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cassio@pucsp.br, fgcozman@usp.br

Abstract

This paper presents new results on the complex-
ity of graph-theoretical models that represent prob-
abilities (Bayesian networks) and that represent
interval and set valued probabilities (credal net-
works). We define a new class of networks with
bounded width, and introduce a new decision prob-
lem for Bayesian networks, the maximin a poste-
riori. We present new links between the Bayesian
and credal networks, and present new results both
for Bayesian networks (most probable explanation
with observations, maximin a posteriori) and for
credal networks (bounds on probabilities a poste-
riori, most probable explanation with and without
observations, maximum a posteriori).

1 Introduction
This paper builds a picture of inferential complexity in graph-
theoretical models of uncertainty that goes significantly be-
yond existing results. We focus on Bayesian and credal net-
works — the former is a purely probabilistic model, while
the latter admits interval and set valued probabilities and
generalizes several theories of uncertainty. There already is
quite a solid understanding about the inferential complexity
of Bayesian networks; we add to this picture a new class of
networks that strengthens existing results, and a new type of
problem, maximin a posteriori (MmAP), that can be of in-
terest in game-theoretic settings. Our main contributions are
related to credal networks, as little is known at this point con-
cerning their inferential complexity: we present new results
concerning computation of probability bounds, most proba-
ble explanations (MPE) and maximum a posteriori (MAP).
We show that, rather surprisingly, the MPE problem without
observations in credal networks of bounded width is polyno-
mial, while the MPE problem with observations and the MAP
problem are Σp

2-complete for credal networks.
We also strengthen the connection between Bayesian and

credal networks by showing links between the computation of
probability bounds, the MAP and the MmAP problems. Our
results suggest that moving from point to interval/set valued
probabilities takes us “one step up” in terms of complexity
classes.

Section 2 presents a few definitions and, most importantly,
tries to justify our interest in credal networks. Section 3 de-
scribes the problems we are interested in. Section 4 contains
our new results; in particular, Table 1 offers a summary of our
contributions. Section 5 concludes the paper and suggests fu-
ture research.

2 Bayesian and Credal Networks
A Bayesian network (or BN) represents a single joint proba-
bility density over a collection of random variables. We as-
sume throughout that variables are categorical; variables are
uppercase and their assignments are lowercase.

Definition A Bayesian network is a pair (G, P), where: G =
(VG, EG) is a directed acyclic graph, with VG a collection of
vertices associated to random variables X (a node per vari-
able), and EG a collection of arcs; P is a collection of condi-
tional probability densities p(Xi|pa(Xi)) where pa(Xi) de-
notes the parents of Xi in the graph (pa(Xi) may be empty),
respecting the relations of EG.

In a BN every variable is independent of its nondescendants
nonparents given its parents (Markov condition). This struc-
ture induces a joint probability density by the expression
p(X1, . . . , Xn) =

∏

i p(Xi|pa(Xi)). Given a BN, E denotes
the set of observed variables in the network (the evidence); e
denotes the observed value of E.

We consider the class of networks with bounded
induced-width (or BIW); that is, networks where the sub-
jacent graph (obtained removing arc’s directions) of G has
maximum degree and induced-width bounded by log(f(s)).
We define f(s) as a polynomial function in the size s of
input (this size is evaluated over all information needed
to specify the problem). We also consider the class of
polytrees (or PT); that is, a BIW network where the sub-
jacent graph of G has no cycles. Otherwise, a network is
said multiply-connected. Note that our definition of
BIW networks is not, as usually done, based on fixed induced-
width; rather, we allow the induced-width to vary with the
network size.

Credal networks generalize Bayesian networks by allow-
ing each variable to be associated with sets of joint probability
measures rather than single probability measures [Cano et al.,
1993; Cozman, 2000a]. Such graph-theoretical models can be



viewed as Bayesian networks with relaxed numerical param-
eters; they can be used to study robustness of probabilistic
models, to investigate the behavior of groups of experts, or
to represent incomplete or vague knowledge about probabil-
ities. Sets of probability measures are sufficiently powerful
to represent belief functions, possibility measures, qualitative
probabilities, and probabilistic logic statements, thus offering
a general language that can convey many models of interest
in artificial intelligence [Walley, 1996].

