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Abstract

Belief change is concerned with modelling the way
in which a rational reasoner maintains its beliefs as
it acquires new information. Of particular interest
is the way in which new beliefs are acquired and de-
termined and old beliefs are retained or discarded.
A parallel can be drawn to symbolic machine learn-
ing approaches where examples to be categorised
are presented to the learning system and a theory
is subsequently derived, usually over a number of
iterations. It is therefore not surprising that the
term ‘theory revisionis used to describe this pro-
cess[Ourston and Mooney, 1994Viewing a ma-
chine learning system as a rational reasoner allows
us to begin seeing these seemingly disparate mech-
anisms in a similar light.

In this paper we are concerned with characterising
the well knowninverse resolutiomperation$Mug-
gleton, 1987; 199P(and more recentlynverse en-
tailment[Muggleton, 1995 as AGM-style belief
change operations. In particular, our account is
based on the abductive expansion operakRag-
nuccoet al, 1994; Pagnucco, 199@&nd charac-
terised by using the notion of epistemic entrench-
ment [Gardenfors and Makinson, 1988xtended
for this operation. This work provides a basis for
reconciling work in symbolic machine learning and
belief revision. Moreover, it allows machine learn-
ing techniques to be understood as forms of non-
monotonic reasoning.

Sydney, NSW, 2052, Australia.
Email: daver@cse.unsw.edu.au

In this paper we investigate inductive logic programming
as a form of belief change. In particular, we consider
how the inverse resolution operators introduced by Mug-
gleton [Muggleton, 1987; Muggleton and Buntine, 1988;
Muggleton, 1992 can be re-constructed as belief change op-
erators. Our strategy is to view the machine learning pces
as one in which the agent’s belief corpus represents its cur-
rent theory. Examples are considered consecutively as new
information that causes the agent to revise its belief corpu
according to one of the operations. This is essentially fhe a
proach adopted in theory revision.

Since the inductive process that inverse resolution isgyyi
to capture is an unsound form of logical inference (i.e., the
conclusions do natecessarilyfollow from the premises) we
require a form of belief change that allows for this type of in
ference. Unfortunately, the AGM operators for belief chang
do not cater for this inferential process. The problem stems
from the fact that the inductive process requires the rezrson
to formulate and accept hypotheses; hypotheses that go be-
yond the content carried by the new information (examples)
and current belief corpus. As a result we use the notiabef
ductive expansiomtroduced by Pagnucd®agnuccet al.,
1994; Pagnucco, 1996&nd formulate the required conditions
to be satisfied by the epistemic entrenchment relation iarord
for the inverse resolution operators to be carried out.

The aim of this paper is to take a step towards rec-
onciling the areas of symbolic machine learning and be-
lief change. To that end, we show how the various in-
verse resolution operations—absorption, identificatioter-
construction, intra-construction and truncation—can be
viewed as AGM-style belief change operations. In particu-
lar, we show how the inverse resolution operations can be

The study of belief change is concerned with how a rationaFaptured as forms of abductive expansion by providing the
reasoner maintains its beliefs in the face of new infornmatio required restrictions on the epistemic entrenchment ietat
As this new information is acquired it must be assimilated [N the next section we briefly survey AGM belief change,
into the reasoner's stock of beliefs. This requires that deabductive expansion and the inverse resolution operatiors.
cisions be made as to which beliefs are retained, which ar&ection 2 we provide the necessary conditions for each in-
abandoned and which are incorporated by the reasoner. Ngrse resolution operation. Our approach is discussedan Se
this paper we shall consider belief change that adheregto ttion 3 and suggestions for future work provided in Section 4.
popular AGM[Gardenfors, 1988aradigm.

