Feature Selection Based on the Shapley Value

Shay Cohen and Eytan Ruppin
School of Computer Sciences
Tel-Aviv University, Tel-Aviv 69978, Israel
{cshay, ruppi n}@ost.tau.ac.il

Gideon Dror
Department of Computer Science
Academic College of Tel-Aviv Yaffo, Tel-Aviv, 64044, |srael
gi deon@t a. ac. i |

Abstract

We present and study the Contribution-Selection al-
gorithm (CSA), a novel algorithm for feature se-
lection. The algorithm is based on the Multi-
perturbation Shapley Analysis, a framework which
relies on game theory to estimate usefulness. The
algorithm iteratively estimates the usefulness of
features and selects them accordingly, using either
forward selection or backward elimination. Empir-
ical comparison with several other existing feature
selection methods shows that the backward elimi-
nation variant of CSA leads to the most accurate
classification results on an array of datasets.

1 Introduction

Feature selection refers to the problem of selecting input vari-
ables, otherwise called features, that are relevant to predicting
a target value for each instance in a dataset. Feature selection
has several potential benefits: defying the curse of dimension-
ality to enhance the prediction performance, reducing mea-
surement and storage requirements and reducing training and
prediction times. This paper focuses on the first issue, namely
selecting input variables in an attempt to maximize the perfor-
mance of a classifier on previously unseen data.

In this paper, we suggest to recast the problem of feature
selection in the context of coalitional games, a notion from
game theory. This perspective yields an iterative algorithm
for feature selection, the Contribution-Selection algorithm
(CSA), intent on optimizing the performance of the classifier
on unseen data. The algorithm combines both the filter and
wrapper approaches. However, unlike filter methods, features
are reranked on each step by using the classifier as a black
box. The ranking is based on the Shapley value [Shapley,
1953], a well known concept from game theory, to estimate
the importance of each feature for the task at hand, specifi-
cally taking into account interactions between features.

Throughout the paper we use the following notations. The
distribution from which the dataset instances are drawn is rep-
resented by two variables (X,Y"), where X = (Xy, ..., Xp,)
represents the input variables (vector of features), and Y
represents a discrete target value (class) for X. Three sets

containing i.i.d. sampled instances of (X,Y") of the form
{xr,yr} are available: Train, Validation and Test represent-
ing the training set, validation set and test set respectively.
Given an induction algorithmand aset S C {1, ...,n}, fs(z)
stands for a classifier constructed from the training set us-
ing the induction algorithm, after its input variables were nar-
rowed down to the ones in S, namely fs(z) labels each in-
stance of the form (z;,, .. ij €8,1<j<|S|with
a value in the domain of Y 'Iihe task of feature selection is
to choose a subset S of the input variables, that would maxi-
mize the performance of the classifier on the test set. In what
follows we shall focus on optimizing accuracy of the classi-
fier, although we could as easily optimize other performance
measure such as the area under the ROC curve, balanced error
rate etc.

The rest of this paper is organized as follows: Section 2 in-
troduces the necessary background from game theory with a
detailed description of the CSA algorithm; Section 3 provides
an empirical comparison of CSA with several other feature
selection methods, accompanied by an analysis of the results;
Section 4 discusses the empirical results and provides further
insights to the success of the backward elimination version of
the CSA algorithm.

2 Classification as a Coalitional Game

Cooperative game theory introduces the concept of “coali-
tional games”, in which a set of players is associated with a
payoff, a real function that denotes the benefit achieved by
different sub-coalitions in a game. Formally, a coalitional
gameis defined by a pair (V,v) where N = {1,...,n} isthe
set of all playersand v(.S), for every S C N, is a real number
associating a worth with the coadlition S. Game theory further
pursues the question of representing the contribution of each
player to the game by constructing a value function, which
assigns a real-value to each player. The values correspond to
the contribution of the players in achieving a high payoff.
The contribution value calculation is based on the Shapley
value [Shapley, 1953]. An intuitive example of the potential
use of the Shapley value can be provided in an academic set-
ting. Assume that you are a Professor running a lab, and, once
and for all, you have decided to distribute the yearly bonus to
your students in a fair manner, that reflects the actual con-

tribution of each student to the academic success of the lab.
During the year, the students form spontaneous “coalitions”
of groups of students, each such group works and publishes
a paper summarizing its work (these coalitions may also be
assembled by the Professor). Every paper gets a rank, (e.g.,
its impact factor), composing its “payoff function”. Based on
this annual data of the students’ coalitions and their associ-
ated payoffs, the Shapley value provides a fair and efficient
way to distribute the bonus to each individual student accord-
ing to his contribution over the year.