A set of probability distributions is called a credal set
[Levi, 1980]. A credal set for X is denoted by K(X).
A conditional credal set is a set of conditional distribu-
tions, obtained applying Bayes rule to each distribution in
a credal set of joint distributions [Walley, 1991]. Given
a credal set K(X), the lower probability and the upper
probability of event A are defined respectively as P (A) =
minp(X)∈K(X) P (A) and P (A) = maxp(X)∈K(X) P (A). We
assume that, given a credal set, finding a lower/upper proba-
bility is a polynomial operation.
Definition A credal network is a pair (G, K), where: G =
(VG, EG) is a directed acyclic graph, with VG a collection of
vertices associated to random variables X (a node per vari-
able), and EG a collection of arcs; K is a collection of con-
ditional credal sets K(Xi|pa(Xi)), respecting the relations
implied by EG.
We assume a Markov condition in credal networks: ev-
ery variable is independent of its nondescendants nonpar-
ents given its parents. In this paper we adopt the concept of
strong independence; that is, the joint credal set represented
by a credal network is a set where each vertex factorizes as
a Bayesian network [Cozman, 2000b]. Thus we can really
view a credal network as a set of Bayesian networks, all with
identical graphs. Credal networks can also be classified as
polytree, bounded induced-width or multiply-connected.

3 Reasoning
In this section we present decision versions of the inferences
we focus in this paper.
Definition BN-Pr: given a Bayesian network (G, P), evi-
dence E = e with E ⊆ X, a query variable Q ∈ X \ E and
its category q, and a rational number r, is P (q|e) > r?
Note the following distinction between MPE problems with
or without evidence; the reason for this will be indicated later:
Definition BN-MPE: given a Bayesian network (G, P), evi-
dence E = e with E ⊆ X and a rational number r, is there
an instantiation x for X \ E such that P (x, e) > r?
Definition BN-MPEe: given a Bayesian network (G, P), ev-
idence E = e with E ⊆ X and a rational number r, is there
an instantiation x for X \ E such that P (x|e) > r?
Definition BN-MAP: given a Bayesian network (G, P), ev-
idence E = e with E ⊆ X, a set Q ⊆ X \ E and a ra-
tional number r, is there an instantiation q for Q such that
P (q|e) > r?
We introduce the maximin a posteriori problem, which may
be of interest in applications involving game-theoretic behav-
ior with maximizers and minimizers [Kakade et al., 2001]:

Definition BN-MmAP: given a Bayesian network (G, P),
some evidence E = e with E ⊆ X, the sets A ⊆ X \ E
and B ⊆ X \ E, with A ∩ B = ∅ and a rational number
r, is there an instantiation a for the A variables such that
minb P (a, b|e) > r?

The corresponding problems in CN are now defined.

Definition CN-Pr: given a credal network (G, K), evidence
E = e with E ⊆ X, a query variable Q ∈ X \ E and its
category q and a rational number r, is P (q|e) > r?

In this definition we use upper queries, but lower queries may
be of interest too. We can show that both queries lead to
identical complexity results:

Lemma 1 Evaluating marginal lower probabilities in CN is
as hard as evaluating marginal upper probabilities.

Proof Suppose we have a CN-Pr with marginal query Q =
q. The calculation of P (q|e) can be done by inserting a binary
child Q′ to Q, where P (q′|Q) = 1 if Q 6= q and 0 otherwise.
Now P (q′|e) = max

∑

Q6=q P (Q|e) = 1 − P (q|e). ¤

We now define maximin versions of MPE and MAP in credal
networks (we could alternatively define maximax versions for
these problems, with possibly different complexities).

Definition CN-MAP: given a credal network (G, K), some
evidence E = e with E ⊆ X, a set Q ⊆ X \ E and a rational
number r, is there an instantiation q for the Q variables such
that P (q|e) > r?

CN-MPEe is obtained when CN-MAP has Q = X \ E.
CN-MPE is CN-MPEe without evidence, that is, Q = X. We
use abbreviations to refer to these problems (e.g. PT-CN-Pr
is the belief updating problem in a polytree credal network).

4 Complexity results
Table 1 summarizes relevant complexity results.1 We start by
explaining the origin of the results in this table (numbering
matches the numbers in the table):

1. [Dechter, 1996] describes algorithms with exponential
time complexity on the induced-width of an elimination
order; [Eyal, 2001] shows how to obtain a constant-
factor approximation to optimal order in polynomial
time for networks with bounded degree and bounded
induced-width by log(f(s)). Note that the result here
is sightly different from the one in [Dechter, 1996]; we
refer to the actual induced width of the graph, not the
induced width of an ordering.

