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Abstract

In this paper, two families of merging operators are
considered: quota operators and Gmin operators.
Quota operators rely on a simple idea: any pos-
sible world is viewed as a model of the result of
the merging when it satisfies “sufficiently many”
bases from the given profile (a multi-set of bases).
Different interpretations of the “sufficiently many”
give rise to specific operators. Each Gmin op-
erator is parameterized by a pseudo-distance and
each of them is intended to refine the quota oper-
ators (i.e., to preserve more information). Quota
and Gmin operators are evaluated and compared
along four dimensions: rationality, computational
complexity, strategy-proofness, and discriminating
power. Those two families are shown as interest-
ing alternatives to the formula-based merging oper-
ators (which selects some formulas in the union of
the bases).

1 Introduction

Merging operators aim at defining the beliefs (resp. goals) of
a group of agents from their individual beliefs (resp. goals).
The merging problem in the propositional setting has been
addressed in many works, both from the artificial intelligence
community and the database community [Cholvy, 1993;
Revesz, 1997; Liberatore and Schaerf, 1998; Lin and Mendel-
zon, 1999; Baral et al., 1991; 1992; Konieczny and Pino
Pérez, 2002al. It is also close to important issues consid-
ered in Social Choice Theory [Arrow, 1963; Moulin, 1988;
Arrow et al., 2002].

Each operator is more or less suited to the many merging
scenarios which can be considered. Subsequently, when fac-
ing an application for which merging is required, a first diffi-
culty is the choice of a specific merging operator. Among the
criteria which can be used to make a clever choice, are the
following ones:

Rationality: A main requirement for adhering to a merging
method is that it offers the expected properties of what
intuitively “merging” means. This calls for sets of ra-
tionality postulates and this has been addressed in sev-
eral papers [Revesz, 1997; Liberatore and Schaerf, 1998;
Konieczny and Pino Pérez, 2002al. In the following, we

focus on the rationality postulates given in [Konieczny
and Pino Pérez, 2002a], because they extend other pro-
posals. The more (w.r.t. set inclusion) postulates satis-
fied the more rational the operator.

Computational Complexity: When one looks for a merg-
ing operator for an autonomous multi-agent system, a
natural requirement is computational efficiency. In the
worst case, merging is not a computationally easy task,
and query answering typically lies at the first or even the
second level of the polynomial hierarchy. Computation-
ally easier operators can be obviously preferred to more
complex ones.

Strategy-proofness: It is usually expected for merging that
agents report truthfully their beliefs/goals. For many ap-
plications, this assumption can easily be made, in par-
ticular when the agents have limited reasoning abilities.
However, when rational agents with full inference power
are considered, such an assumption must be questioned:
agents can be tempted to misreport their beliefs/goals in
order to achieve a better merging result from their point
of view. Strategy-proof operators must be preferred in
such a case.

Discriminating Power: Because information is typically
hard to be acquired, another important criterion to com-
pare merging operators is cautiousness: merging oper-
ators which preserve only few information from the in-
dividual bases cannot be considered as valuable ones.
Thus, it is natural to prefer operators leading to consis-
tent merged bases that are as strong as possible from an
inferential point of view.

As to rationality, one can look at [Revesz, 1997; Liberatore
and Schaerf, 1998; Lin and Mendelzon, 1999; Konieczny,
2000; Konieczny and Pino Pérez, 2002a; Konieczny et al.,
2002]. As to computational complexity, see [Konieczny et al.,
2002], and for a study of strategy-proofness of many merging
operators, a recent reference is [Everaere et al., 2004] (see
also [Meyer et al., 2001] for a related study concerning OCF
merging operators). In light of those results, it appears that no
merging operator is a better performer than any other operator
with respect to the four criteria. To be more precise model-
based operators!' are often computationally easier (inference

'A distinction between model-based operators, which select
some interpretations that are the “closest” to the bases, and formula-



is typically ©5-complete or AB-complete) than formula-
based ones (inference can be IT5-complete) [Konieczny ez al.,
2002]. Model-based operators also typically satisfy more ra-
tionality postulates (see [Konieczny and Pino Pérez, 2002a;
Konieczny, 2000]). The third criterion is much more diffi-
cult to satisfy for both families of operators, even in very re-
stricted cases. Actually, most of the merging operators iden-
tified so far in the literature are not strategy-proof. Since the
four evaluation criteria appear hard to be satisfied altogether,
one cannot do better than searching for good trade-offs.

