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Abstract

Belief change is concerned with modelling the way
in which a rational reasoner maintains its beliefs as
it acquires new information. Of particular interest
is the way in which new beliefs are acquired and de-
termined and old beliefs are retained or discarded.
A parallel can be drawn to symbolic machine learn-
ing approaches where examples to be categorised
are presented to the learning system and a theory
is subsequently derived, usually over a number of
iterations. It is therefore not surprising that the
term ‘theory revision’ is used to describe this pro-
cess[Ourston and Mooney, 1994]. Viewing a ma-
chine learning system as a rational reasoner allows
us to begin seeing these seemingly disparate mech-
anisms in a similar light.

In this paper we are concerned with characterising
the well knowninverse resolutionoperations[Mug-
gleton, 1987; 1992] (and more recently,inverse en-
tailment [Muggleton, 1995]) as AGM-style belief
change operations. In particular, our account is
based on the abductive expansion operation[Pag-
nuccoet al., 1994; Pagnucco, 1996] and charac-
terised by using the notion of epistemic entrench-
ment [Gärdenfors and Makinson, 1988] extended
for this operation. This work provides a basis for
reconciling work in symbolic machine learning and
belief revision. Moreover, it allows machine learn-
ing techniques to be understood as forms of non-
monotonic reasoning.

The study of belief change is concerned with how a rational
reasoner maintains its beliefs in the face of new information.
As this new information is acquired it must be assimilated
into the reasoner’s stock of beliefs. This requires that de-
cisions be made as to which beliefs are retained, which are
abandoned and which are incorporated by the reasoner. In
this paper we shall consider belief change that adheres to the
popular AGM[Gärdenfors, 1988] paradigm.

Symbolic machine learning deals with the generalisation of
data for the purpose of classification and categorisation. Here
we find the closely related notion oftheory revision[Ourston
and Mooney, 1994]. It too can be viewed as a form of belief
change; one in which the aim is to assimilate the new infor-
mation by generalising the reasoner’s belief corpus.

In this paper we investigate inductive logic programming
as a form of belief change. In particular, we consider
how the inverse resolution operators introduced by Mug-
gleton [Muggleton, 1987; Muggleton and Buntine, 1988;
Muggleton, 1992] can be re-constructed as belief change op-
erators. Our strategy is to view the machine learning process
as one in which the agent’s belief corpus represents its cur-
rent theory. Examples are considered consecutively as new
information that causes the agent to revise its belief corpus
according to one of the operations. This is essentially the ap-
proach adopted in theory revision.

Since the inductive process that inverse resolution is trying
to capture is an unsound form of logical inference (i.e., the
conclusions do notnecessarilyfollow from the premises) we
require a form of belief change that allows for this type of in-
ference. Unfortunately, the AGM operators for belief change
do not cater for this inferential process. The problem stems
from the fact that the inductive process requires the reasoner
to formulate and accept hypotheses; hypotheses that go be-
yond the content carried by the new information (examples)
and current belief corpus. As a result we use the notion ofab-
ductive expansionintroduced by Pagnucco[Pagnuccoet al.,
1994; Pagnucco, 1996] and formulate the required conditions
to be satisfied by the epistemic entrenchment relation in order
for the inverse resolution operators to be carried out.

The aim of this paper is to take a step towards rec-
onciling the areas of symbolic machine learning and be-
lief change. To that end, we show how the various in-
verse resolution operations—absorption, identification,inter-
construction, intra-construction and truncation—can be
viewed as AGM-style belief change operations. In particu-
lar, we show how the inverse resolution operations can be
captured as forms of abductive expansion by providing the
required restrictions on the epistemic entrenchment relation.

In the next section we briefly survey AGM belief change,
abductive expansion and the inverse resolution operators.In
Section 2 we provide the necessary conditions for each in-
verse resolution operation. Our approach is discussed in Sec-
tion 3 and suggestions for future work provided in Section 4.