2. [Roth, 1996] shows complexity of functional version,
[Litmman et al., 2001] takes the decision version.

3. [Shimony, 1994] shows (by reduction from the vertex
cover problem) that BN-MPE is NP-Complete, while
Theorem 2 shows that BN-MPEe is PP-Complete.

1We assume that the reader is familiar with notions of complexity
theory; for an introduction see [Papadimitriou, 1994]. Polynomial
time means polynomial time in the size of input. A reduction means
a polynomial time reduction; when a problem is solvable by another,
there is a reduction from the former to the latter.



Problem Polytree Bounded induced-width Multiply-connected
BN-Pr Polynomial (1) Polynomial (1) PP-Complete (2)
BN-MPE Polynomial (1) Polynomial (1) NP-Complete (3)
BN-MPEe Polynomial (1) Polynomial (1) PP-Complete (3)
BN-MAP NP-Complete (4) NP-Complete (4) NPPP-Complete (5)
BN-MmAP ΣP

2-Complete (6) ΣP
2-Complete (6) NPPP-Hard (7)

CN-Pr NP-Complete (8) NP-Complete (8) NPPP-Complete (9)
CN-MPE Polynomial (10) Polynomial (10) NP-Complete (11)
CN-MPEe ΣP

2-Complete (12) ΣP
2-Complete (12) ΣP

2-Hard and PP-Hard (13)
CN-MAP ΣP

2-Complete (12) ΣP
2-Complete (12) NPPP-Hard (7)

Table 1: Complexity results; numbers in parenthesis indicate the item that discusses the result.

4. [Park, 2002] reduces MAXSAT problem to BN-MAP in
polytrees, a result that can be extended to BIW networks
as both problems belong to NP (given the polynomial
nature of BN-Pr in BIW networks).

5. [Park and Darwiche, 2004] by reduction from
E-MAJSAT.

6. Theorem 8.
7. The complexity of BN-MAP implies it.
8. Theorem 3.
9. [Cozman et al., 2004] by a reduction from E-MAJSAT.

10. Theorem 5.
11. Theorem 6.
12. Theorem 7.
13. BN-MPE and PT-CN-MPEe ensure it.

In the context of Bayesian networks, the difference be-
tween MPE and MPEe may seem academic, because any most
probable explanation can be found with BN-MPE. However
the same is not true for credal networks, where one can-
not find a most probable explanation with evidence by sim-
ply running a version of MPE — and note that CN-MPE and
CN-MPEe do display non-trivial differences. In fact, these
differences were our motivation for differentiating MPE from
MPEe. The following theorem clarifies the difference be-
tween these problems for Bayesian networks.
Theorem 2 BN-MPEe is PP-Complete.

Proof Pertinence is obtained from the fact that, after making
a PP query to find P (e) (this query is made once), we can de-
cide whether a given instantiation x has P (x|e) > r in linear
time, by multiplying the probabilities. To show hardness, we
reduce the decision problem #3SAT(≥ 2n/2) to it, which is
PP-Complete [Bailey et al., 2001] and can be stated as: Given
a set of boolean variables X = {X1, . . . , Xn} and a 3CNF
formula φ(X) with clauses {C1, . . . , Cm}, is φ(X) satisfied
by at least 2n/2 of the instantiations of X?

We construct a BN with binary nodes X1, . . . , Xn (xi and
xi are the categories) and C1, . . . , Cm (ci and ci), where Xi

has no parents and uniform prior and Ci has three parents (the
variables contained in the clause) with probabilities respect-
ing the truth table for the clause. Furthermore, we insert a
dummy binary node Y appearing non-negated in every clause

(there will be 2n instantiations with {Y = y} satisfying φ;
this ensures that the formula is satisfiable). Now we solve
the BN-MPEe problem with queries X1, . . . , Xn, Y and evi-
dence Ci = ci for all 1 ≤ i ≤ m (indicating that all Ci are
true). Then P (X,Y |c1, . . . , cm) is equal to

=
P (c1, . . . , cm|X1, . . . , Xn, Y ) P (X1, . . . , Xn, Y )

P (c1, . . . , cm)