We consider in this paper two families of propositional
merging operators. The first one consists of quota merging
operators. They rely on a simple idea: any possible world is
viewed as a model of the result of the merging when it satis-
fies “sufficiently many” bases from the given profile. “Suffi-
ciently many” can mean either “at least £” (any integer, abso-
lute quota), or “at least k%" (a relative quota), or finally “as
many as possible”, and each interpretation gives rise to a spe-
cific merging operator. We show that those operators exhibit
good logical properties, have low computational complexity
and are strategy-proof. Since this is achieved at the price of a
potential lack of discriminating power, we introduce a second
family of merging operators: Gmin operators. Each Gmin op-
erator is parameterized by a pseudo-distance and each of them
is intended to refine the quota operators (i.e., to preserve more
information). Such operators are both more rational and more
discriminating than quota merging operators. Unfortunately,
this improvement has to be paid by a higher computational
complexity, and more strategic vulnerabilities, but we think
they offer an interesting compromise nevertheless.

Note that aggregation functions close to the ones on which
quota and Gmin operators are based are used to deal with
relational structures that are more complex than bipartitions
of worlds (which are the structures under consideration in
standard propositional logic). For instance, they have been
considered in the possibilistic logic setting and for constraint
satisfaction problems (see e.g. [Dubois et al., 1999; 1998;
Fargier, 1994]). However, as far as we know, no systematic
study of quota and Gmin operators has been conducted so far
in the standard propositional setting. Especially, they have
never been evaluated with respect to the four criteria we con-
sider. This is where the main contribution of the paper lies.

The rest of the paper is as follows. The next section gives
some notations and definitions. In Section 3, quota operators
are defined and their properties are studied. In Section 4, we
define A\Fmax, which is the operator obtained when optimiz-
ing the value of the quota under the constraint that it does not
lead to an inconsistent merged base. In Section 5, A®™ op-
erators are defined and their properties are studied. Finally,
we conclude this paper in Section 6.

2 Formal Preliminaries

We consider a propositional language £ defined from a finite
set of propositional variables P and the usual connectives.
An interpretation (or world) is a total function from P to
{0, 1}, denoted by a bit vector whenever a strict total order on
P is specified. The set of all interpretations is noted V. An

based ones, which pick some formulas in the union of the bases is
often made [Konieczny et al., 2002].

interpretation w is a model of a formula ¢ € £ if and only if
it makes it true in the usual truth functional way. [¢] denotes
the set of models of formula ¢, i.e., [¢] = {w € W |w = ¢}.

A base K denotes the set of beliefs/goals of an agent, it is a
finite and consistent set of propositional formulas, interpreted
conjunctively. Unless stated otherwise, we identify K with
the conjunction of its elements.

A profile E denotes the group of agents that is involved
in the merging process. It is a multi-set (bag) of belief/goal
bases £ = {K1,...,K,} (hence two agents are allowed to
exhibit identical bases). We denote by /\ E the conjunction of
basesof E,i.e., A\ E = KiA...AK,and \/ FE is the disjunc-
tion of the bases of E, i.e., \/ E = K1 V...V K,,. A profile
E is said to be consistent if and only if A F is consistent. The
multi-set union is noted LI, multi-set containment relation is
noted C. The cardinal of a finite set (or a finite multi-set) A
is noted #(A). We say that two profiles are equivalent, noted
FE, = Es, if there exists a bijection f from E; to Fs such that
for every ¢ € E1, ¢ and f(¢) are logically equivalent.

The result of the merging of the bases of a profile E, un-
der the integrity constraints i, is the merged base denoted
A, (E). The integrity constraints consist of a consistent for-
mula the merged base has to satisfy (it may represent some
physical laws, some norms, etc.).

3 Quota Operators
Let us first define the quota operators.

Definition 1 Let k be an integer, E = {K,...,K,} be a
profile, and i be a formula. The k-quota merging operator,
denoted /\*, is defined in a model-theoretic way as:

i {we |p] |VK; € Ew = K;} if non empty,
[AL(E)] = { lwelu | #({K; € E|w F K;}) > k}

otherwise.

Essentially, this definition states that the models of the re-
sult of the k-quota merging of profile  under constraints /s
are the models of ;i which satisfy at least k bases of E. When
there is no conflict for the merging, i.e., A\ E A u is consis-
tent, the result of the merging is simply the conjunction of the
bases.

