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Abstract

Brain-computer interfaces, as any other interaction
modality based on physiological signals and body
channels (e.g., muscular activity, speech and ges-
tures), are prone to errors in the recognition of sub-
ject’s intent. In this paper we exploit a unique fea-
ture of the “brain channel”, namely that it carries
information about cognitive states that are crucial
for a purposeful interaction. One of these states
is the awareness of erroneous responses. Different
physiological studies have shown the presence of
error-related potentials (ErrP) in the EEG recorded
right after people get aware they have made an er-
ror. However, for human-computer interaction, the
central question is whether ErrP are also elicited
when the error is made by the interface during the
recognition of the subject’s intent and no longer by
errors of the subject himself. In this paper we re-
port experimental results with three volunteer sub-
jects during a simple human-robot interaction (i.e.,
bringing the robot to either the left or right side of a
room) that seem to reveal a new kind of ErrP, which
is satisfactorily recognized in single trials. These
recognition rates significantly improve the perfor-
mance of the brain interface.

1 Introduction
A brain-computer interface (BCI) is a system that translates
the intention of a subject, as represented by his brain waves
(typically, electroencephalogram signals), into a control sig-
nal without using activity of any muscles or peripheral nerves
[Millán, 2002; Wolpaw et al., 2002]. Electroencephalogram
(EEG) is recorded non-invasively by means of electrodes
placed on the scalp. Then some features are extracted from
the EEG and sent to a classifier, whose response is trans-
lated into some action thus making possible mental control
of different devices. For instance, recent studies have shown
that after a few days of training, subjects are able to con-
trol a miniature robot in an indoor environment with several
rooms, corridors and doorways only using the signals de-
rived from an EEG-based BCI [Millán et al., 2003]. This
same system could be used to drive a wheelchair so that a

subject suffering from severe motor disabilities, but with in-
tact cognitive capabilities, could greatly gain in autonomy.
Other applications, such a virtual keyboard, could more gen-
erally provide an alternative way of communication with the
outside world [Birbaumer et al., 1999; Wolpaw et al., 2003;
Millán et al., 2004].

Nevertheless, BCIs—as any other interaction modality
based on physiological signals and body channels (e.g., mus-
cular activity, speech and gestures)—are prone to errors in the
recognition of subject’s intent, and those errors can be fre-
quent. Indeed, even well-trained subjects rarely reach 100%
of success. A possible way to reduce errors consists in a ver-
ification procedure whereby each output consists of two op-
posite trials, and success is required on both to validate the
outcome [Wolpaw et al., 1998]. Even if this method greatly
reduces the errors, it requires much more mental effort from
the subject and reduces the communication rate.

In contrast to other interaction modalities, a unique fea-
ture of the “brain channel” is that it conveys both informa-
tion from which we can derive mental control commands to
operate a brain-actuated device as well as information about
cognitive states that are crucial for a purposeful interaction,
all this on the millisecond range. One of these states is the
awareness of erroneous responses, which a number of groups
have recently started to explore as a way to improve the per-
formance of BCIs [Schalk et al., 2000; Blankertz et al., 2003;
Parra et al., 2003]. Since the late 1980s, different physiolog-
ical studies have shown the presence of error-related poten-
tials (ErrP) in the EEG recorded right after people get aware
they have made an error [Carter et al., 1998; Falkenstein et
al., 2000; Holroyd and Coles, 2002]. Nevertheless, most of
these studies show the presence of ErrP in typical choice re-
action tasks [Carter et al., 1998; Falkenstein et al., 2000;
Blankertz et al., 2003; Parra et al., 2003]. In this kind of tasks,
the subject is asked to respond as quickly as possible to a
stimulus and ErrP (sometimes referred to as “response ErrP”)
arise following errors due to the subject’s incorrect motor ac-
tion (e.g., the subject pressed a key with the left hand when he
should have responded with the right hand). More recently,
other studies have also shown the presence of ErrP in typi-
cal reinforcement learning tasks where the subject is asked to
make a choice and ErrP (sometimes referred to as “feedback
ErrP”) arise following the presentation of a stimulus that in-
dicate incorrect performance [Holroyd and Coles, 2002]. In



Figure 1: Exploiting error-related potentials (ErrP) in a brain-controlled mobile robot. The subject receives visual feedback indicating the
output of the classifier before the actual execution of the associated command (e.g., “TURN LEFT”). If the feedback generates an ErrP (left),
this command is simply ignored and the robot will stay executing the previous command. Otherwise, the command is sent to the robot (right).

both cases, response ErrP and feedback ErrP, it has been ob-
served a negative potential in the EEG with a fronto-central
scalp distribution (see Figure 3) whenever subjects make er-
rors. This negative potential is most probably generated in
a brain area called anterior cingulate cortex, which is crucial
for regulating emotional responses.