Symbolic machine learning deals with the generalisationofl ~ Background
data for the purpose of classification and categorisati@neH We consider an underlying classical propositional logithwi
we find the closely related notion tifeory revisiofOurston  a propositional languagé, over a set of atoms, or proposi-
and Mooney, 199 It too can be viewed as a form of belief tional lettersP = {a, b, c, ...}, and truth-functional connec-
change; one in which the aim is to assimilate the new infortives—, A, v, —, and«. £ also includes the truth-functional
mation by generalising the reasoner’s belief corpus. constants” and_L. The closure operatdrn denotes classical



propositional consequence. We use the thetief seto refer It can be shown that the operation of abductive expansien sat
to a set of formulas closed undén (i.e., K = Cn(K)). K isfies the following rationality postulates:
represents the set of all belief sets. The distinguishedeié ;
K| € K denotes the inconsistent belief set. (K1) ?gaag)i/ss:rgt;?;@s:?d any belief sek,
We shall also adopt the following linguistic conventions K®2) If ~6 ¢ K, thens € K @ ¢
to simplify the presentation. Lower case Greek character ®3) K CK ®’¢
o, ¥, x, -..will represent arbitrary logical formulas. Lower (K4) If :gb € K, thenK @ ¢ = K
case Roman characteérs!, ... will denote propositional lit- (K®5) If ~¢ ¢ K then—¢ & K @ &
erals. Upper case Roman charactdtsB, C, ... denote (Ka6) If K - ¢ o b, thenK @ ¢ = K @ 1)

propositional Horn <_:I_aus|_es ((IJIisjunctions of literals eomt (KeT) K @ ¢ C Cn(K & (¢ V) U {¢})
ing at most one positive literal). (Kp8) If ~¢p ¢ K@ (¢ V), thenK & (¢ V1)) C K @ ¢

1.1 Belief Qhange ) ~Postulate (kb1) maintains the expanded belief corpus as a
The mostly widely accepted approach to belief change is thgelief set. (Kp2) states that the new information should be
one proposed by Alchourron, Gardenfors and Makirlgdn  included in the expanded belief state provided that it is-con
chourronet al, 1985; Gardenfors, 1988; Hansson, 1P99 sjstent with the original corpus while (3) requires that the
This approach is motivated by the concern to charactesiise expanded corpus be at least as large as the original. When the
tional belief chang(_a operators. _That is, operations of beliehew information is inconsistent with the corpus &K) pre-
change that are guided by principles of rationality. The AGMyents change. Postulate ) ensures that the corpus does
approach introduces three belief change operatiexpan-  not expand into inconsistency. (¥6) states that the expan-
sion (+), contraction(—), andrevision(x). Expansion deals sjon process is syntax insensitive. These postulates suffic
with the addition of new information without retraction of-e  to characterise abductive expansion as defined above. Often
isting beliefs; contraction takes care of the removal oféfel  postulates (K>7) and (K®8) are added and restrict the mech-
and, revision deals with the addition of beliefs with thegios  anism that selects hypotheses to one that satisfies trtysiti
bility of retracting current be_llefs in order to maintainnsis- An elegant way of constructing an abductive expansion op-
tency. Each of these operations takes a belief set repregent eration is by providing an ordering epistemic entrenchment
the reasoner’s original belief corpus and a sentence repes gyer the sentences in the language that indicates theisiplau
ing the new information, returning the modified belief capu  pility or importance. For AGM operations, entrenchment or-
(+,—* : K x L — K). The belief change operations are ders the beliefs while the non-beliefs are relegated tageth
characterised by rationality postulates and various ¢o@st  the least important sentences. For abductive expansion how
tions. The interested reader is referred@ardenfors, 1988;  ever, we need to be able to discriminate between potential
Hansson, 1999%or further details. hypotheses and so the traditional epistemic entrenchntent o
In this paper we are concerned with the process of belieflering is modified so that beliefs are lumped together as the
expansion as this is the typical setting under which inversenost important while the non-beliefs are ordered by impor-

resolution is applied. This should not be seen as a signiftance in what we term aabductive entrenchment ordering
icant restriction because belief revision proper can be ob-