=
1

2n+1 P (c1, . . . , cm|X1, . . . , Xn, Y )
∑

X′

1
,...,X′

n,Y ′

[

P (c1, . . . , cm|X ′
1, . . . , X

′
n, Y ′) 1

2n+1

]

=
1

#sats
if X1, . . . , Xn, Y satisfies φ and 0 otherwise,

where #sats is the total number of satisfying instantiations.
So, max P (X,Y |c1, . . . , cm) ≤ 1

2n+2n/2 implies that for-
mula φ(X) is satisfied by at least 2n/2 of all X instantiations.
Note that if max P (X,Y |c1, . . . , cm) = α and α > 1

2n+2n/2 ,
then P (X,Y |c1, . . . , cm) = α for all satisfying instantia-
tions, which implies that there are less than 2n/2 instantia-
tions of X satisfying φ(X). ¤

The hardness of PT-CN-Pr was stated by [da Rocha and
Cozman, 2002], but the proof there was flawed, and the cen-
tral argument used zero probabilities and vertex-based de-
scription in an essential way. The following proof corrects
these difficulties.
Theorem 3 PT-CN-Pr and BIW-CN-Pr are NP-
Complete.

Proof Pertinence of BIW-CN-Pr (which ensures pertinence
of PT-CN-Pr) is immediate, as choosing a vertex of each
credal set we have a BIW-BN-Pr problem to solve, which is
polynomial. To show hardness we reduce the MAX-3-SAT
problem to PT-CN-Pr. It can be formulated as follows:
Given a set of boolean variables {X1, . . . , Xn}, a 3CNF for-
mula with clauses {C1, . . . , Cm} and an integer 0 ≤ k ≤ m,
is there an assignment for the variables that satisfies at least
k clauses? Initially we remove all clauses that have both xi

and xi and decrement k for each elimination (because those
clauses are already satisfied). For each variable Xi we con-
struct two nodes, namely Xi and Si. The former is binary,
has no parents and represents the state of Xi; the probabilities
P (Xi = xi) and P (Xi = xi) are in [ε, 1 − ε] (0 < ε < 1

m+1
is a small constant). The latter may assume m + 1 categories
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Figure 1: Polytree used in the network of Theorem 3.

(from 0 to m), has Si−1 and Xi as parents and is defined by

P (Si = c|Si−1 = c, xi) = 0 if xi ∈ Cc, or 1 otherwise
P (Si = c|Si−1 = c, xi) = 0 if xi ∈ Cc, or 1 otherwise
P (Si = c|Si−1 6= c,Xi) = 0 for Xi ∈ {xi, xi},

for c 6= 0. When Si = 0, we have:

P (Si = 0|Si−1 = c,Xi) = 1 − P (Si = c|Si−1 = c,Xi)

P (Si = 0|Si−1 = 0, Xi) = 1 for Xi ∈ {xi, xi}.

The rules above guarantee coherency in probabilities; note
that we include a dummy node S0 with P (S0 = c) = 1

m+1

for all c. Now, consider P (Sn = c) for c 6= 0. Note that
P (Sn = c) = P (S0 = c)

∏

i P (Si = c|Si−1 = c) because,
for c 6= 0, every time {Si = c} and {Si−1 6= c} appear
together we are led to zero. Let Ac,i be defined as follows:

Ac,i =
∑

Xi∈{xi,xi}

P (Si = c|Si−1 = c,Xi) P (Xi) .

We get P (Sn = c) = 1
m+1

∏

i∈{1,...,n} Ac,i. Note that Ac,i

may assume three values: Ac,i = 1 if Xi does not influence
Cc; Ac,i = ε if Xi satisfies Cc and Ac,i = 1 − ε if Xi does
not satisfy Cc. We may conclude that if P (Sn = c) ≤ α =
(1 − ε)2ε, then some Xi satisfied Cc. Furthermore, we know
that if Cc was not satisfied, then P (Sn = c) = β = (1− ε)3.
Note that α < β. To find out how many clauses were
not satisfied, we have to sum over all categories of Sn, ob-
taining P (Sn = 0) = 1 −

∑

c∈{1,...,m} P (Sn = c) and thus
P (Sn = 0) minimizes this sum. We define

rh = [(m + 1)(1 − P (Sn = 0)) − hβ]/(m − h).