1 Background
We consider an underlying classical propositional logic with
a propositional languageL, over a set of atoms, or proposi-
tional letters,P = {a, b, c, . . .}, and truth-functional connec-
tives¬, ∧, ∨, →, and↔. L also includes the truth-functional
constants⊤ and⊥. The closure operatorCn denotes classical



propositional consequence. We use the termbelief setto refer
to a set of formulas closed underCn (i.e.,K = Cn(K)). K
represents the set of all belief sets. The distinguished element
K⊥ ∈ K denotes the inconsistent belief set.

We shall also adopt the following linguistic conventions
to simplify the presentation. Lower case Greek characters
φ, ψ, χ, . . . will represent arbitrary logical formulas. Lower
case Roman charactersk, l, . . . will denote propositional lit-
erals. Upper case Roman charactersA, B, C, . . . denote
propositional Horn clauses (disjunctions of literals contain-
ing at most one positive literal).

1.1 Belief Change
The mostly widely accepted approach to belief change is the
one proposed by Alchourrón, Gärdenfors and Makinson[Al-
chourrónet al., 1985; Gärdenfors, 1988; Hansson, 1999].
This approach is motivated by the concern to characterisera-
tional belief change operators. That is, operations of belief
change that are guided by principles of rationality. The AGM
approach introduces three belief change operations:expan-
sion (+), contraction(−), andrevision(∗). Expansion deals
with the addition of new information without retraction of ex-
isting beliefs; contraction takes care of the removal of belief;
and, revision deals with the addition of beliefs with the possi-
bility of retracting current beliefs in order to maintain consis-
tency. Each of these operations takes a belief set representing
the reasoner’s original belief corpus and a sentence represent-
ing the new information, returning the modified belief corpus:
(+,−, ∗ : K × L → K). The belief change operations are
characterised by rationality postulates and various construc-
tions. The interested reader is referred to[Gärdenfors, 1988;
Hansson, 1999] for further details.

In this paper we are concerned with the process of belief
expansion as this is the typical setting under which inverse
resolution is applied. This should not be seen as a signif-
icant restriction because belief revision proper can be ob-
tained by combining contraction and expansion. However,
AGM expansion is very limited in scope. It can be shown
that AGM expansion corresponds to closure under logical de-
duction:K+φ = Cn(K∪{φ}). What we require is a form of
belief change that elaborates upon the newly acquired infor-
mation. Such an operation has been introduced by Pagnucco
[Pagnucco, 1996] in the form of an operation calledabductive
expansion(⊕ : K×L → K). This operation looks to amplify
the newly acquired information by trying to find an explana-
tion for it (via abduction) and is reminiscent of the way that
inverse entailment is defined[Muggleton, 1992]. Formally,
abductive expansion may be defined as follows:

Definition 1.1 K ⊕ φ is an abductive expansion ofK with
respect toφ iff

K ⊕ φ =











Cn(K ∪ {ψ}) for someψ ∈ L such that:
(i) K ∪ {ψ} ⊢ φ
(ii) K ∪ {ψ} 6⊢ ⊥

K if no suchψ exists

That is, when confronted with new informationφ the reasoner
seeks an hypothesisψ that explainsφ with respect to its cur-
rent beliefs and incorporates this explanation into its corpus.

It can be shown that the operation of abductive expansion sat-
isfies the following rationality postulates:

(K⊕1) For any sentenceφ and any belief setK,
K ⊕ φ is a belief set

(K⊕2) If ¬φ 6∈ K, thenφ ∈ K ⊕ φ
(K⊕3) K ⊆ K ⊕ φ
(K⊕4) If ¬φ ∈ K, thenK ⊕ φ = K
(K⊕5) If ¬φ 6∈ K, then¬φ 6∈ K ⊕ φ
(K⊕6) If K ⊢ φ↔ ψ, thenK ⊕ φ = K ⊕ ψ
(K⊕7) K ⊕ φ ⊆ Cn(K ⊕ (φ ∨ ψ) ∪ {φ})
(K⊕8) If ¬φ 6∈ K ⊕ (φ ∨ ψ), thenK ⊕ (φ ∨ ψ) ⊆ K ⊕ φ