: o : : Definition 1.2 An ordering < over £ is an abductive en-
tained by combining contraction and expansion. However U e
AGM exgansion is 8ery limited in scopeP It can be Showntr_e_nchment prderlng iff it satisfies (SEE1)~(SEES) and con-
that AGM expansion corresponds to closure under logical deg't'on (AE4):
duction: K+¢ = Cn(KU{¢}). Whatwe requireisaformof (SEE1) Foranyp, ¢, x € L, if ¢ <1 andy < x theng < x
belief change that elaborates upon the newly acquired-infolSEE2) For anyp, ¢ € L, if {¢} - ¢ theng < ¢
mation. Such an operation has been introduced by Pagnuc¢S8EE3) Forany, ¢ € L,p < pAporyp < A
[Pagnucco, 1996n the form of an operation calleabductive  (AE4) WhenkK # K|, ¢ € Kiff¢p < ¢forallyp € L
expansion(® : K x £ — K). This operation looks to amplify
the newly acquired information by trying to find an explana-This ordering is a total preorder (SEE1)—(SEE3) in which the
tion for it (via abduction) and is reminiscent of the way that beliefs are maximally entrenched (AE4); it effectivenks
inverse entailment is defindtluggleton, 1992 Formally, the reasoner’s non-beliefs.

abductive expansion may be defined as follows: The following properties of abductive epistemic entrench-
Definition 1.1 K @ ¢ is an abductive expansion & with ment will be useful in proving the results in this paper.
respect top iff Lemma 1.1 Suppose< satisfies (SEE1)—(SEE3), tHen
Cn(K U{y}) forsomey € £ such that: 1. Forall¢ € L eitherg < ¢ or ¢ <+ forall 4 € L.
Kod= S?f%%}f le 2. Forallgp € £,{t: ¢ <y} = Cn({v: ¢ <9})
K if no suchy exists 3. ¢ A =min(,9)

. . . . 4. ¢V > max(o,v)
That is, when confronted with new informatigrthe reasoner

seeks an hypothesisthat explainsy with respect to its cur- !Note thatg < ¢ iff ¢ < ¢ andy £ ¢ andg = ¢ iff ¢ < o
rent beliefs and incorporates this explanation into itpasr  andy < 4.



The first property states that for every sentenceither¢  V-Operators
or ¢ (possibly both) is minimally entrenched. The secondpreviously, a single resolution step was presented in tefms
property notes that taking all sentences more entrenclaed th a “v”-shaped diagram. The two V-operators can derive one of
a certain rank gives a deductively closed set of sentendes. T the clauses at the top of the V given the other clause at the top
third property indicates that a conjunction is entrenchtél@  of the V and the clause at the bottom of the V. Hixsorption
same level as the minimum of the conjuncts while the fourthroperator deriveg’, givenC; andC while theidentification
property states that a disjun(_:ti_on is at least as entrenafed operator derive§’; givenC, andC.
the maximally entrenched disjunct. These are well known Since the new clause is constructed by finding the inverse
properties of orderings satisfying conditions (SEE1)-HSE  of a resolved product, the notion of a resolved quofieht”
whlc_h are termeackxpectation Ofdenngby Gardenfors and  and C, is defined[Muggleton and Buntine, 198&sC, =
Makinson[Géardenfors and Makinson, 1994 C/Cy. Rearranging equation (1) for resolution can obtain
PagnuccdPagnucco, 1996gives a condition that allows ¢, — (C'\ (Cy \ {I}))U{~} under the following assumption
us to determine an abductive expansion functien for a  [Muggleton and Buntine, 1988

g?(;g(r:ilélgieplstemm statE given an abductive entrenchment « Separability Assumptioa- ClausesC; \ {I} andCy \
(CEB_). b e K e b iff cither v € K or {~l} contain no common literals.
both ¢ & K and ¢ — —p < ¢ — 1 This assumption also simplifies the calculation of resolved

We omit the subscrip& unless necessary. This condition quotients (i.e., absorptions or identifications).