and then calculate r0, r1, . . . until rh ≤ α or h = m − 1.
We know that 1 − P (Sn = 0) is the minimum sum of all
P (Sn = c), for c 6= 0. This sum is composed by two types
of terms: those which are equal to β and those which are
less than or equal to α. So what we are verifying with rh is
whether there are more than h terms of the sum that are equal
to β or not. The last thing should be noted is that ε < 1

m+1

ensures that if just one term of the sum equals to β, then the
sum is greater than mα, that is, if the sum is composed by
m − 1 terms equal to ε3 and just one equal to β, it must
sum greater than mα, because one clause was not satisfied.
ε < 1

m+1 ensures that everywhere it is necessary (for any h).
Thus the inference P (Sn = 0) solves MAX-3-SAT problem.
If rh > α for all 0 ≤ h ≤ m−1, then no clause was satisfied.
Otherwise h counts how many clauses were not satisfied. ¤

Because of the reduction from MAX-3-SAT, we can state
that there is no polynomial time approximation scheme for
PT-CN-Pr (or BIW-CN-Pr) unless P=NP.

Remark The proof still holds if we substitute all ε by zero;
the proof becomes simpler but depends on events of zero
probability, which may be inconvenient, as pointed out by
[Zaffalon, 2003]. Note also that the proof can be rewritten
using inequalities instead of vertices, because all credal sets
are in binary nodes (pertinence and hardness still hold).

It is known that CN-Pr is solvable by BN-MAP, by conduct-
ing a CCM transform in a credal network [Cozman, 2000a].
The following lemma presents the reverse connection be-
tween inferences in Bayesian and credal networks.
Lemma 4 BN-MAP is solvable by CN-Pr with joint queries
without changing the topology of the network among the three
types defined.

Proof Suppose X1, . . . , Xn are the MAP variables. Add a
binary child X ′

i to each Xi with P (X ′
i|Xi) ∈ [0, 1] and the

constraint
∑

Xi
P (x′

i|Xi) = 1. Now we have

max
X1,...,Xn

P (X1, . . . , Xn|e) = P (x′
1, . . . , x

′
n|e)

After evaluating P (x′
1, . . . , x

′
n|e), we just have to look at

each X ′
i node and set Xi according to which of the P (x′

i|Xi)
is equal to one (exactly one will be). ¤

It should be noted that joint queries are not more difficult
than single marginal queries: we have that CN-Pr with joint
queries is still NPPP-Complete and BIW-CN-Pr with joint
queries is still NP-Complete.

Theorem 5 PT-CN-MPE and BIW-CN-MPE are solvable in
polynomial time.

Proof It is enough to realize that the inner min of
the BIW-CN-MPE query maxx minP∈K(X)

∏

i P (xi|pa(xi))
factorizes, as the network is locally specified (note that
xi’s are consistent with the observation e). The optimiza-
tion becomes maxx

∏

i P (xi|pa(xi)), which is equivalent to
BIW-BN-MPE. ¤

Theorem 6 CN-MPE is NP-Complete.

Proof Hardness is immediate, because BN-MPE is NP-
Complete and can be trivially transformed to a CN-MPE (we
just have to use credal networks composed by single prob-
ability densities). Pertinence is reached because, given an
assignment x to the variables, the value of P (x) is given
by

∏

i P (xi|pa(xi)). This holds because each credal set
K(xi|pa(xi)) is locally specified. ¤

Theorem 7 PT-CN-MPEe, BIW-CN-MPEe, PT-CN-MAP
and BIW-CN-MAP are all ΣP

2-Complete.

Proof Pertinence of them is immediate as BIW-CN-MAP be-
longs to ΣP

2 (given the MAP variables, we get a BIW-CN-Pr
to solve). To see hardness we reduce to PT-CN-MPEe a ver-
sion of QSAT2 that is ΣP

2-Complete: Given a set of variables
X1, . . . , Xn, an integer 0 < k ≤ n and a boolean 3CNF
formula φ(X) over these variables, is it true that, for all in-
stantiations to the first k variables, there is an instantiation
of the remaining n − k that satisfies φ(X)?