The Shapley value is defined as follows. Let the marginal
importanceof player i to a coalition S, with ¢ ¢ S, be

Ai(S) = v(S U{i}) — v(9).)
Then, the Shapley value is defined by the payoff
1
®;(v) =] ZHAi(Si(ﬂ')) (2)
S

where II is the set of permutations over N, and S; () is the
set of players appearing before the ith player in permutation
m. The Shapley value of a player is a weighted mean of its
marginal value, averaged over all possible subsets of players.

Transforming these game theory concepts into the arena of
feature selection, in which one attempts at estimating the con-
tribution of each feature in generating a classifier, the players
N are mapped to the features of a dataset and the payoff is
represented by a real-valued function v(.S), which measures
the performance of a classifier generated using the set of fea-
tures S. Finally, the usage of the Shapley value for feature
selection may be justified by its axiomatic qualities:

Axiom 1 (Normalization or Pareto optimality) For any game
(N,v) itholdsthat > @;(v) = v(NV)
iEN

In the context of feature selection, this axiom implies that
the performance on the dataset is divided fully between the
different features.

Axiom 2 (Permutation invariance or symmetry) For any
(N,v) and permutation = on N it holds that ®;(v) =

@ﬂuﬁwv)

This axiom implies that the value is not altered by arbitrarily
renaming or reordering the features.

Axiom 3 (Preservation of carrier or dummy-property) For
any game (N, v) such that v(S U {i}) = v(S) for every S C
N itholdsthat ®;(v) = 0

This axiom implies that a dummy feature that does not influ-
ence the classifier’s performance indeed receives a contribu-
tion value 0.

Axiom 4 (Additivity or aggregation) For any two games
(N,v) and (N, w) it holdsthat ®;(v + w) = ®;(v) + ®;(w)
where (v + w)(S) = v(S) + w(S)

This axiom applies to a combination of two different payoffs
based on the same set of features. For a classification task
these may be, for example, accuracy and area under the ROC
curve or false positive rate and false negative rate. In such

case, the Shapley value of a feature, that measures its con-
tribution to the combined performance measure, is just the
sum of the corresponding Shapley values. The linearity of
the Shapley value is a consequence of this property. Namely,
if the payoff function v is multiplied by a real number « then
all Shapley values are scaled by a namely ®;(av) = a®;(v).
In other words, multiplying the performance measure by a
constant does not change the ranking of the features, a vital
property for any scheme that ranks features by their “impor-
tance’.

2.1 Estimating Features Contribution Using the
MSA

The calculation of the Shapley value requires summing over
all possible subsets of players, which is impractical in our
case. [Keinan et al., 2004] have presented an unbiased esti-
mator for the Shapley value by uniformly sampling permu-
tations from II. Still, the estimator considers both large and
small features sets to calculate the contribution values. In our
feature selection algorithm, we use the Shapley value heuris-
tically to estimate the contribution value of a feature for the
task of feature selection. Since in most realistic cases we as-
sume that the size d of significant interactions between fea-
tures is much smaller than the number of features, n, we will
limit ourselves to calculating the contribution value from per-
mutations sampled from the whole set of players, with d be-
ing a bound on the permutation size. Notice that most fil-
ter methods are equivalent to using d = 1 where no inter-
actions are taken into account. Feature selection using Ran-
dom Forests [Breiman, 2001] is equivalentto d ~ /n . The
bounded estimated contribution value becomes

pi(v) = ﬁ Z A;(S;(m))

w€lly

where I, is the set of sampled permutations on subsets of
size d. The usage of bounded sets coupled with the method
for the Shapley value estimation, yields an efficient and ro-
bust way to estimate the contribution of a feature to the task
of classification. For a detailed discussion of the MSA frame-
work and its theoretical background see [Keinan et al., 2004].