Postulate (K⊕1) maintains the expanded belief corpus as a
belief set. (K⊕2) states that the new information should be
included in the expanded belief state provided that it is con-
sistent with the original corpus while (K⊕3) requires that the
expanded corpus be at least as large as the original. When the
new information is inconsistent with the corpus, (K⊕4) pre-
vents change. Postulate (K⊕5) ensures that the corpus does
not expand into inconsistency. (K⊕6) states that the expan-
sion process is syntax insensitive. These postulates suffice
to characterise abductive expansion as defined above. Often
postulates (K⊕7) and (K⊕8) are added and restrict the mech-
anism that selects hypotheses to one that satisfies transitivity.

An elegant way of constructing an abductive expansion op-
eration is by providing an ordering ofepistemic entrenchment
over the sentences in the language that indicates their plausi-
bility or importance. For AGM operations, entrenchment or-
ders the beliefs while the non-beliefs are relegated together as
the least important sentences. For abductive expansion how-
ever, we need to be able to discriminate between potential
hypotheses and so the traditional epistemic entrenchment or-
dering is modified so that beliefs are lumped together as the
most important while the non-beliefs are ordered by impor-
tance in what we term anabductive entrenchment ordering.

Definition 1.2 An ordering≤ over L is an abductive en-
trenchment ordering iff it satisfies (SEE1)–(SEE3) and con-
dition (AE4):

(SEE1) For anyφ, ψ, χ ∈ L, if φ ≤ ψ andψ ≤ χ thenφ ≤ χ
(SEE2) For anyφ, ψ ∈ L, if {φ} ⊢ ψ thenφ ≤ ψ
(SEE3) For anyφ, ψ ∈ L, φ ≤ φ ∧ ψ or ψ ≤ φ ∧ ψ
(AE4) WhenK 6= K⊥, φ ∈ K iff ψ ≤ φ for all ψ ∈ L

This ordering is a total preorder (SEE1)–(SEE3) in which the
beliefs are maximally entrenched (AE4); it effectivelyranks
the reasoner’s non-beliefs.

The following properties of abductive epistemic entrench-
ment will be useful in proving the results in this paper.

Lemma 1.1 Suppose≤ satisfies (SEE1)–(SEE3), then1

1. For all φ ∈ L eitherφ ≤ ψ or ¬φ ≤ ψ for all ψ ∈ L.

2. For all φ ∈ L, {ψ : φ ≤ ψ} = Cn({ψ : φ ≤ ψ})

3. φ ∧ ψ = min(φ, ψ)

4. φ ∨ ψ ≥ max(φ, ψ)

1Note thatφ < ψ iff φ ≤ ψ andψ 6≤ ψ andφ = ψ iff φ ≤ ψ
andψ ≤ ψ.



The first property states that for every sentenceφ, eitherφ
or ¬φ (possibly both) is minimally entrenched. The second
property notes that taking all sentences more entrenched than
a certain rank gives a deductively closed set of sentences. The
third property indicates that a conjunction is entrenched at the
same level as the minimum of the conjuncts while the fourth
property states that a disjunction is at least as entrenchedas
the maximally entrenched disjunct. These are well known
properties of orderings satisfying conditions (SEE1)–(SEE3)
which are termedexpectation orderingsby Gärdenfors and
Makinson[Gärdenfors and Makinson, 1994].

Pagnucco[Pagnucco, 1996] gives a condition that allows
us to determine an abductive expansion function⊕≤ for a
particular epistemic stateK given an abductive entrenchment
ordering≤.