states that we can accept senteice the abductively ex-  w-Operators
panded belief state whenever it is believed in the origioal ¢ Joining two resolution “V"s we obtain a form analogous to

pus or when) is more plausible given than— given¢. that for the V-operatorBMuggleton and Buntine, 1938
1.2 Inverse Resolution Cy A Cy
Resolution is a valid inference procedure which deduces a \/\/

clauseC from two clause<”; andC,. Given a clause&’;

containing a literal and a clausé€’; containing the literahl, B B,

the resolvent of”; andCsy, denoted” = C1.C4, is . . . . .
Ly andC; @'=C1.Cr In this situation a common literd) contained inA4, resolves

C=(C\{l}H)u(Ca\{~t}) 1) with clausesC; andC; to produceB; and B,;. ClausesB;

This process may be visualised in the following diagramandB, represent the new information and clauses’; and
[Muggleton and Buntine, 1988 C, the constructed clauses. Interestingly, sihezresolved
Ql Cy away, the constructed clausds C; and Cs will contain a

> literal whose propositional symbol does not appear in eithe
\/ By or Bs. If [ occurs negative i then the operator is re-
ferred to adntra-constructionand if it occurs positive ilA
C the operator is callethter-construction

Inverse resolution (and more recently, inverse entailinent

on the other hand, is a machine learning technique based upJﬁuncat'on , .
the following characterisation of inductive infereniddug- Thetruncationoperator results from the special case where
gleton, 1987; 1980 Given a partial domain theoily and a the empty C_Iause occurs at Fhe base of a V or W sqhemata.
positive exampleZ that is not a consequence of the domain!n & propositional system, this corresponds to dropping neg
theory (C I/ E) we attempt to determine a new domain theoryative literals f_rom a clause. In the flr_st—order case Muggle-
I”, usingl and £, that will account for the exampl@( - £)  ton and BuntindMuggleton and Buntine, 193&how that
and the original domain theory'( - T). If we think of I as two Ilterals_may be trunpated by taking thelr least-general
T'U I wherel represents the result of inverse resolution, ther@€neralisation. Rouveriol and Pud&ouveirol and Puget,
the relationship with abduction should become much cleared99d generalise this to a truncation operator which replaces
In practice, the domain theory and example are usually reprd€'ms by variables and drops literals from clauses.
sented as Horn clauses. This technique is based on inverting!n the case of a propositional language, a number of
the resolution process and consists of five operators: two \¢hema may be used to compute the required inverse resolu-
operators, two W-operators and the truncation operator.  tion. These are displayed in Table 1 (4dkuggleton, 1987;
So as not to countenance invalid inference, the notion of aA989).* In each instance, the top line represents the ini-
oracleis adopted. An oracle is an entity that accepts a clausdial clauses and the bottom line represents the constructed
constructed using one of the inverse resolution operaitors, clause(s). We shall use these directly in our approach te cha
it is valid in the intended model. In our framework abduc- acterise the inverse resolution operators as belief chapge
tive entrenchment is used to discriminate between potentigrators (abductive belief expansion operators in fact).

hypotheses and takes the place of the oracle. Absorption is considered here. Identification is similar.

2The plus §) (respectively minus-{)) sign in the diagram de- *We adopt a slight renaming of the terms to those presented in
notes that the literal resolved upon appears positive éasely [Muggleton, 1989, having found them more amenable to study. In
negative) in that clause. the case of absorption and identification, the first clauséhertop



Name

Rule

Absorption
Identification
Inter-Construction
Intra-Construction

Truncation

A—k, ANB—j

BAk—j

BAk—j, ANAB—j

A—k
AANB—j, ANC—k

BAl—j, CANl—k, A—l
AANB—j, ANC—j

ANl—j, B—l, C—l
AANB—j

A—j

What we require here is a restriction on abductive entrench-

ment that, givenA — k£ € K, guarantees this condition.
Consider the following restriction:

(Abs) L<BAk—j

It states that the sentené& A k — j is not minimally en-
trenched (by Lemma 1.1(1), is minimally entrenched). In
other words, when an examplé A B — j is presented,
any hypothesis of the forn A k& — j that is not mini-
mally entrenched and wheré — £ is believed, will be ac-

cepted. Now, by Lemma 1.1, conditi¢Abs)is equivalent to
-(B Ak — j) < BAk — jwhich says that this hypothesis
is preferred to its negation. The following theorem indésat
the appropriateness of this condition.

