~ The probability that value is flawed, given that the previ-
of the example. ousa — 1 values are flawed, is given by formula 2.

1e+007

‘FC1 ‘—;
plal...a=1)=1—=(1=pi(1—gva))™ """ (2) 1e+006 | QCSFFEé:Jr\’/\é B
MACL+PV e
Substituting equation (2) into equation (1) gives the proba & 100000 | cutoff limit -—--- .
bility of one variable being flawed. E o
£ 10000 f jx“* "
-1) g 1000 e E e :
p(xi flaw) = H (1 — (1 —p1(1 — qvg))nv_l) (3) g - T :
i=0 100 t.°
The probability that no existential variables are flawed is 10 e
given below. This formula is undefined whén> ny. In this 05 055 06 065 O'Z 7o 08 085 08 095
casepy = 1. Figure 3:n = 21, ny = 7,d = 8, p = 0.20, v = 1/2.
py = (1 - p(z; flaw))™ (4) '
Experimental Results o T QCSP goe median
Figure 3 presents a comparison of algorithms FC1, FC1+PV, e
MAC1+PV, and full QCSP-Solve on problems generated ac-

cording to the model described above. All algorithms apply
AC, and NI preprocessing. For each valugf shown in the
figures, 100 problem instances were generated and we use
the mean average. We include FC1+PV and MAC1+PV in
the comparison to illustrate the power of the PV rule. In the
problems of Figure 3 the execution of FC1 was stopped at the
cut-off limit of 2 hours in more than 38 of the instances. As 100
we can see, QCSP-Solve is many orders of magnitude faster o o
than FC1. The speed-up obtained is largely due to the ap- Figure 4:n = 24, ny = 8,d =9, p = 0.20, qy3 = 1/2.
plication of the PV rule. Similar results were obtained with)
various parameter settings.

Having established that QCSP-Solve is considerably faster
than existing direct approaches, we compared it with théBoerneretal, 200§ F. Boerner, A. Bulatov, P. Jeavons, and
state-of-the-art approach ¢Gentet al, 2004, using the A. Krokhin. Quantified Constraints: Algorithms and Complexity.
adapted log encoding with the CSBJ QBF solver. Figure 4 In Proceedings of CSL-200pages 244-258, 2003.
presents indicative results of this comparison. In thisecas [Bordeaux and Monfroy, 2092L. Bordeaux and E. Monfroy. Be-
we used the median because of high outliers. As we can see, yond NP: Arc-consistency for Quantified Constraints. Plro-
QCSP-Solve is significantly faster than CSBJ (more than one ceedings of CP-2002002.

1000

cpu time (ms)

0.5 055 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

order of magnitude), except for very high values;of. [Cadoliet al, 200 M. Cadoli, M. Schaerf, A. Giovanardi, and
M. Giovanardi. An Algorithm to Evaluate Quantified Boolean
5 Conclusion Formulae and its Experimental Evaluatidournal of Automated

We introduced QCSP-Solve, an efficient solver for QCSPs. Reasoning28(2):101-142, 2002.

QCSP-Solve incorporates a variety of techniques that are e[Freuder, 1991 E. Freuder. Eliminating Interchangeable Values in

ther extensions of techniques used in CSPs and QBF, or are Constraint Satisfaction Problems. Rroceedings of AAAI-91

specifically designed for QCSPs. To our knowledge, this is Pages 227-233, 1991.

the first time these techniques have been devised and iniGentet al, 2004 1. Gent, P. Nightingale, and A. Rowley. Encod-

plemented in QCSPs. We also proposed a random genera- ing Quantified CSPs as Quantified Boolean FormulaePrin

tion model that can be used to create instances that are free ceedings of ECAI-2004¢ages 176-180, 2004.

from the flaw discovered ifGentet al, 2004. Experiments [Giunchigliaet al, 2004 E. Giunchiglia, M. Narizzano, and

showed that QCSP-Solve is several orders of magnitude faste A. Tacchella. Backjumping for Quantified Boolean Logic Sat-

than the existing state-of-the-art direct algorithms f@Sps, isfiability. In Proceedings of IJCAI-20Qbages 275-281, 2001.

and also significantly outperforms approaches based on efvamoulis and Stergiou, 2004N. Mamoulis and K. Stergiou. Al-

coding QCSPs into QBFs. Current and future work includes gorithms for Quantified Constraint Satisfaction Problemrim

extending the solver to handle constraints of any arity, and ceedings of CP-20Q4¢ages 752-756, 2004.

incorporating other advanced techniques, such as learning [Prosser, 1993 P. Prosser. Hybrid Algorithms for the Constraint
Satisfaction ProblenComputational Intelligence(3):268-299,

References 1993.

[Benhamou and Goualard, 2d06. Benhamou and F. Goualard. [Ratschan, 2042S. Ratschan. Quantified Constraints under Pertur-
Universally Quantified Interval Constraints. Rroceedings of bations.Journal of Symbolic Computatip83(4):493-505, 2002.
CP-2000Q pages 67-82, 2000.