(C⊕) ψ ∈ K ⊕≤ φ iff either ψ ∈ K or
both ¬φ 6∈ K and φ→ ¬ψ < φ→ ψ

We omit the subscript≤ unless necessary. This condition
states that we can accept sentenceψ in the abductively ex-
panded belief state whenever it is believed in the original cor-
pus or whenψ is more plausible givenφ than¬ψ givenφ.

1.2 Inverse Resolution
Resolution is a valid inference procedure which deduces a
clauseC from two clausesC1 andC2. Given a clauseC1

containing a literall and a clauseC2 containing the literal¬l,
the resolvent ofC1 andC2, denotedC = C1.C2, is

C = (C1 \ {l}) ∪ (C2 \ {¬l}) (1)
This process may be visualised in the following diagram
[Muggleton and Buntine, 1988]:2

C1 C2+ −

@
@@�

��

C

Inverse resolution (and more recently, inverse entailment),
on the other hand, is a machine learning technique based upon
the following characterisation of inductive inference[Mug-
gleton, 1987; 1989]. Given a partial domain theoryΓ and a
positive exampleE that is not a consequence of the domain
theory (Γ 6⊢ E) we attempt to determine a new domain theory
Γ′, usingΓ andE, that will account for the example (Γ′ ⊢ E)
and the original domain theory (Γ′ ⊢ Γ). If we think of Γ′ as
Γ∪ I whereI represents the result of inverse resolution, then
the relationship with abduction should become much clearer.
In practice, the domain theory and example are usually repre-
sented as Horn clauses. This technique is based on inverting
the resolution process and consists of five operators: two V-
operators, two W-operators and the truncation operator.

So as not to countenance invalid inference, the notion of an
oracleis adopted. An oracle is an entity that accepts a clause,
constructed using one of the inverse resolution operators,if
it is valid in the intended model. In our framework abduc-
tive entrenchment is used to discriminate between potential
hypotheses and takes the place of the oracle.

2The plus (+) (respectively minus (−)) sign in the diagram de-
notes that the literal resolved upon appears positive (respectively
negative) in that clause.

V-Operators
Previously, a single resolution step was presented in termsof
a “V”-shaped diagram. The two V-operators can derive one of
the clauses at the top of the V given the other clause at the top
of the V and the clause at the bottom of the V. Theabsorption
operator derivesC2 givenC1 andC while the identification
operator derivesC1 givenC2 andC.

Since the new clause is constructed by finding the inverse
of a resolved product, the notion of a resolved quotient3 of C
andC1 is defined[Muggleton and Buntine, 1988] asC2 =
C/C1. Rearranging equation (1) for resolution can obtain
C2 = (C \(C1\{l}))∪{¬l} under the following assumption
[Muggleton and Buntine, 1988]:

• Separability Assumption— ClausesC1 \ {l} andC2 \
{¬l} contain no common literals.

This assumption also simplifies the calculation of resolved
quotients (i.e., absorptions or identifications).

W-Operators
Joining two resolution “V”s we obtain a form analogous to
that for the V-operators[Muggleton and Buntine, 1988]:

@
@@�

��
C1 A C2

@
@@�

��

B2B1

In this situation a common literall, contained inA, resolves
with clausesC1 andC2 to produceB1 andB2. ClausesB1

andB2 represent the new information and clausesA, C1 and
C2 the constructed clauses. Interestingly, sincel is resolved
away, the constructed clausesA, C1 andC2 will contain a
literal whose propositional symbol does not appear in either
B1 or B2. If l occurs negative inA then the operator is re-
ferred to asintra-constructionand if it occurs positive inA
the operator is calledinter-construction.

Truncation
The truncationoperator results from the special case where
the empty clause occurs at the base of a V or W schemata.
In a propositional system, this corresponds to dropping neg-
ative literals from a clause. In the first-order case Muggle-
ton and Buntine[Muggleton and Buntine, 1988] show that
two literals may be truncated by taking their least-general-
generalisation. Rouveriol and Puget[Rouveirol and Puget,
1990] generalise this to a truncation operator which replaces
terms by variables and drops literals from clauses.