Example 1 Let us consider the following example, with
a profile E = {Ki,K3, K3, K4}, such that [Ki] =
{100,001, 101}, [K2] = {001,101}, [K5] = {100,000},
[K4) = {111}, and the integrity constraints [p] =
W\ {010,011}. With quota operators we get as a re-
sult [A}(E)] = {000,001,100,101,111}, [AZ(E)] =
{001,100, 101} and [A3 (E)] = 0.

Here is an equivalent syntactical characterization of
[AF(E)] that is obtained from preferred consistent subsets

of E.2 Let us first define the following notation:

T ={C C{1,...,n} | #(C) = k}.

Then the following proposition gives a characterization of
quota operators :

’To be more precise, “subsets” stands here for multi-set contain-
ment.



Proposition 1 Let k be an integer, E = {K1,...,K,} bea
profile, and 11 be a formula.
NE AL if consistent,
AZ(E) =9 ( \/ (/\ K;)) A otherwise.
Ce™ny? jel

Interestingly, the size of the formula equivalent to [A ﬁ (E)]
given by Proposition 1 is polynomial in |E| + |u|. Hence,
merged bases can be easily compiled as propositional formu-
las.

3.1 Logical Properties

Since we aim at investigating the logical properties of our
family of merging operators, a set of properties must first be
considered as a base line. The following set of postulates was
pointed out in [Konieczny and Pino Pérez, 1999; 2002al:

Definition 2 (IC merging operators) A is an IC merging
operator if and only if it satisfies the following postulates:

AC0) A, (E)

(IC1) If v is consistent, then N\, (E) is consistent

(IC2) If \ E is consistent with p, then A (E) = NE A p

(IC3) IfE1 = E2 and p1 = po, then Ay, (E1) = Auy (E2)

(IC4) If Ki E pand Ko = p, then ANy ({K1,K2}) A K is
consistent if and only if A, ({ K1, K2}) A Ko is consistent

(AC5) Au(E1) A Du(Bs) = Au(Er U Es)

(IC6) If Au(E1) A Au(E2) is consistent,
then Ay (E1 U E2) E Au(E) A DL (E?)

(IC7) Apy (B) A p2 |E Dpyaps (E)
(IC8) If Ay, (E) A g is consistent, then Ny npy (E) = Apy (B)

An IC merging operator is said to be an IC majority oper-
ator if it satisfies (Mayj)

Maj) dn AM (El UEs ... U Eg) ': AH(EQ)

n

Quota merging operators exhibit good logical properties.

Proposition 2 A* operators satisfy properties (IC0), (IC2),
(IC3), (IC4), (IC5), (AC7) and (IC8). They do not satisfy
(IC1), (AC6) and (Maj) in general.

Only two properties of IC merging operators are not sat-
isfied: (IC1)? since the result of the quota merging can be
inconsistent (see Example 1), and (IC6).

Beside those general properties, some specific additional
properties, are satisfied by quota operators.

(Disj) If (\/ E) A wis consistent, then A, (E) = (VE) A p

*It is possible to make (IC1) satisfied by requiring that, when no
interpretation reaches the quota (i.e., satisfies at least k bases), the
merged base is equivalent to the integrity constraints formula. But
this definition leads to operators which do not satisfy (IC5). This
last property is very important from an aggregation point of view.
It corresponds to a Pareto condition, that is considered as a mini-
mal rationality requirement for aggregation in Social Choice Theory
[Arrow, 1963; Moulin, 1988; Arrow et al., 2002]. This is why we
do not consider such an additional family of operators any longer in
the following.

Interestingly, the disjunction property (Disj) is not shared
by every IC majority merging operator [Konieczny and Pino
Pérez, 2002al, since most of them allow for “generating”
some new beliefs/goals from the ones in the bases of the pro-
file (some interpretations that do not satisfy any of the bases
can be chosen as models of the merged base). When this
behaviour is unexpected, formula-based merging operators —
which satisfy (Disj) — can be used, but such operators do not
satisfy many rationality postulates [Konieczny, 2000] (espe-
cially (IC3) is not satisfied) and are often hard from a compu-
tational point of view. Quota operators (as well as the other
operators studied in this paper) which also ensure (Disj) of-
fer interesting alternatives to formula-based operators in this
respect.