An important aspect of the two described ErrP is that they
always follow an error made by the subject himself. First the
subject make a selection, and then ErrP arise either simply
after the occurrence of an error (choice reaction task) or after
a feedback indicating the error (reinforcement learning task).
However, in the context of a BCI, or human-computer inter-
action in general, the central question is:

“Are ErrP also elicited when the error is made by the inter-
face during the recognition of the subject’s intent?”

In order to consider the full implications of this question,
let’s imagine that the subject’s intent is to make a robot reach
a target to the left. What would happen if the interface fails to
recognize the intended command and the robot starts turning
in the wrong direction? Are ErrP still present even though
the subject did not make any error but only perceive that the
interface is performing wrongly?

The objective of this paper is to investigate how ErrP could
be used to improve the performance of a BCI. Thus, we will
first explore whether or not ErrP also follow a feedback in-
dicating incorrect responses of the interface and no longer
errors of the subject himself. If ErrP are also elicited in this
case, then we could integrate them in a BCI in the following
way as shown in Figure 1: after translating the subject’s in-
tention into a control command, the BCI provides a feedback
of that command, which will be actually executed only if no
ErrP follows the feedback. This should greatly increase the
reliability of the BCI as we will see later. Of course, this new
interaction protocol depends on the ability to detect ErrP no
longer in averages of a large number of trials [Schalk et al.,
2000], but in each single trial using a short window following
the feedback that shows the response of the classifier embed-
ded in the BCI.

In this paper we report experimental results with three vol-
unteer subjects during a simple human-robot interaction (i.e.,
bringing the robot to either the left or right side of a room)

that seem to reveal a new kind of ErrP, which is satisfactorily
recognized in single trials. These recognition rates signifi-
cantly improve the performance of the interface.

2 Experimental Setup
To test the presence of ErrP after a feedback indicating errors
made by the interface in the recognition of the subject’s in-
tent, we have simulated a real interaction with a robot, where
the subject wishes to bring the robot to one side of a room
(left or right) by delivering repetitive commands until the ro-
bot reaches the target. This virtual interaction is implemented
by means of two horizontal progress bars made of 10 steps
each. One of the bars goes from the center of the screen to
the left side (left bar), and the other bar progresses to the right
side (right bar). Figure 2 shows the left and right horizontal
progress bars used as feedback.

To isolate the issue of the recognition of ErrP out of the
more difficult and general problem of a whole BCI where er-
roneous feedback can be due to non-optimal performance of
both the interface (i.e., the classifier embedded into the inter-
face) and the user himself, in the following experiments the
subject delivers commands manually and not mentally. That
is, he simply presses a left or right key with the left or right
hand. In this way, any error feedback is only due to a wrong
recognition of the interface of which is the subject’s intention.

Three volunteer healthy subjects participated in these ex-
periments. The subject sends a command after a stimulus de-
livered by the system (the word “GO” appears in the screen).
The system filled the bars with an error rate of 20%; i.e., at
each step, there was a 20% probability that the robot made a
movement in the wrong direction. Subjects performed 10 se-
ries of 5 progress bars, the delay between 2 consecutive steps
(2 consecutive “GO” from the system) was of 3-4 seconds
(random delay to prevent habituation). Duration of each in-
teraction experiment (i.e., filling a progress bar) was about 40
seconds, with breaks of 5-10 minutes between two series but
no break between interaction experiments of the same series.

EEG potentials were acquired with a portable system
(Biosemi ActiveTwo) by means of a cap with 32 integrated
electrodes covering the whole scalp and located according to



Figure 2: Left and right horizontal progress bars. The goal of an interaction experiment is to fill one of the bars, which simulates a real
interaction with a robot that needs to reach one side of a room (left or right). The system fills the bars with an error rate of 20%; i.e., at each
step, there was a 20% probability that the robot made a movement in the wrong direction.