In the case of a propositional language, a number of
schema may be used to compute the required inverse resolu-
tion. These are displayed in Table 1 (see[Muggleton, 1987;
1989]).4 In each instance, the top line represents the ini-
tial clauses and the bottom line represents the constructed
clause(s). We shall use these directly in our approach to char-
acterise the inverse resolution operators as belief changeop-
erators (abductive belief expansion operators in fact).

3Absorption is considered here. Identification is similar.
4We adopt a slight renaming of the terms to those presented in

[Muggleton, 1989], having found them more amenable to study. In
the case of absorption and identification, the first clause onthe top



Name Rule

Absorption A→k, A∧B→j
B∧k→j

Identification B∧k→j, A∧B→j
A→k

Inter-Construction A∧B→j, A∧C→k
B∧l→j, C∧l→k, A→l

Intra-Construction A∧B→j, A∧C→j
A∧l→j, B→l, C→l

Truncation A∧B→j
A→j

Table 1: Propositional inverse resolution operators.5

2 Approach
Our aim here is to render the individual inverse resolution
operations as belief change operators. In particular, we shall
give conditions on the abductive epistemic entrenchment that
will guarantee that the results of an inverse resolution oper-
ation are included in the revised (or, more precisely, abduc-
tively expanded) belief corpus.

To make this more precise, we take the reasoner’s belief
corpusK and an exampleφ as the newly acquired informa-
tion. We want to construct abductive expansion operations
⊕ for each of the five inverse resolution operations such that
K⊕φ represents the result of applying that particular inverse
resolution operation on the given example and elements of the
current belief corpus. This construction is achieved by spec-
ifying a condition(s) on abductive entrenchment that, when
added to conditions (SEE1)–(SEE3) and (AE4), guarantees
the result of the inverse resolution operation.

As noted above, abductive entrenchment encodes the
‘choices’ that are made by the oracle. In other words, en-
trenchment will be used to determine which potential hy-
potheses are accepted and which are rejected. Furthermore,it
may be the case that in expanding the reasoner’s belief corpus
in this way, more than one potential hypothesis is accepted for
a given exampleφ. This could be easily restricted to one hy-
pothesis by imposing additional restrictions on the entrench-
ment ordering however, intuitively, this seems procrustean.
Multiple generalisations allow for a more flexible character-
isation of the inverse resolution process. Finally note that
we will only be concerned with examples (new information)
that are presented as Horn clauses in keeping with the way in
which inverse resolution is traditionally realised.

2.1 Absorption
The typical case for Absorption occurs whenA → k is be-
lieved andA ∧ B → j is presented as an example (newly
acquired information). The Absorption operator looks for a
sentenceB ∧ k → j to add to the current theory in this case.
By (C⊕), the condition we need to guarantee is therefore:

(A∧B → j) → ¬(B∧k → j) < (A∧B → j) → (B∧k → j)

line of the schemata is taken from the domain theory while thesec-
ond represents the new data.

5HereA, B, C represent conjunctions of atoms whilej, k, l
represent atoms.

What we require here is a restriction on abductive entrench-
ment that, givenA → k ∈ K, guarantees this condition.
Consider the following restriction:
(Abs) ⊥ < B ∧ k → j

It states that the sentenceB ∧ k → j is not minimally en-
trenched (by Lemma 1.1(1),⊥ is minimally entrenched). In
other words, when an exampleA ∧ B → j is presented,
any hypothesis of the formB ∧ k → j that is not mini-
mally entrenched and whereA → k is believed, will be ac-
cepted. Now, by Lemma 1.1, condition(Abs)is equivalent to
¬(B ∧ k → j) < B ∧ k → j which says that this hypothesis
is preferred to its negation. The following theorem indicates
the appropriateness of this condition.