2.2 The Contribution-Selection Algorithm

The Contribution-Selection algorithm (CSA), described in
detail in Figure 1, is iterative in nature, and can either adopt
a forward selection or backward elimination approach. Us-
ing the subroutine contribution, it ranks each feature accord-
ing to its contribution value, and then selects s features with
the highest contribution values with forward selection (using
the sub-routine selection)?, or eliminates e features with the
lowest contribution values with backward elimination (using
elimination). It repeats the phases of calculating the contri-
bution values of the remaining features given those already
selected (or eliminated), and selecting (or eliminating) new
features, until the contribution values of all candidate features

Alternatively, the selection sub-routine can use a forward selec-
tion technique instead of s; features are added in ascending order
of their contribution values, as long as the classifi er's performance
improves.

Contribution-Selection-Algorithm(F'; A, d, s)
1. selected = ¢
2. foreach f € F\selected
2.1. Cy := contribution(f, selected ; d)
3. ifmax; Cr > A
3.1. selected := selected U selection({Cy} ; s, A)
3.2. goto 2

else
3.3. return selected

Figure 1: The Contribution-Selection algorithm in its forward se-
lection version. F' isthe input set of features, A is a contribution
value threshold, d is the maximal permutation size for caculating
the contribution values, s is the number of features selected in each
phase. The contribution routine calculates the contribution value of
feature f with the pay off function described in this section. The
selection routine selects at most s features with highest contribu-
tion values that exceed A. In the backward elimination version,
the selection sub-routine is replaced with an elimination sub-routine
which eliminates e featuresin each phase and the halting criterionis
changed accordingly.

exceed a contribution threshold A with forward selection (or
fall below a contribution threshold A with backward elimina-
tion).

The algorithm, without further specification of the contri-
butionsub-routine, is a generalization of filter methods. How-
ever, the main idea of the algorithm is that the contribution
sub-routine, unlike common filter methods, returns a contri-
bution value for each feature according to its assistance in im-
proving the classifier’s performance, which is generated using
a specific induction algorithm, and in conjunction with other
features. Using the notation in Section 2 and assuming one
optimizes the accuracy level of the classifier, the contribution
sub-routine for forward selection calculates the contribution
values using the following payoff function v(S):

1. S:=85 U selected
2. Generate a classifier fs(z) from the training set, Train

3. Evaluate fg(z) for all examples of the validation set,
Validation

4. Return the accuracy level,
{z|fs(z)=y,(z,y)EValidation}|
|Validation|

The case S = ¢ is an end case which is handled by return-
ing the number of instances in the largest class divided by the
total number of instances (a classifier which always selects
the most frequent class). Backward elimination is quite sim-
ilar, and the payoff is calculated by sampling permutations
from the set of features left after each phase of elimination.
The maximal permutation size d has an important role in de-
ciding the contribution values of the different features, and
should be selected in a way that ensures that different com-
binations of features that interact together are inspected. Its
impact is demonstrated in Section 3.

The number of selected features s for the selection sub-
routine controls the redundancies of the selected features; the

defined as v(S) =

Name Classes | Features | Train Size | Test Size
Reutersl 3 1579 145 145
Reuters2 3 1587 164 164
Arrhythmia 2 278 280 140
Internet Ads 2 1558 2200 800
Dexter 2 20000 300 300
Arcene 2 10000 100 100
12000 2 2000 40 22

Table 1: Description of datasets used.

higher s is, the more likely that features with redundant con-
tribution will be selected. Although s = 1 minimizes the
redundancy dependencies of the features, increasing s accel-
erates the algorithm’s convergence. The algorithm’s halting
criterion depends on A, which designates a trade-off between
the number of selected features, and the performance of the
classifier on the validation set. With the forward selection
version, choosing A = 0 means that CSA selects features as
long as there exists a feature that is likely to improve the clas-
sifier’s performance, and selects smaller sets of features as A
is increased. Increasing A has the opposite effect on the size
of the final set of features. The more intuitive halting crite-
rion, to stop when no further performance gain is achieved, is
too restrictive, while CSA’s halting criterion enables the se-
lection of features proved useful at later stages, as verified
empirically over several datasets.