Theorem 2.1 Given a belief sef # K, a sentencedl —

2 Approach
Our aim here is to render the individual inverse resolutionk € K and an abductive epistemic entrenchment relation

operations as belief change operators. In particular, \a# sh Satlsféll?g(/lbs),. the aclj)_d_ucuve exp_ansmrr]l operator Olb'
give conditions on the abductive epistemic entrenchment th {@inéd from< via condition(C'®) gives the same result as
will guarantee that the results of an inverse resolutiorr-ope Absorption (i,e.BAk — je€ K@ (AAB — j)).
ation are included in the revised (or, more precisely, abducProof: Now (4 — k) A (BAk — j) = AANB — jso
tively expanded) belief corpus. (A= E)A(BAKk — j) < ANB — j by (SEE2). But
To make this more precise, we take the reasoner’s belieP Ak — j < A — k by (AE4). It follows by Lemma 1.1(3)
corpusK and an example as the newly acquired informa- thatB Ak — j = AN B — j. Furthermorg B A k —
tion. We want to construct abductive expansion operations)\(AAB — j) = BAk — j. Butby(Abs) L < (BAk —
@ for each of the five inverse resolution operations such that) A (A A B — j). Therefore=((BAk — j) A(AAB —
K & ¢ represents the result of applying that particular inverse/)) = L by Lemma1.1(1)and so((BAk — j)A(AAB —
resolution operation on the given example and elementseof thj)) < B A k — j. It follows by Lemma 1.1(4)-((B A k —
current belief corpus. This construction is achieved byespe J) A(AAB — j)) < =(AAB — j)V(BAK — j). Hence
ifying a condition(s) on abductive entrenchment that, wherPy logical equivalencgA A B — j) — ~(BAk — j) <
added to conditions (SEE1)—(SEE3) and (AE4), guaranteesd A B — j) — (B Ak — j) as required. 0
the result of the inverse resolution operation. Now it may seem strange that conditiodbs) does not
As noted above, abductive entrenchment encodes th@ention the new examplé A B — j. By Lemma 1.1(2) it
‘choices’ that are made by the oracle. In other words, encan be shown that whenever — k € K, it is always the
trenchment will be used to determine which potential hy-case thaBAk — j < AAB — j. Thatis, the new example
potheses are accepted and which are rejected. Furtherimore¢annot be less entrenched than any potential hypothesis.
may be the case that in expanding the reasoner’s belief sorpu However, we might re-consider the typical Absorption case
in this way, more than one potential hypothesis is acceted f @nd look at what happens when we assumedhal3 — j €
a given example. This could be easily restricted to one hy- & andA — k is the new example. In this case we require
pothesis by imposing additional restrictions on the emtnen ~ condition(Abs) together with the following condition:
ment ordering however, intuitively, this seems procrustea (Abs’) BAk—j<A—Ek
Multiple generalisations allow for a more flexible characte Tne following result indicates this formally:
isation of the inverse resolution process. Finally notd tha
we will only be concerned with examples (new information)
that are presented as Horn clauses in keeping with the way i
which inverse resolution is traditionally realised.

Table 1: Propositional inverse resolution operafors.