Initially we construct a network similar to that of The-
orem 3. The variables X1, . . . , Xk are defined the same
way as there. The variables Xk+1, . . . , Xn become ternary,



assuming the categories xi, xi, oi. Their probabilities are:
P (Xi = oi) = ε and P (Xi = xi), P (Xi = xi) belong
to [0, 1 − ε], where 0 < ε < 1

m+2 is a small con-
stant. The probabilities of Si given its parents are the same
as there, except when i > k. In these cases we have
P (Si = c|Si−1 = c, oi) = 0, for c 6= 0 (the case when c = 0
remains the same, that is, equals to 1).

Furthermore, we add a dummy node Q with Sn as par-
ent and P (q|Sn = c) = 0 for c 6= 0 and 1 otherwise. We
will solve the PT-CN-MPEe problem max P (X,S|q), where
S = {S0, . . . , Sn} and X = {X1, . . . , Xn}. Let X− be
{X1, . . . , Xk} and X+ be {Xk+1, . . . , Xn}; then

P
(

X−, X+, S|q
)

=
P (q|S) P (S|X) P (X−)P (X+)

P (q)
.

First note that the given q forces Sn = 0 to get a non-
zero probability. Furthermore, for all instantiations x−, x+, s
of the variables, there is another instantiation with s′ =
{∀iSi = 0} that has its probability greater than the former,
that is, P (x−, x+, s′|q) > P (x−, x+, s|q). This holds be-
cause the Si nodes are not credal and the conditional proba-
bilities P (Si = 0|Si−1 = 0) are equal to 1, for all i. Thus we
know that the solution of the MPEe problem will be attained
in an instantiation where all Si are set to 0. Besides that, we
have that choosing the category oi for all X+ variables lead
us to greater probabilities than if we choose any other. That
is,

max
X−,X+,S

P
(

X−, X+, S|q
)

= max
X−

P
(

X−, o, s|q
)

,

where o denotes {Xi = oi for i ∈ {k + 1, . . . , n}} and
s denotes {∀i Si = 0}. If we choose a category different
from oi whenever possible, the maximum probability would
not reach the same value (in fact it will be zero, because
P (Xi 6= oi) ∈ [0, 1− ε], and thus it may assume value zero).

P
(

X−, o, s|q
)

=
1

m+1εn−kP (X−)

1 −
∑

c6=0 P (Sn = c)
.

When finding P (X−, o, s|q), the numerator P (X−) will be-
come εk, because any solution that does not make P (X−) =
εk will not be a minimum for P (X−, o, s|q) (remember that
ε < 1

m+2 ). This holds because just one X− variable us-
ing the extreme point (1 − ε) instead of ε is enough to make
P (X−, o, s|q) too large:

1
m+1εn−kεk−1(1 − ε)

1 − R
>

1
m+1εn−kεk

1 − R′

where R and R′ are any possible values for the sum
∑

c6=0 P (Sn = c) that appears in the denominator (note that
these sums are restricted in [0, m

m+1 ] by the probabilities of
the network).

Summarizing, all S variables in the solution of MPEe are
set to zero, all X+ variables are set to o, and the instanti-
ation chosen for X− makes P (X−) = εk, which implies
that if xi belongs to the instantiation of X−, then P (xi) = ε
and P (xi) = 1 − ε (the opposite case is analogous). This
means that the vertices of the credal sets of the X− nodes are

completely fixed by the instantiation chosen. Thus the only
credal sets that can float in the denominator are the X+ vari-
ables (Si variables are not credal and X− are already fixed as
indicated). So, processing the MPEe we have

P
(

X−, o, s|q
)

=
1

m+1εn

1 − min
(

∑

c6=0 P (Sn = c)
) ,

where min
∑

c6=0 P (Sn = c) is evaluated over all possible
vertices of the X+ credal sets (we know that P (Xi = oi) is
set to ε, but the probabilities P (Xi = xi) and P (Xi = xi)
may vary between 0 and 1 − ε).

The formula φ(X) will be satisfied by X− and X+ if the
sum

∑

c6=0 P (Sn = c) is less than δ1 = m
m+1 (1 − ε)2ε(1 −

ε)n−k (this is the maximum value that a satisfied φ(X) may
assume). All unsatisfied formulas lead to greater values. In
fact the smallest value that a unsatisfied formula implies in
the sum is greater than δ2 = m

m+1 (1 − ε)n−k+3. Note that
δ2 > δ1.