3 Results

3.1 The Data and Benchmark Algorithms

To test CSA empirically we ran a number of experiments
on seven real-world datasets with number of features rang-
ing from 278 to 20,000 (Table 1): the Reutersl dataset and
the Reuters2 dataset both constructed following [Koller and
Sahami, 1996] using the Reuters-21578 document collection;
the Arrhythmia database from the UCI repository [Perkins
et al., 2003] ; the Internet Advertisements database from the
UCI repository [Blake and Merz, 1998] which was collected
for the research of identifying advertisements in web pages,
the Dexter text categorization dataset and the Arcene cancer
dataset, both from the NIPS 2003 workshop on feature selec-
tion [Guyon, 2003] and the 12000 microarray colon cancer
dataset [Alon et al., 1999].

In principle, CSA can work with any induction algorithm
L. However, due to computational constraints we focused
on fast induction algorithms or algorithms that may be ef-
ficiently combined into CSA. We experimented with Naive
Bayes, C4.5 and 1NN. For each of the datasets, we measured
the training set accuracy of each classifier using ten-fold cross
validation on the whole set features. For each dataset, all sub-
sequent work used the induction algorithm L, that gave the
highest cross validation accuracy, as detailed in Table 2.

Eight different feature selection schemes were then com-
pared on the datasets described above:

e The induction algorithm L without performing feature
selection to serve as a baseline.

e Regularized linear SVM using the SV M9 package
[Joachims, 1999]. Datasets that had more than two

Dataset L s(Fwd) [e(Bwd.) | d t
Reutersl NB 1 100 20 | 1500
Reuters2 NB 1 100 20 | 1800
Arrhythmia | C4.5 1 50 20 | 500
Internet Ads | INN 1 100 20 | 1500
Dexter C4.5 50 50 12 | 3500
Arcene C4.5 100 100 5 | 10000
12000 C4.5 100 100 3 2000

Table 2: The parameters and the classifi er used with the CSA al-
gorithm for each dataset. L isin the induction agorithm used with
CSA (NB being Naive Bayes), s is the number of features selected
in forward selection in each phaseg, e is the number of features elim-
inated in backward elimination in each phase, d is the permutation
size and ¢ is the number of permutations sampled to estimate the
contribution values. For an explanation how hyperparameters are
chosen, seetext.

classes were split into few binary classification prob-
lems.

e Filtering using mutual information and classification us-
ing L. We binned continuous domains to estimate the
mutual information.

e Filtering using the Pearson correlation coefficient and
classification using L.

e Random Forests feature selection [Breiman, 2001] and
classification using L.

o Feature selection using forward selection wrapper. Since
simple wrapper greedily selects a feature that most
improves the classifier’s validation performance, it is
equivalent to forward selection CSA with d = 1.

¢ Classification using L after performing feature selection
with forward selection CSA and parameters as described
in Table 2. The parameters d and ¢ were chosen such that
the expected number of times that each feature is sam-
pled is higher than 5. The contribution value threshold
for stopping selection was A = 0. termination of fea-
ture selection was fixed by choosing a contribution value
threshold A = 0. No hyperparameter selection was per-
formed on either d, t or A.

o Classification using L after performing feature selection
with backward elimination CSA and parameters as de-
scribed in Table 2. The parameters d and ¢ were chosen
such that the expected number of times that each fea-
ture is sampled is higher than 5. The contribution value
threshold for stopping elimination was A = 0. No hy-
perparameter selection was performed on either d, ¢ or
A

To avoid overfitting on the validation set used for calcu-
lating the payoff with CSA, we used m-fold cross validation
instead of a single Validation set.