Theorem 2.2 Given a belief sefiX # K|, a sentenced A

— j € K and an abductive epistemic entrenchment rela-
ion < satisfying(Abs) and (Abs’), the abductive expansion
operator®< obtained from< via condition(C'®) gives the

2.1 Absorption same result as Absorption (i.&B3Ak — j € K& (A — k)).

The typical case for Absorption occurs when— k is be- 2.2 Identification

lieved andA A B — j is presented as an example (newly The typical case for Identification occurs whéA k —
acquired |nformat|pn). The Absorption operator looks for ajs pelieved andi A B — j is presented as the new example.
sentence A k — j to add to the current theory in this case. |dentification returnst — k to be added to the belief corpus.
By (C®), the condition we need to guarantee is therefore:  The condition that we need to guarantee is(OY):

(AAB — j) — =(BAk — j) < (AAB — j) — (BAk — j) (AAB—j)—-(A—k)<(AANB—j)— (A—k)
U . . . Analogously to Absorption we require the following re-
line of the schemata is taken from the domain theory whilest®  gtriction on entrenchment to guarantee this condition.
ond represents the new data.

(Ident) 1l<A—k

SHere A, B, C represent conjunctions of atoms while k, [
represent atoms. It states that any potential hypothedis— k£ is not minimally



entrenched and by Lemma 1.1 is equivalent to saying thatang.4  Intra-Construction
potential hypothesis be preferred to its negation. Thisltes |y |ntra-construction, again without loss of generalitye w
is stated formally in the following theorem: may assume thal A B — j € K andA A C — j is the
Theorem 2.3 Given a belief setK # K,, a sentence new example. In this case, f{'®), we need to guarantee
B Ak — j € K and an abductive epistemic entrenchmentthe following three conditions:
relation < satisfying(Zdent), the abductive expansion oper- . . . .
ator @< obtained from< via condition(C'®) gives the same (ANC = j) = ~(ANL = j) < (ANC — j) = (AN = j)
result as Identification (i.ed — k€ K ® (AA B — j)). (ANC —j) = =(B—=1)<(ANC —j)— (B =)
The proof follows a similar idea to that for Absorption and (ANC = j) = =(C = 1) < (ANC — j) — (C — 1)
so, due to lack of space, we omit it here. ] ) ) ] )

Again, if we re-consider Identification and suppose thathgain, the_deswed result is ac_h|_eved by ensuring that néne o
AAB — j e K while BAL — jis the new example, then the potential hypotheses is minimally entrenched.

we also require the following condition on entrenchment:  (Intra) L<(ANl—=HANB-=)AN(C—=I)
(Ident’) A—-k<BAk—}j The following theorem shows that this condition is correct.
. Theorem 2.5 Given a belief setX’ # K, a sentence
2.3 Inter-Construction AN B — j € K and an abductive epistemic entrenchment

In the case of Inter-Construction there is only ever one ttase relation < satisfying(/ntra), the abductive expansion oper-
consider because, without loss of generality, we may assunegtor ¢« obtained from< via condition(C®) gives the same
that sentenced A B — j is believed andd A C — k is result as Intra-construction (leA Al — j, B — I, C —
presented as the new example. In this case three new clauges K & (A A C — j)).

are derivedB Al — j,C Al — k,andA — [) and we need )

to guarantee three conditions which are,(byp): 2.5 Truncation

; ; For truncation, there are no requirements on the original be
A k =(BAl A k BAI . y : .
(ANC = k) = ~(BAL = j) < (ANC = k) = (BAL = j) lief corpus and all we assume is th&tA B — j is the new

(ANC — k) — =(CANl — k) < (ANC — k) — (CANl — k) information. Truncation generalises this by addihg- j to
(ANC = k) = (A= 1) < (ANC = k) — (A=) the belief corpus. The condition we need guarantee is:

Giventhatd A B — j € K, the condition we require is: (ANB—j)— (A—j)<(AANB —j)— (A—3j)

(Inter) L <(BAL=j)ACAL—k)A(A=]) This can be achieved by the following condition stating that
This condition can be read in a number of ways. Literally it 4 — j is not minimally entrenched.

says, in analogy t6Abs) and(Ident), that the conjunction of (Trunc) L <A

the potential hypotheses is not minimally entrenched. How- i o J .

ever, by Lemma 1.1(3), this also means that each of the inI he following theorem indicates that this is correct.