Theorem 2.1 Given a belief setK 6= K⊥, a sentenceA →
k ∈ K and an abductive epistemic entrenchment relation≤
satisfying(Abs), the abductive expansion operator⊕≤ ob-
tained from≤ via condition(C⊕) gives the same result as
Absorption (i.e.,B ∧ k → j ∈ K ⊕ (A ∧B → j)).

Proof: Now (A → k) ∧ (B ∧ k → j) ⊢ A ∧ B → j so
(A → k) ∧ (B ∧ k → j) ≤ A ∧ B → j by (SEE2). But
B ∧ k → j ≤ A→ k by (AE4). It follows by Lemma 1.1(3)
thatB ∧ k → j = A ∧ B → j. Furthermore(B ∧ k →
j)∧(A∧B → j) = B∧k → j. But by(Abs) ⊥ < (B∧k →
j) ∧ (A ∧ B → j). Therefore¬((B ∧ k → j) ∧ (A ∧ B →
j)) = ⊥ by Lemma 1.1(1) and so¬((B∧k → j)∧(A∧B →
j)) < B ∧ k → j. It follows by Lemma 1.1(4)¬((B ∧ k →
j)∧ (A∧B → j)) < ¬(A∧B → j)∨ (B ∧K → j). Hence
by logical equivalence(A ∧ B → j) → ¬(B ∧ k → j) <
(A ∧B → j) → (B ∧ k → j) as required. 2

Now it may seem strange that condition(Abs) does not
mention the new exampleA ∧ B → j. By Lemma 1.1(2) it
can be shown that wheneverA → k ∈ K, it is always the
case thatB∧k → j ≤ A∧B → j. That is, the new example
cannot be less entrenched than any potential hypothesis.

However, we might re-consider the typical Absorption case
and look at what happens when we assume thatA∧B → j ∈
K andA → k is the new example. In this case we require
condition(Abs) together with the following condition:
(Abs′) B ∧ k → j ≤ A→ k

The following result indicates this formally:

Theorem 2.2 Given a belief setK 6= K⊥, a sentenceA ∧
B → j ∈ K and an abductive epistemic entrenchment rela-
tion ≤ satisfying(Abs) and(Abs′), the abductive expansion
operator⊕≤ obtained from≤ via condition(C⊕) gives the
same result as Absorption (i.e.,B ∧k → j ∈ K⊕ (A→ k)).

2.2 Identification
The typical case for Identification occurs whenB ∧ k → j
is believed andA ∧B → j is presented as the new example.
Identification returnsA→ k to be added to the belief corpus.
The condition that we need to guarantee is, by(C⊕):

(A ∧B → j) → ¬(A→ k) < (A ∧B → j) → (A→ k)

Analogously to Absorption we require the following re-
striction on entrenchment to guarantee this condition.
(Ident) ⊥ < A→ k

It states that any potential hypothesisA→ k is not minimally



entrenched and by Lemma 1.1 is equivalent to saying that any
potential hypothesis be preferred to its negation. This result
is stated formally in the following theorem:

Theorem 2.3 Given a belief setK 6= K⊥, a sentence
B ∧ k → j ∈ K and an abductive epistemic entrenchment
relation≤ satisfying(Ident), the abductive expansion oper-
ator⊕≤ obtained from≤ via condition(C⊕) gives the same
result as Identification (i.e.,A→ k ∈ K ⊕ (A ∧B → j)).

The proof follows a similar idea to that for Absorption and
so, due to lack of space, we omit it here.