the standard 10/20 International system. The sampling rate
was 512 Hz and signals were measured at full DC. Raw EEG
potentials were first spatially filtered by subtracting from each
electrode the average potential (over the 32 channels) at each
time step. The aim of this re-referencing procedure is to sup-
press the average brain activity, which can be seen as underly-
ing background activity, so as to keep the information coming
from local sources below each electrodes. Then, we applied
a 1-10 Hz bandpass filter as ErrP are known to be a relatively
slow cortical potential. Finally, EEG signals were subsam-
pled from 512 Hz to 128 Hz (i.e., we took one point out of
4) before classification, which was entirely based on tempo-
ral features. Indeed the actual input vector for the statistical
classifier described below is a 1/2-second window starting
150 ms after the feedback and ending 650 ms after the feed-
back for channels Cz and Fz. The choice of these channels
follows the fact that ErrP are characterized by a fronto-central
distribution along the midline (see Figure 3). Thus the dimen-
sionality of the input vector is 128; i.e., concatenation of two
windows of 64 points (EEG potentials) each.

No artifact rejection algorithm (for removing or filtering
out eye or muscular movements) was applied and all trials
were kept for analysis. It is worth noting, however, that after
a visual a-posteriori check of the trials we found no evidence
of muscular artifacts that could have contaminated one con-
dition differently from the other.

3 Statistical Classifier
The different classes are recognized by a Gaussian classifier
trained to classify single trials as “correct” or “error”. The
output of this statistical classifier is an estimation of the pos-
terior class probability distribution for a single trial; i.e., the
probability that a given single trial belongs to class “correct”
or class “error”. The present classifier is quite similar to that
proposed by Millán et al. [2004] in the framework of EEG-
based BCIs, the main difference being the update rules.

In this statistical classifier, every Gaussian unit represents
a prototype of one of the classes to be recognized. We use
several prototypes per mental task. We assume that the class-
conditional probability density function of class Ck is a su-
perposition of Nk Gaussians (or prototypes) and that classes
have equal prior probabilities. In our case, all the classes have
the same number of prototypes Np. In addition, we assume
that all prototypes have an equal weight of 1/Np. Then, drop-
ping constant terms, the activity ai

k of the ith prototype of the
class Ck for the input vector, or sample, x derived from a trial
as described above is

ai
k(x)= |Σk|−1/2exp

(
−1/2

(
x−µi

k

)T
Σ−1

k

(
x−µi

k

))
(1)

where µi
k is the center of the ith prototype of the class Ck,

Σk is the covariance matrix of the class Ck, and |Σk| is the
determinant of that matrix. Usually, each prototype has its
own covariance matrix Σi

k. In order to reduce the number
of parameters, we restrict our model to a diagonal covariance
matrix Σk that is common to all the prototypes of the class
Ck. Now, the posterior probability yk of the class Ck is

yk(x) = p(x|Ck) =
ak(x)
A(x)

=
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where ak is the activity of class Ck and A is the total activity
of the network. The response of the classifier for the input
vector x is simply the class with the highest probability.

To initialize the center of the prototypes, µi
k, of the class

Ck we run a clustering algorithm—typically, self-organizing
maps [Kohonen, 1997]. We then initialize the diagonal co-
variance matrix Σk of the class Ck by setting

Σk =
1
|Sk|

∑

x∈Sk

(
x− µi∗

k

) (
x− µi∗

k

)T
(3)

where Sk is the set of the training samples belonging to the
class Ck, |Sk| is the cardinality of this set, and i∗ is the nearest
prototype of this class to the sample x.

During learning we improve these initial estimations iter-
atively by stochastic gradient descent so as to minimize the
mean square error E = 1/2

∑
k (yk − tk)2, where tk is the

kth component of the target vector in the form 1-of-c; e.g.,
the target vector for class “error” is coded as (0, 1). Taking
the gradient of the error function yields

∆µi
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∂E
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k
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)
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and
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k
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)2

(
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where α and β are the learning rates and ek(x) =
(tk(x)−yk(x))−∑

jyj(x)(tj(x)−yj(x)). After updating µi
k

and Σi
k for each training sample, the covariance matrices of

all the prototypes of the same class are averaged to obtain the
common class covariance matrix Σk. This simple operation
leads to better performance than if separate covariance ma-
trices are kept for each individual prototype. It is also worth
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Figure 3: Left. Average EEG for error, correct and difference error-minus-correct at channel Cz for the three subjects plus the grand average
of them. Feedback is delivered at time 0 seconds. The negative (Ne) and positive (Pe) peaks show up about 270 ms and between 350 and 450
ms after the feedback, respectively. Right. Scalp potentials topographies, for the grand average EEG of the three subjects, at the occurrence
of the Ne and the Pe. Small filled circles indicate positions of the electrodes (frontal on top), Cz being in the middle of the scalp.

noting that, due to the small number of training samples for
the “error” class, it is sometimes preferible to have a single
covariance matrix common to all classes, which is obtained
by averaging all the individual Σk.