dividual hypotheses themselves is not minimally entredche Theorem 2.6 Given a belief sef # K, and an abduc-
and so by Lemma 1.1(1) that they are each preferred to thetive epistemic entrenchment relatieh satisfying (7runc),
negations. We now obtain the following result. the abductive expansion operater< obtained from< via

Theorem 2.4 Given a belief setk # K, a sentence condition (C®) gives the same result as Truncation (i.e.,
AAB — j € K and an abductive epistemic entrenchmentd — j € K & (AA B — j)).

relation < satisfying(Inter), the abductive expansion oper- ) )

ator @< obtained fromx via condition(C®) gives the same 3  Discussion

result as Inter-construction (i.eBAl — j, CAl =k, A= The idea of using a form of belief expansion capable of in-
le K& (ANC — k). troducing new hypotheses has also been suggested by Levi
In inverse resolution, the literdlin the sentences above is [Levi, 1991 who introduces an operation known daliber-
newly introduced. It represents a concept that was not pteseate expansionWhile his method of determining and select-
in the original theory. The term9fedicate inventiohor ing hypotheses differs from ours, the notion that belief ex-
‘constructive inductionare often used to describe what the pansion should allow for the addition of sentences that do no
W-operators are achieving by introducing a new element intamecessarily follow from the new information and the belief
the object language. Current theories of belief change @lo n@orpus is the same. The level to which the reasoner wishes
allow for the expansion of the object language so we assumi® accept such hypotheses will be determined by their aver-
that the language is suitably equipped with a supply of proposion to courting erroneous beliefs and this is reflected én th
sitions that can be used to create literals likere. Of course, abductive entrenchment ordering in our framework. Such er-
I will be present in any belief set; tautologies like-~ [ are  rors, when realised later, may of course be fixed by subse-
present in every belief set. However, we can require addiquent revision. We follow Levi'€ommensurability thesis
tional conditions likel ¢ K if we want to ensure thatis  maintaining that any form of belief revision can be obtained
newly generated. This is not an ideal solution as one is difvia a sequence of (abductive) expansions and contractions.
ficult to derive using belief sets but should go some way to Forms of symbolic machine learning such as inverse res-
achieving the desired results. olution are often equated witimductiveinference (or what



might be termedénumerative induction[Harman, 1968. learning and the heuristics and metrics applied there to se-
However, here we have preferred the notion of abductive infect hypotheses for generalisation. Extending this wotkiéo
ference. There has been a substantial amount of debate in tfiest-order case and investigating forms of iterated (abidel
artificial intelligence community as to what constituteduo-  belief change are also interesting and important poss#sili

tion and abduction and whether they are essentially the sa

form of inference. We do not address this at any great Iengﬂ?eferen,ces . .

here. LeviLevi, 1991 adopts Peirce’s later ideas on this sub-[Alchourronet al, 1989 C. E. Alchourron, P. Gardenfors,
ject where abduction is concerned with formulating potnti ~ and D. Makinson. On the logic of theory change: Par-
hypotheses and induction selects the best of these. Abducti  tial meet contraction and revision functiondournal of
entrenchment to a large extent serves both purposes here.  Symbolic Logic50:510-530, 1985.

One issue that is not strictly addressed by the inverse re§Gardenfors and Makinson, 198®.  Gardenfors  and
olution operators but is important in the wider literature 0~ D. Makinson. Revisions of knowledge systems using
symbolic machine learning is that of positive and negative €pistemic entrenchment. [Rroc. 2nd Conf. on Theor.
examples. Clearly our framework and the inverse resolution Aspects of Reasoning About Knppages 83-96, 1988.
operators deal quite well with positive examples. When it(Gardenfors and Makinson, 199#.  Gardenfors  and
comes to negative examples this issue is not so clear. On the D. Makinson. Nonmonotonic inference based on
one hand new information likep can be dealt with quite expectationsAtrtificial Intelligence 65:197-245, 1994.
easily. However, negative information of the fokng K, [Gardenfors, 1998P. GardenforsKnowledge in Flux: Mod-
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