Again, if we re-consider Identification and suppose that
A ∧ B → j ∈ K whileB ∧ k → j is the new example, then
we also require the following condition on entrenchment:
(Ident′) A→ k ≤ B ∧ k → j

2.3 Inter-Construction
In the case of Inter-Construction there is only ever one caseto
consider because, without loss of generality, we may assume
that sentenceA ∧ B → j is believed andA ∧ C → k is
presented as the new example. In this case three new clauses
are derived (B ∧ l → j, C ∧ l → k, andA→ l) and we need
to guarantee three conditions which are, by(C⊕):

(A∧C → k) → ¬(B∧l → j) < (A∧C → k) → (B∧l → j)

(A∧C → k) → ¬(C∧l → k) < (A∧C → k) → (C∧l → k)

(A ∧C → k) → ¬(A→ l) < (A ∧C → k) → (A→ l)

Given thatA ∧B → j ∈ K, the condition we require is:
(Inter) ⊥ < (B ∧ l → j) ∧ (C ∧ l → k) ∧ (A→ l)

This condition can be read in a number of ways. Literally it
says, in analogy to(Abs) and(Ident), that the conjunction of
the potential hypotheses is not minimally entrenched. How-
ever, by Lemma 1.1(3), this also means that each of the in-
dividual hypotheses themselves is not minimally entrenched
and so by Lemma 1.1(1) that they are each preferred to their
negations. We now obtain the following result.

Theorem 2.4 Given a belief setK 6= K⊥, a sentence
A ∧ B → j ∈ K and an abductive epistemic entrenchment
relation≤ satisfying(Inter), the abductive expansion oper-
ator⊕≤ obtained from≤ via condition(C⊕) gives the same
result as Inter-construction (i.e.,B∧ l → j, C∧ l → k, A→
l ∈ K ⊕ (A ∧ C → k)).

In inverse resolution, the literall in the sentences above is
newly introduced. It represents a concept that was not present
in the original theory. The terms ‘predicate invention’ or
‘constructive induction’ are often used to describe what the
W-operators are achieving by introducing a new element into
the object language. Current theories of belief change do not
allow for the expansion of the object language so we assume
that the language is suitably equipped with a supply of propo-
sitions that can be used to create literals likel here. Of course,
l will be present in any belief set; tautologies likel → l are
present in every belief set. However, we can require addi-
tional conditions likel 6∈ K if we want to ensure thatl is
newly generated. This is not an ideal solution as one is dif-
ficult to derive using belief sets but should go some way to
achieving the desired results.

2.4 Intra-Construction
In Intra-construction, again without loss of generality, we
may assume thatA ∧ B → j ∈ K andA ∧ C → j is the
new example. In this case, by(C⊕), we need to guarantee
the following three conditions:

(A∧C → j) → ¬(A∧l → j) < (A∧C → j) → (A∧l → j)

(A ∧C → j) → ¬(B → l) < (A ∧C → j) → (B → l)

(A ∧ C → j) → ¬(C → l) < (A ∧C → j) → (C → l)

Again, the desired result is achieved by ensuring that none of
the potential hypotheses is minimally entrenched.
(Intra) ⊥ < (A ∧ l → j) ∧ (B → l) ∧ (C → l)

The following theorem shows that this condition is correct.

Theorem 2.5 Given a belief setK 6= K⊥, a sentence
A ∧ B → j ∈ K and an abductive epistemic entrenchment
relation≤ satisfying(Intra), the abductive expansion oper-
ator⊕≤ obtained from≤ via condition(C⊕) gives the same
result as Intra-construction (i.e.,A ∧ l → j, B → l, C →
l ∈ K ⊕ (A ∧ C → j)).

2.5 Truncation
For truncation, there are no requirements on the original be-
lief corpus and all we assume is thatA ∧ B → j is the new
information. Truncation generalises this by addingA → j to
the belief corpus. The condition we need guarantee is:

(A ∧B → j) → ¬(A→ j) < (A ∧B → j) → (A→ j)

This can be achieved by the following condition stating that
A→ j is not minimally entrenched.
(Trunc) ⊥ < A→ j

The following theorem indicates that this is correct.