4 Experimental Results
With this protocol, it is first necessary to investigate wether or
not ErrP are present no more in reaction to an error made by
the subject himself, but in reaction to an erroneous response
made the interface as indicated by the feedback visualizing
the recognized subject’s intention. Figure 3 shows the differ-
ent curves (error, correct and difference error-minus-correct)
for channel Cz for the three subjects plus the grand average
of the three subjects. A first sharp negative peak (Ne) can
be clearly seen 270 ms after the feedback (except for subject
2). A later positive peak (Pe) appears between 350 and 450
ms after the feedback. Finally an additional negative peak
occurs ∼550 ms after the feedback. Figure 3 also shows the
scalp potentials topographies, for the grand average EEG of
the three subjects, at the occurrence of the maximum of the
Ne and the Pe: a first central negativity appears after 270 ms,
followed by a fronto-central positivity at 350 ms.

These experiments seem to reveal a new kind of error-
related potentials that, for convenience, we call “interaction
ErrP”. The general shape of this ErrP is quite similar to the
shape of the response ErrP in a choice reaction task, whereas
the timing is similar to the feedback ErrP of reinforcement
learning tasks1. As in the case of response ErrP, the interac-
tion ErrP exhibits a first sharp negative peak followed by a
broader positive peak. This is quite different from the shape
of feedback ErrP that are only characterized by a small neg-
ative deflection. On the other hand, the time course of the
interaction ErrP bears some similarities to that of the feed-
back ErrP: in both cases the first distinctive feature (negative

1Due to space limitations, experiments showing response and
feedback ErrP cannot be reported.

peak and negative deflection, respectively) appears ∼250 ms
after feedback. The time course of response ErrP is definitely
different as the peaks show up much faster.

4.1 Single Trial Classification
To explore the feasibility of detecting single-trial erroneous
responses, we have done a 10-fold cross-validation study
where the testing set consists of one of the recorded sessions.
In this way, testing is always done on a different recording
session to those used for training the model. This yields a
better estimation of the actual generalization capabilities be-
cause brain activity naturally changes over time, as Figure 4
illustrates. Top panels show the average EEG of two con-
secutive series (5 interaction experiments each) at channel Cz
for subject 3, while the bottom panels show samples of single
trials of those series. Their variability is rather evident.

Table 1: Percentages of correctly recognized error trials and correct
trials for the 3 subjects and the average of them.

Subjects Error [%] Correct [%]
#1 87.3±11.3 82.8±7.2
#2 74.4±12.4 75.3±10.0
#3 78.1±14.8 89.2±4.9

Average 79.9±6.6 82.4±7.0

Table 1 reports the recognition rates (mean and standard
deviations) for the three subjects plus the average of them.
The different hyper-parameters—i.e., the learning rates of the
centers and diagonal covariance matrices, number of pro-
totypes, and common/single covariance matrices for each
class—were chosen by model selection in the training sets.
Regarding the learning rates, usual values were 10−4 to 10−6

for the centers and 10−6 to 10−8 for the variances, while the
usual number of prototypes was rather small (from 2 to 4).
These results show that single-trial recognition of erroneous
responses is almost 80% on average, while the recognition
rate of correct responses is slightly better (82.4%). Quite im-
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Figure 4: Top. Average EEG (error, correct and difference error-minus-correct) of two consecutive experimental series at channel Cz for
subject 3. Bottom. Samples of single trials (error and correct) of those two series.

portantly, even for the subject with the worse detection rates,
they are around 75%. But the key point for the exploitation
of the automatic recognition of interaction errors is that they
translate into an actual improvement of the performance of
the BCI, which we can measure in terms of the bit rate.