Two other interesting postulates can be defined for char-
acterizing more precisely quota operators; the first one is a
weakening of (Maj), which is not satisfied by every IC merg-
ing operator:

(Wmaj) If A, (E?) is consistent,
then 3n A, (E1U ExU. ..U E2) A AL(E2) is consistent
N————

n

The second one shows the prominence of the largest
maximal consistent subsets of the profile; let us define
Mazcons,(E) as {M | M T E, NM A u is consistent,
andVM'M C M’ C E, A\ M’ A pis not consistent}:

(Card) If E1,E; € Maxcons,(E), #(E1) < #(E2), and
Au(E) A En is consistent, then A, (E) A E3 is consistent

Proposition 3 A* operators satisfy properties (Disj),
(Card) and (Wmaj).

Note that it is not the case that every IC majority merging
operator satisfies (Card) (see Section 5).

3.2 Computational Complexity

Let A be a merging operator. We consider the following de-
cision problem MERGE(A):

e Input : atriple (F, u, @) where E = {K3,...,K,} is
a profile, 4 € L is a formula, and o € £ is a formula.

¢ Question : Does A, (F) = « hold?
For quota merging operators, we can prove that:
Proposition 4 MERGE(A¥) is BH(2)-complete.

This BH(2)-completeness result is obtained even in the re-
stricted case the query is a propositional symbol and there is
no integrity constraints (4« = T). Note that this complexity
class is located at a low level of the boolean hierarchy. And
that, obviously, the complexity of MERGE(AF) decreases to
CONP whenever k is not lower than the number of bases of £/
(or under the restriction A\ E A p is inconsistent).

3.3 Strategy-Proofness

Let us now investigate how robust quota operators are with
respect to manipulation. Intuitively, a merging operator is
strategy-proof if and only if, given the beliefs/goals of the
other agents, reporting untruthful beliefs/goals does not en-
able an agent to improve her satisfaction. A formal counter-
part of it is given in [Everaere et al., 2004]:



Definition 3 Ler i be a satisfaction index, i.e., a total function

from L x L to IR. A merging operator A is strategy-proof for

1 if and only if there is no integrity constraint i, no profile

E={K,...,K,}, nobase K and no base K' such that
i(K, Au(EU{K'Y) > i(K, A (E U{K D).

Clearly, there are numerous different ways to define the
satisfaction of an agent given a merged base. While many
ad hoc definitions can be considered, the following three in-
dexes from [Everaere et al., 2004] are meaningful when no
additional information are available:

Definition 4
o iq, (K,Ka) = { (1) Zfl Ig r/‘:} zii.A is consistent,
- { ] AL

For the weak drastic index (74, ), the agent is considered
satisfied as soon as its beliefs/goals are consistent with the
merged base. For the strong drastic index (¢4, ), in order to
be satisfied, the agent must impose her beliefs/goals to the
whole group. The last index (“probabilistic index” %) is not a
boolean one, leading to a more gradual notion of satisfaction.
The more compatible the merged base with the agent’s base
the more satisfied the agent. The compatibility degree of K
with K A is the (normalized) number of models of K that are
models of K 5 as well.

Proposition 5 Quota merging operators are strategy-proof
forip, iq, andig,.

This is quite noticeable since strategy-proof merging op-
erators are not numerous [Everaere er al., 2004]. Strategy-
proofness is hard to achieve, as illustrated in Social Choice
Theory, for aggregation of preference relations, by the
Gibbard-Satterthwaite impossibility theorem [Gibbard, 1973;
Satterthwaite, 1975; Moulin, 1988].

3.4 Absolute and Relative Quotas

In the definition of quota merging operators, an absolute
threshold, i.e., a fixed integer not depending on the number
of bases in the profile, has been used. On the other hand, it
can prove also sensible to express quota in a relative manner,
and to define the models of the merged base as the interpre-
tations satisfying at least half (or the two third, or the wanted
ratio) of the initial bases. This technique is close to a well-
known voting method used in Social Choice Theory, namely
voting in committees [Barbera ef al., 1991]. Let us call such
operators k-ratio merging operators (with 0 < k£ < 1), and let

us note them A*.
Example 1 (continued) [A%2(E)] = {001,100,101},
0.3 —_ [A0.5 _
[AL°(B)] = [A)°(E)] = {001, 100,101}
One can quickly figure out the close connections between
the two families of quota merging operators (the one based
on absolute quota and the other one on relative quota, or ra-

tio). Each ratio merging operator corresponds to a family of
quota merging operators (one for each possible cardinal of

the profile). And given a fixed cardinal, each (absolute) quota
merging operator corresponds to a family of ratio merging
operators.