Theorem 2.6 Given a belief setK 6= K⊥ and an abduc-
tive epistemic entrenchment relation≤ satisfying(Trunc),
the abductive expansion operator⊕≤ obtained from≤ via
condition (C⊕) gives the same result as Truncation (i.e.,
A→ j ∈ K ⊕ (A ∧B → j)).

3 Discussion
The idea of using a form of belief expansion capable of in-
troducing new hypotheses has also been suggested by Levi
[Levi, 1991] who introduces an operation known asdeliber-
ate expansion. While his method of determining and select-
ing hypotheses differs from ours, the notion that belief ex-
pansion should allow for the addition of sentences that do not
necessarily follow from the new information and the belief
corpus is the same. The level to which the reasoner wishes
to accept such hypotheses will be determined by their aver-
sion to courting erroneous beliefs and this is reflected in the
abductive entrenchment ordering in our framework. Such er-
rors, when realised later, may of course be fixed by subse-
quent revision. We follow Levi’scommensurability thesisin
maintaining that any form of belief revision can be obtained
via a sequence of (abductive) expansions and contractions.

Forms of symbolic machine learning such as inverse res-
olution are often equated withinductive inference (or what



might be termed ‘enumerative induction’ [Harman, 1968]).
However, here we have preferred the notion of abductive in-
ference. There has been a substantial amount of debate in the
artificial intelligence community as to what constitutes induc-
tion and abduction and whether they are essentially the same
form of inference. We do not address this at any great length
here. Levi[Levi, 1991] adopts Peirce’s later ideas on this sub-
ject where abduction is concerned with formulating potential
hypotheses and induction selects the best of these. Abductive
entrenchment to a large extent serves both purposes here.

One issue that is not strictly addressed by the inverse res-
olution operators but is important in the wider literature on
symbolic machine learning is that of positive and negative
examples. Clearly our framework and the inverse resolution
operators deal quite well with positive examples. When it
comes to negative examples this issue is not so clear. On the
one hand new information like¬φ can be dealt with quite
easily. However, negative information of the formφ 6∈ K,
cannot be dealt with adequately here. It is possible to place
restrictions on the entrenchment relation that will not permit
φ to be believed but it is not clear how this information should
be presented. On first sight it would appear that this is more
an issue for iterated revision.

4 Conclusions and Future Work
In this paper we have developed an account of how the ma-
chine learning technique of inverse resolution, can be viewed
as a form of belief change. In particular, we have given re-
strictions on epistemic entrenchment that will guarantee that
the resulting belief change operations behave exactly in the
manner of the inverse resolution operations. This is the first
step in unifying the study of machine learning and belief
change and has important repercussions for the links between
machine learning and nonmonotonic reasoning.

This paper opens many avenues for future research in a
number of interesting directions. Firstly, the development of
belief change postulates that characterise the various inverse
resolution operators. Such rationality conditions would allow
another way of comparing these operations with belief revi-
sion. Perhaps more importantly, at this point it would be rela-
tively straightforward to characterise each of the inverseres-
olution operators as a nonmonotonic consequence relation in
the way of Kraus, Lehman and Magidor[Krauset al., 1990]
allowing comparison with another large body of research.

In this work we have been able to capture each of the in-
verse resolution operators as a belief change operation. Given
an example, we need to state which operation to apply in or-
der to generalise the reasoner’s beliefs. A more general form
of this theory would not require that the operation be stated
but that a single belief change operation represent all inverse
resolution operations and that it determine which are applied
when new information is given. It is not clear however, how
feasible such asuper-selectingbelief change operation is.

One important principle that guides belief change is that of
minimal change; the reasoner’s belief corpus should be mod-
ified minimally to accept the new information. It would be
interesting to see how this notion in belief change is mani-
fested in work on inverse resolution and symbolic machine

learning and the heuristics and metrics applied there to se-
lect hypotheses for generalisation. Extending this work tothe
first-order case and investigating forms of iterated (abductive)
belief change are also interesting and important possibilities.
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