3.2 Feature Selection and Classification Results

Table 3 summarizes the classifiers” performance on the test
set and the number of features selected in each of the ex-
periments. The accuracy levels are the fraction of correctly
classified test set instances:

The Reutersl dataset. Feature selection using Ran-
dom Forests did best, yielding accuracy level of 100%
with 30 features. Not too far behind is the CSA in its
backward elimination version (98.6% with 51 features).
[Koller and Sahami, 1996], for example, report that the
Markov Blanket algorithm yields approximately 600 se-
lected features with accuracy levels of 95% to 96% on

this dataset.
The Reuters? dataset. CSA with backward elimination

did best, yielding accuracy level of 93% with 109 fea-
tures. For comparison, [Koller and Sahami, 1996] re-
port that the Markov Blanket algorithm yields approx-
imately 600 selected features with accuracy levels of

89% to 93% on this dataset.
The Arrhythmia dataset. This dataset is considered to

be a difficult one. CSA with backward elimination did
best, yielding an accuracy level of 84% with 21 features.
Forward selection with higher depth value (d = 20) did
better than wrapper, implying that one should consider
many features concomitantly to perform good feature se-
lection for this dataset. For comparison, the grafting al-
gorithm [Perkins et al., 2003] yields an accuracy level

of approximately 75% on this dataset.]
The Internet Ads dataset. All the algorithms did approx-

imately the same, leading to accuracy levels between
94% and 96% with CSA slightly outperforming the oth-
ers. Interestingly enough, the wrapper algorithm did not
select any feature; in the first phase, the 1NN algorithm
had neighbors from both classes with the same distance
for each feature checked, leading to arbitrary selection
of one of the classes, and the classifier’s performance
was constant through all the phase, yielding zero contri-
bution values. However, when selecting the higher depth
levels, the simple 1NN algorithm was boosted up to out-

perform classifiers such as SVM.
The Dexter dataset. For the Dexter dataset, we used

algorithm L (C4.5 decision trees) only for the process
of feature selection, and Linear SVM to perform the
actual prediction on the features selected. This was
done because C4.5 did not give satisfying accuracy lev-
els for any of the feature selection algorithms, and it
is impractical to use SVM with CSA for large datasets.
To overcome the difference between the classifiers per-
forming feature selection and the classifier used for the
actual classification, we added an optimization phase
for the forward selection algorithm after it stopped. In
this phase, a ten-fold cross-validation is performed on
the dataset in a similar way to the one used to opti-
mize filter methods. The simple mutual information fea-
ture selection performed best, followed closely by the
Contribution-Selection algorithm in its backward elimi-
nation version and by Random Forests. This implies that
in Dexter the contribution of single features significantly
outweigh the contribution of feature combinations for
the task of classification. The forward selection algo-
rithm did as well as Linear SYM without feature selec-

tion, but with a significantly lower number of features.
The Arcene dataset. Here, just as in the case of Dexter,

we use C4.5for the process of feature selection, and Lin-
ear SVM to perform the actual prediction on the features

Dataset Wrapper Fwd. Bwd.
Reutersl 924 (7) 96.5 (10) 98.6 (51)
Reuters2 91.4 (5) 90.1(14) | 93.2(109)
Arrhythmia 70 (5) 74.2 (28) 84.2(21)
Internet Ads - 95.6 (8) 96.1 (158)
Dexter 80 (10) | 92.6 (100) | 93.3(717)
Arcene 58 (7) 81 (600) 86 (7200)
12000 86.3 (550) | 86.3 (500) | 90.9(1100)

No FS | SVM Corr. Ml RF
84.1 94.4 90.3 (20) 94.4 (20) 100 (30)
81.1 914 88.4 (20) 90.2 (5) 87.2 (21)
76.4 80 71.4 (20) 70 (20) 80 (40)
94.7 93.5 94.2 (15) 95.75(70) | 95.6 (10)
92.6 92.6 | 92.6 (1240) | 94(230) | 93.3(800)
83 83 | 83% (6600) | 81(5600) | 82 (6000)
86.3 72.7 | 81.8(260) | 90.9(1060) | 86.3 (100)

Table 3: Comparison of accuracy levels and number of features se-
lected in the different datasets. Upper table: Wrapper and Fwd/Bwd
(CSA with forward selection/backward elimination with parameters
from Table 2). Bottom table: No FS (no feature selection), SVM
(linear SVM without feature selection), Corr (feature selection using
Pearson correlation), MI (feature selection using mutual informa-
tion), RF (feature selection using Random Forests). Accuracy levels
are calculated by counting the number of misclassifi ed instances and
given in percentages. The number of features selected is given in
brackets.

selected. The CSA with backward elimination obtained

better performance than the rest of the algorithms.
e The 12000 dataset. CSA with backward elimination and

feature selection using mutual information yielded the
best results. The poor performance of CSA with forward
selection can be explained by the poverty of data com-
paring to the number of features; the algorithm selected
in the first phases features which explain well the train-
ing data by coincidence, and avoided from selecting fea-
tures that truly contribution to the task of classification.
This phenomenon is explained in portrait in Section 3.3.