Although the intuitive motivations of the two definitions of
those families look different, it turns out that ratio merging
operators have exactly the same properties w.r.t. computa-
tional complexity and strategy-proofness as (absolute) quota
merging operators (though the proofs of some results are dif-
ferent). Only some logical properties are different.

Proposition 6 AF operators satisfy properties (1C0), (IC2),
(IC3), (IC4), (IC5), (IC7), (IC8), (Maj), (Disj) and (Card).
They do not satisfy (IC1) and (IC6) in general.

4 N\Fmax Qperator

Now, whatever the chosen quota is absolute or not, an impor-
tant point is the choice of its value. Let us first observe that
quota merging operators lead to a sequence of merged bases
that is monotonic w.r.t. logical entailment:

Proposition 7 Let E be a profile, i be a formula. We have
Aﬁ“ (E) E Aﬁ(E)for all integers k.

Among the elements of this sequence, some of them are of
special interest. Thus, A gives the conjunction of the bases
(with the constraints) when consistent and p otherwise. It
is called full meet merging operator in [Konieczny and Pino
Pérez, 1999]. A! gives the conjunction of the bases (with
the constraints) when consistent and the disjunction of the
bases (with the constraints) otherwise; it is closed to the ba-
sic merging operator [Konieczny and Pino Pérez, 1999], and
is also definable as a model-based merging operator obtained
using the drastic distance and max as aggregation function
[Konieczny et al., 2002]. The only difference is that A gives
an inconsistent result when the disjunction of the bases is not
consistent with the constraints, whilst the basic merging op-
erator gives ( in this case.

Each time k is increased, the result of the merging is ei-
ther the same as for the previous value of £ or is logically
stronger. In our finite propositional framework, the sequence
(AE(E))(I{ > 0) is obviously stationary from some stage.
The value for which it becomes stationary is not interesting
in itself, since the corresponding merged base is either equiv-
alent to the conjunction of the bases of the profile (with the
constraints), or to the inconsistent base. But an interesting
value of k is the one leading to the last nontrivial merged
base.

Definition 5 Let E = {K1,...,K,} be a profile, i be a
Jormula. Let kyax = max({i < #(E) | Al (E) & 1}).
NFmaz s defined in a model-theoretic way as:

{w € [p] | VK; € Ew [|E K;} if non empty,
(A (B)] = { {welu [ #({Ki€ E|w Ki}) = kmax}
otherwise.
While very close to quota operators, the resulting operator
Akmax g not a true quota operator since the value of k4 is
not given a priori, but depends on E and p.

Example 1 (continued) [AF»(E)] = {001,100, 101}.

At a first glance, /A¥max Jooks similar to the formula-based
operator A“4 which selects cardinality-maximal subbases in



the union of the bases from the profile [Konieczny, 2000;
Baral ef al., 1991; 1992]; however, /AFmax and A4 are dis-
tinct; thus, while both operators satisfy (Disj), /A *max satisfies
(IC3) and (Maj) while A satisfies none of them. Contrast-
ingly, A*max belongs to two important families of model-
based merging operators, namely the A* family and the
AGMaz family when the drastic distance is used [Konieczny
and Pino Pérez, 2002b]. Accordingly, AFmax has very good
logical properties:

Proposition 8 AFmax satisfies (ICO - IC8), (Maj), (Disj)
and (Card).

AFmax is obtained by considering the problem of optimiz-
ing the quota (for “pure” quota operators, k is given, so it
does not need to be computed). Unsurprisingly, the corre-
sponding inference problem is computationally harder than
the inference problem for quota operators (under the standard
assumptions of complexity theory):

Proposition 9 MERGE(AFmax) is ©F-complete.

Clearly enough, if k,,, 4, is computed during an off-line pre-
processing stage and becomes part of the input afterwards, the
complexity falls down to coNP.

Now, as to strategy-proofness, the ky,,x operator exhibits
all the good properties of quota operators.

Proposition 10 AFmax js strategy-proof for the three indexes
ip, idw and ids-

5 A%™ Operators

Starting from AkFmax one could wonder whether it is possible
to constrain further the quota operators so as to get operators
with a higher discriminating power, i.e,. allowing more infer-
ences to be drawn. In this section we provide a full family of
such operators.

In order to define a A®™ operator, the definition of a
pseudo-distance between interpretations is first needed:

Definition 6 A pseudo-distance between interpretations is a
total function d from W x W to IN such that for every w1,
we €W

o d(wi,wsz) = d(w2,w1), and
o d(wi,ws) = 0ifand only if w1 = wa.