4.2 Bit Rate Improvement
A traditional measure of the performance of a system is the
bit rate, the amount of information communicated per unit
time. The bit rate is usually expressed in bits per trial (bits
per selection). If a single trial has Nc possible outcomes,
if the probability p that this outcome is correct (accuracy of
the BCI), and if finally each of the other outcomes has the
same probability of selection (i.e., (1 − p)/(Nc − 1)), then
the information transfer rate in bits per trial (BpT ) is

BpT = log2(Nc)+p log2(p)+(1−p) log2

(
1− p

Nc − 1

)
(6)

Let’s consider now how the performance of the BCI
changes after introducing ErrP and that the system detects a
proportion e of erroneous trials and a proportion c of correct
trials. In the general case, after detecting an erroneous trial
the outcome of the interface is simply stopped and not sent
to the brain-actuated device. The new accuracy p′ of the BCI
becomes p′ = p · c/pt, where pt = p · c + (1 − p) · (1 − e).
Now the new information transfer rate in bits per trial is

BpT =pt

(
log2(Nc)+p′log2(p

′)+(1−p′)log2

(
1−p′

Nc−1

))

(7)
In the case of a 2-class BCI (Nc = 2), after detecting an

erroneous trial, it could be possible to replace the “wrong”
outcome by the opposite one, what yields an accuracy p′′ =
p · c + (1 − p) · e. The information transfer rate in this case
is calculated by replacing p by p′′ in equation 6, because now
there is no stopped outcome.

Table 2 reports the performances of a BCI that integrates
ErrP for the 3 subjects and the average of them, where we
have assumed an accuracy of 80% in the recognition of the

subject’s intent. These figures are to be compared to the per-
formance of a standard BCI (i.e., without integrating ErrP).
We have also reported the performances in the case of Nc =
3, as the mind-controlled robot described by Millán et al.
[2003]. In the case of standard 2-class and 3-class BCI, their
performances are 0.28 and 0.66 bits per trial, respectively.
Results indicate that there is a significant improvement in per-
formance in the case of stopping outcomes, which is above
70% on average and higher than 90% for one of the subjects.
Surprisingly, replacing leads to smaller improvements and, in
the case of subject 2, even to a significant degradation.

Table 2: Performances of the BCI integrating ErrP for the 3 subjects
and the average of them.

Nc = 3 Nc = 2 Nc = 2
Stop Stop Replace

Subjects BpT Gain BpT Gain BpT Gain
#1 0.91 37% 0.53 91% 0.36 29%
#2 0.73 10% 0.40 42% 0.19 -32%
#3 0.92 38% 0.52 86% 0.44 59%

Average 0.85 28% 0.48 72% 0.32 14%

5 Discussion
In this paper we have reported first results on the detection of
the neural correlate of error awareness for improving the per-
formance and reliability of brain-computer interfaces. In par-
ticular, we have found what seems to be a new kind of error-
related potential elicited in reaction to an erroneous recog-
nition of the subject’s intention. More importantly, we have
shown the feasibility of detecting single-trial erroneous re-
sponses of the interface that leads to significant improvements
of the information transfer rate of a BCI.

Given the promising results obtained in a simulated
human-robot interaction, we are currently working in the ac-
tual integration of ErrP detection into our BCI system. In
parallel, we are exploring how to increase the recognition
rate of single-trial erroneous and correct responses. A ba-
sic issue here is to find what kind of feedback elicits the



strongest “interaction ErrP”. The feedback can be of very dif-
ferent nature—visual, auditory, somatosensory, or even a mix
of these different types. More importantly, we will need to
focus on alternative methods to exploit at best the current “in-
teraction ErrP”. In this respect, Grave et al. [2004] have re-
cently developed a technique that estimates the so-called local
field potentials (i.e., the synchronous activity of a small neu-
ronal population) in the whole human brain from scalp EEG.
Furthermore, recent results show significant improvements in
the classification of bimanual motor tasks using estimated lo-
cal field potentials (LFP) with respect to scalp EEG [Grave et
al., 2005]. Consequently, we plan to utilize the ELECTRA
method to best discriminate erroneous and correct responses
of the interface. As a matter of fact, a key issue for the suc-
cess in the above-mentioned study was the selection of those
relevant voxels inside the brain whose estimated LFP were
more discriminant. It turns out that the sources of the ErrP
seem to be very well localized into the anterior cingulate cor-
tex and thus we may well expect a significant improvement
in recognition rates by focusing on the LFP estimated in this
specific brain area.

More generally, the work described in this paper suggests
that it could be possible to recognize in real time high-level
cognitive and emotional states from EEG (as opposed, and in
addition, to motor commands) such as fatigue, stress, frus-
tration, confusion, or attention that are crucial for an effec-
tive and purposeful interaction. Indeed, the rapid recognition
of these states will lead to truly adaptive interfaces that cus-
tomize dynamically in response to changes of the cognitive
and emotional/affective states of the user.
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