In summary, in 5 out of the 7 datasets, CSA with backward
elimination achieved the best results. In all other cases, CSA
achieved the second best result.

3.3 A Closer Inspection of the Results

The MSA, intent on capturing correctly the contribution of
elements to a task, enables us to examine the distribution of
the contribution values of the features. Figure 2 depicts a
log-log plot of the distribution of the contribution values in
the first phase for Arrhythmia and Dexter, prior to making
any feature selection. This distribution follows a scale-free
power law, implying that large contribution values (in abso-
lute value) are very rare, while small ones are quite common,
justifying quantitatively the need of feature selection. The
other datasets were also observed to possess similar power
law characteristic.

The behavior of the algorithm through the process of fea-
ture selection/elimination is displayed in Figure 3; after the
forward selection algorithm identifies the significant features
in the first few phases, there is a sharp decrease in the contri-
bution values of the features selected in the following phases,

==+ Arrhythmia (slp=-1.21)
— Dexter (slp=—-1.20)
_1,
_2,
g
g3
3
o
1
-4t
kel
_5,
_6,
o]
-7
-5 -45 -4 -35 -3 -25 -2

log CV

Figure 2: Power-law distribution of contribution values. This log-
log plot of the distribution of the contribution val ues (absol ute value)
in the fi rst phase for Arrhythmia and Dexter, prior to making any
feature selection, demonstrates a power law behavior. The corre-
sponding plots for the other datasets show identical power-law char-
acteristics (though with different slopes), and were eliminated for
the sake of clarity.

while with backward elimination, there is a gradual and rather
stable increase in the contribution values of the eliminated
features. The peaks in the graph of the contribution values in
Figure 3A demonstrate that the contribution values do change
as the CSA iterates . In this case, the selection of a single fea-
ture considerably increased the contribution value of another
feature, pointing at intricate dependencies between features.

Figures 2 and 3 also assist in explaining why back-
ward elimination usually outperforms several feature selec-
tion methods, including forward selection; due to the high
dimensionality of the datasets, a feature that assists in pre-
diction merely by coincidence, may be selected, on the ac-
count of other truly informative features. Forward selection
is penalized severely in such case: among the few signifi-
cant features, some will not be chosen. However, backward
elimination always maintains the significant features in the
non eliminated set; a feature that truly enhances the classi-
fier’s generalization will do so for the validation set as well,
and will not be eliminated. This leads to a more stable gen-
eralization behavior for backward elimination on the test set
through the algorithm’s progress (Figure 3).

4 Final Notes

The Contribution-Selection algorithm presented in this paper
views the task of feature selection in the context of coali-
tional games. It uses a wrapper-like technique combined with
a novel ranking method which is based on the Shapley con-
tribution values of the features to the classification accuracy.
The CSA works in an iterative manner, each time selecting
new features (or eliminating them) while taking into account
the features that were selected (or eliminated) so far.

CSA, similarly to wrapper algorithms, is restricted in the
selection of the induction algorithm used for evaluating fea-
tures sets, due to time limitations. This problem can be
reduced by parallelizing, an advantage not shared by other

=
1

0.9+
P
’ 1
08F % e e,
ey - -~ LR \/-‘_‘.
07 N
n Bl
3 0.6 ,' \ Accuracy on Validation
= H == Accuracy on Test
g 0.5 ' ==-CVx10
5 [}
80.4F \
< [
0.3f \
) '\
0.2 F
’ [y 0
. LAY
0.1 tes 1y .
. L4 -~ -
......... 4 SaeNaeTs,
o .)) .)
0 5 10 15 20 25 30
(A) Number of Selected Features
10
UL
-
0.8r i ——— m,ﬁ‘,l
s '
o6k K
4
J .
> ’
© o4t)
.
3 02f Lot
Q Pid
< et
of L
% | Accuracy on Validation
02l +* |'== Accuracy on Test
- P - -+ Average CV x 100
_04)
50 100 150 200 250 300
(B) Number of Eliminated Features