Any pseudo-distance between interpretations d induces a
“distance” between an interpretation w and a formula K
given by d(w, K') = min g d(w,w’).

Examples of some such distances are the drastic distance,
noted dp, that gives 0 when w; = ws and 1 otherwise, or the
Dalal distance [Dalal, 1988], noted d g, that is the Hamming
distance between interpretations.

Then Aﬁ?GM‘” operators are defined as:

Definition 7 Let d be a pseudo-distance, | an integrity con-
straint, E = {K3, ..., K,} aprofile and let w be an interpre-
tation. The “distance” dgq Gmin(w, F) is defined as the list of
numbers (di,...,d,) obtained by sorting in increasing or-
der the set {d(w, K;) | K; € E}. The models of AL (E)
are the models of u that are minimal w.r.t. the lexicographic
order induced by the natural order.

w K; Ky Kz Ki dygy.gmin(w,E)

000 1 1 0 3 (0,1,1,3)
0wr 0 o0 1 2 (0,0,1,2)
100 0 1 0 2 (0,0,1,2)
01 0 o 1 1 (0,0,1,1)
1o 1 2 1 1 (1,1,1,2)
1 1 1 2 0 (0,1,1,2)

Table 1: A%#:OMN gperator.

Example 1 (continued) [A%P "™ (E)] = {001,100, 101}.
[Adm-@N ()] = {101}. The computations are reported in
Table 1. Each column K; gives the “distance” dp(w, K;)
between the models of the integrity constraints and K.

Clearly enough, AFmax i a specific Gmin operator:
Proposition 11 AZ0:0MN — AFmax

As far as discriminating power is concerned, A®™ oper-
ators are interesting operators, since they refine the operator
APFmax (50 they refine also every quota merging operator), as
stated by the following property:

Proposition 12 For any pseudo-distance d, any integrity
constraint p and any profile E, we have

Aﬁ7GMIN (E) ’: A'ﬁnlax (E)

Furthermore, Gmin operators exhibit very good logical
properties:

Proposition 13 Let d be any pseudo-distance. AHM™ satis-
fies (ICO - IC8), (Mayj) and (Disj). It does not satisfy (Card)

in general.

Thus, like formula-based merging operators, ASM™ opera-
tors satisfy (Disj), but contrariwise to formula-based merging
operators, AN operators are IC merging operators.

Let us now investigate the strategy-proofness issue for the
ASMN operators. In the general case, strategy-proofness of
quota merging operators is lost:

Proposition 14 Let d be a pseudo-distance. AN%M™ is not
strategy-proof for any index among the three indexes iq, .1,
and iq,.

We can guarantee strategy-proofness, but only in some
very specific cases:

Proposition 15

o ABONN s strategy-proof for iy, iq, and iq, if the bases

w

are complete (i.e. each base has a unique model),

o NGO s strategy-proof for the indexes i4, and ig,
when #(E) =2and = T.
Finally, let us turn to the computational complexity crite-
rion.

Proposition 16 Assume that the pseudo-distance d of any
pair of interpretations w1 and wo can be computed in time
polynomial in |w1| + |ws|. Then MERGE(A%O™) is in Ab.
Proposition 17

e MERGE(AP:SMN) js ©F_complete.



e MERGE(A#:5MN) jg AP_complete.

As expected, the complexity of inference for A%SMN oper-
ators is higher than the complexity of inference for quota op-
erators (under the usual assumptions of complexity theory).
However, it remains at the first level of the polynomial hier-
archy under reasonable requirements on the pseudo-distance.

6 Conclusion

We have considered two families of merging operators, and
investigated the properties of their operators with respect to
four criteria: rationality, computational complexity, strategy-
proofness and discrimating power. We claim that those four
criteria are the main dimensions along with propositional
merging operators have to be evaluated.

While no merging operators optimizing every criteria ex-
ist, we claim that both quota and Gmin operators are interest-
ing trade-offs; even if they are not fully rational and discrim-
inating, quota operators exhibit “low complexity” and are
strategy-proof; on the other hand, Gmin operators are slightly
more complex and not strategy-proof in the general case, but
they are fully rational and much less cautious. They also lead
to merged bases implying the disjunction of the bases from
the considered profile, thus offering an interesting alternative
to formula-based merging operators [Baral et al., 1991; 1992;
Konieczny, 2000; Konieczny et al., 2002], which are typically
at least as hard from the complexity point of view and satisfy
less rationality postulates.
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