If we query the PT-CN-MPEe problem max P (X,S|q)
with r = 1

m+1
εn

1−δ1
and get a negative answer, then for all

instantiations to X−, there is an instantiation to X+ that sat-
isfy φ(X) (that is, the sum is bounded by δ1). If the answer
is positive, then there does exist an instantiation to X− where
no instantiation to X+ can make φ(X) satisfied. ¤
Theorem 8 PT-BN-MmAP and BIW-BN-MmAP are ΣP

2-
Complete.
Proof Pertinence of BIW-BN-MmAP (which ensures perti-
nence of PT-BN-MmAP) is trivial. Given a instantiation for
the MAP variables, we need to solve a minimization over the
Y variables, which is NP-Complete (see it as a BIW-CN-Pr
using Lemma 4). Hardness of PT-BN-MmAP (which ensures
hardness of BIW-BN-MmAP) is reached by a reduction from
another version of QSAT2 that is ΣP

2-Complete: Given a set of
variables X1, . . . , Xn, an integer 0 < k ≤ n and a boolean
3DNF formula φ(X) over these variables, is there an instan-
tiation to the first k variables such that, for all instantiations
of the remaining n − k, φ(X) is satisfied?

We construct again a network following the ideas of Theo-
rem 3. It includes a binary node to each Xi, without parents
and with uniform prior. There are n nodes Si with parents
Si−1 and Xi. They have m + 1 categories and are defined as
follows (for c ∈ {1, . . . ,m} and i ∈ {1, . . . , n}):

P (Si = c|Si−1 = c, xi) =







1 if xi ∈ clause c
0 if xi ∈ clause c
1
2 otherwise

P (Si = c|Si−1 6= c, xi) = 0.

The conditional probabilities of Si given xi are defined anal-
ogously. The probabilities of P (Si = 0|Si−1, Xi) ensure that
they sum exactly 1, as done in Theorem 3. Furthermore,
P (S0) has uniform prior and we insert an additional binary
node Q with Sn as parent, having P (q|Sn = c) = 1 if c 6= 0
and 0 otherwise.

So, we have that P (X|q) =
1

2n P(q|X)

P(q) is equal to

=

1
(m+1)2n

∑

c6=0

∏

i Ac,i

m
(m+1)

(

1
2

)n =

∑

c6=0

∏

i Ac,i

m



where Ac,i =
∑

Xi
P (Si = c|Si−1 = c,Xi) P (Xi) for i ∈

{1, . . . , n}. Ac,i assumes value zero only when the vari-
able it represents denies the clause c. The numerator of
P (X|q) sums how many clauses are satisfied by the instanti-
ation of X variables. Let X− = {X1, . . . , Xk} and X+ =
{Xk+1, . . . , Xn}. We have minX+ P (X−, X+|q) = 0 if,
given the instantiation for the X− variables, there is an as-
signment to X+ variables that can deny φ(X). This way,
questioning if PT-BN-MmAP problem with MAP variables
X− and evidence q (which maximizes minX+ P (X|q)) has
non-zero answer is enough to solve the QSAT2 problem.
Given this X− instantiation, all X+ will satisfy φ(X). ¤

5 Conclusion
We can summarize the contributions of this paper as fol-
lows. Concerning Bayesian networks, we have first intro-
duced a more general definition of bounded induced-width
networks (demonstrating that many problems where induced-
width actually grows with the network remain polynomial),
and we have shown the difference between the BN-MPE and
the BN-MPEe problems. More importantly, we have intro-
duced the MmAP problem and presented its complexity. A
possible improvement of our results would be to present a
completeness result for multiply-connected networks.

Our most significant results pertain to credal networks,
with direct implications to models that handle interval and
set probabilities, belief functions, possibility measures, qual-
itative probabilities, and families of probabilistic logic. We
have clarified the so far unexplored complexity of CN-MPE,
CN-MPEe, and CN-MAP. The polynomial character of
CN-MPE in some cases is rather surprising.

There are several interesting problems still to be ex-
plored. For example, binary networks (Bayesian and credal)
could display lower complexity than their non-binary coun-
terparts in problems such as PT-BN-MAP, BIW-BN-MAP
and BIW-CN-Pr. These problems belong to NP and are
clearly related, but are there polynomial time algorithms to
solve them? We conjecture there are not, even as we note
that there is a polynomial algorithm to solve CN-Pr in bi-
nary polytrees [Fagiuoli and Zaffalon, 1998].
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