Figure 3: Prediction accuracy and feature contribution during for-
ward selection (A) and backward elimination (B) for the Arrhythmia
dataset. Both fi gures show how the performance of the C4.5 classi-
fi er improves on the validation set as the algorithm selects (elim-
inates) new features, while the contribution values of the selected
features decrease (increase). The backward elimination generalizes
better on the test set through the algorithm’s progress. The behavior
for the other datasetsis similar.

wrapper algorithms which use search methods such as hill
climbing; At each phase the permutations can be computed in
parallel and upon completion combined to obtain an estimate
of contribution values. Furthermore, as the algorithm pro-
gresses, the number of candidate features for either selection
(forward selection) or elimination (backward elimination) de-
creases. Consequently, the number of permutations sampled
may be reduced, speeding up the algorithm significantly. The
restriction in selecting the learning algorithm for CSA does
not apply to the prediction once the features are selected. Af-
ter a set of features is found by the CSA, it may be used by
any induction algorithm as demonstrated in section 3.2 with
the Dexter and Arcene datasets.

We verified that the feature sets selected by CSA are sig-
nificantly different than those selected by filter methods, and
Random Forests. It turns out that the first “strong” features
are selected by most methods. But within few iterations, fil-
ters and CSA select entirely different features due to the fact
that the contribution values of the candidate features are mod-
ified, sometimes drastically, according to the already selected

features.

The CSA was tested on number of datasets, and the re-
sults show that the algorithm can improve the performance
of the classifier, and successfully compete with an existing
array of feature selection methods, especially in cases where
the features interact with each other; in such cases perform-
ing feature selection with a permutation size higher than one,
namely not using the common greedy wrapper approach, can
enhance the classifier’s performance significantly.

The results successfully demonstrate the value of applying
game theory concepts to feature selection. While the forward
selection version of the algorithm is competitive with other
feature selection methods, our experiments show that over-
all, the backward elimination version is superior to them, and
produces features sets which can be used to generate a highly
performing classifier.

References

[Alonetal., 1999] U. Alon, N. Barkai, D. A. Notterman,
K. Gish, S. Ybarra, D. Mack, and A. J. Levine. Broad
patterns of gene expression revealed by clustering of tu-
mor and normal colon tissues probed by oligonucleotide
arrays. Proc. Natl. Acad. Sci., 96:6745-6750, 1999.

[Blake and Merz, 1998] C.L. Blake and C.J. Merz.
UCI repository of machine learning databases.
http://www.ics.uci.edu/~mlearn/MLRepository.html,
1998. University of California, Irvine, Dept. of Informa-
tion and Computer Sciences.

[Breiman, 2001] L. Breiman.
Learning, 45(1):5-32, 2001.

[Guyon, 2003] 1. Guyon. Design of experiments for the
NIPS 2003 variable selection benchmark. NIPS 2003
workshop on feature extraction and feature selection,
2003.

[Joachims, 1999] T. Joachims. Making large-scale SVM
learning practical. Advancesin Kernel Methods - Support
Vector Learning, B. Schikopf and C. Burges and A. Smola
(ed.), MIT-Press, 1999.

[Keinan et al., 2004] A. Keinan, B. Sandbank, C. Hilgetag,
I. Meilijson, and E. Ruppin. Fair attribution of functional
contribution in artificial and biological networks. Neural
Computation, 16(9), 2004.

[Koller and Sahami, 1996] D. Koller and M. Sahami. To-
ward optimal feature selection. Proceedings of the 13th In-
ternational Conference on Machine Learning (ML), pages
284-292, 1996.

[Perkins et al., 2003] S. Perkins, K. Lacker, and J. Theiler.
Grafting: Fast, incremental feature selection by gradient
descent in function space. Journal of Machine Learning
Research, 3:1333-1356, 2003.

[Shapley, 1953] L. S. Shapley. A value for n-person games.
In H. W. Kuhn and A. W. Tucker, editors, Contributionsto
the Theory of Games, volume Il of Annals of Mathemat-
ics Sudies 28, pages 307-317. Princeton University Press,
Princeton, 1953.

Random forests. Machine

