
A New Approach to Multiobjective A* Search

L. Mandow and J.L. Pérez de la Cruz
Dpto. Lenguajes y Ciencias de la Computación
Universidad de Ḿalaga 29071 - Ḿalaga (Spain)

{lawrence, perez}@lcc.uma.es

Abstract

The paper presents a new algorithm for multiob-
jective heuristic graph search problems. The algo-
rithm presents some nice properties that are easily
proven. Additionally, empirical tests show that sub-
stantial savings in memory can be achieved over
previous proposals.

1 Introduction
The multiobjective search problem is an extension of the
shortest path problem where arc costs become vectors. This is
a genuinely different problem since vector costs induce only
a partial order relation.

Loui [1983] studied the extension of Dijkstra’s algorithm
to the multiobjective case, and showed that some stochastic
search problems can be reduced to multiobjective ones. Stew-
art and White[1991] outlined MOA*, a multiobjective exten-
sion of A*, and presented proofs on admissibility, node ex-
pansion, and comparison of heuristics. Dasgupta et al.[1999]
extended this work in several ways, including a version for
non-monotone heuristics (MOA**), with applications in the
area of VLSI design and the log cutting problem. Perny and
Spanjaard[2002] presented a generalization of MOA* with
application to a Web access problem. Mandow and Pérez de
la Cruz[2003] presented a systematic extension of the heuris-
tic search paradigm to the multicriteria case, and admissibility
conditions for algorithms with different multicriteria prefer-
ence relations (multiobjective, multiattribute, lexicographic,
and goal-based).

This paper reconsiders the extension of A* to the multi-
objective case and presents a new algorithm. The basic op-
erations in A* are selection and expansion of open nodes at
each iteration. In A* each open node stands for a single par-
tial solution path that can be further expanded. However, as
explained in the paper, this is no longer the case in multi-
objective problems, where many interesting paths may reach
the same node. The MOA* algorithm[Stewart and White,
1991], and subsequent extensions, were devised preserving
nodeselection and expansion as the algorithm’s basic oper-
ations. This paper presents an extension of A* to the mul-
tiobjective case that preservespath selection and expansion
as the basic operations. Admissibility can be proven very
easily. The new algorithm also shows important properties,

analogous to those of A*, that are not shared by MOA*. Ad-
ditionally, empirical tests show that the new algorithm offers
substantial savings in memory over MOA*.

The paper is organized as follows. Section 2 reviews pre-
vious relevant work in scalar search and points out analogies
and differences with the multiobjective search problem. Sec-
tion 3 presents a new algorithm and illustrates its behaviour
with a simple example. Relevant differences with MOA* are
identified. Section 4 proves the admissibility of the new al-
gorithm and a discusses on its efficiency. The performance
results of multiobjective search over a set of randomly gener-
ated grid search problems is presented in section 5. Finally,
conclusions and future research are briefly summarized.

2 Scalar and multiobjective search
2.1 Previous results in scalar graph search
The shortest path problem can be stated as follows: given
a locally finite labelled directed graphG = (N,A, c), of
|N | nodes, and|A| arcs(n, n′) labelled with positive costs
c(n, n′) ∈ R, a start nodes ∈ N , and a set of goal nodes
Γ ⊆ N , find the minimum cost path inG from s to a node in
Γ.

The A* algorithm[Hartet al., 1968] is an efficient solution
to this problem. It is a best-first search algorithm that uses a
search tree to store the set of known interesting partial solu-
tion paths, a list of open nodes that can be further expanded,
and a characteristic evaluation functionf(n) = g(n) + h(n)
to select the next open node to be expanded. While function
g(n) denotes the known cost of the path stored in the tree
from s to n, the heuristic functionh(n) estimates of the cost
of a solution from noden to a goal node. Heuristic functions
can be devised for particular problems depending on their se-
mantics.

Beautiful results have been presented to analyse the rela-
tion between the accuracy ofh(n) and the properties of A*.
Admissibility: Let h∗(n) be the real optimal cost of a path
from n to a goal node. When the heuristic is an optimistic
estimate (h(n) ≤ h∗(n) ∀n), the search is admissible, i.e. if
a solution exists it is guaranteed to find an optimal one. With
additional constraints (h(n) ≥ 0 ∀n, andc(n, n′) ≥ ε >
0 ∀(n, n′) ∈ A) A* is admissible even on infinite graphs.
Efficiency: When∀n h(n) = 0, A* behaves like Dijkstra’s
algorithm. Whenh(n) is consistentor satisfies the equivalent

monotoneproperty,

h(n) + c(n, n′) ≤ h(n′) ∀(n, n′) ∈ A (1)

A* solves the problem inO(|N |) iterations, storingO(|N |)
nodes in memory, in the worst case. Particularly, ifc∗ denotes
the optimal solution cost, A* will always expand all nodes
with f(n) < c∗, but at most those withf(n) ≤ c∗. Therefore,
given an optimistic estimate, big values ofh(n) can push the
evaluation of more and more nodes beyond thef(n) = c∗

frontier, reducing search effort.
Optimality: When the heuristic is monotone A* can also be
proven optimal among the class of admissible best-first algo-
rithms that are guided by path-dependent evaluation functions
[Dechter and Pearl, 1985].

2.2 Extension to the multiobjective case
The multiobjective search problem can be stated as follows:
given a locally finite labelled directed graphG = (N,A,~c),
of |N | nodes, and|A| arcs(n, n′) labelled with positive vec-
tors~c(n, n′) ∈ Rq, a start nodes ∈ N , and a set of goal nodes
Γ ⊆ N , find the set of non-dominated cost paths inG from s
to nodes inΓ.

In multiobjective problems cost vectors~c(n, n′) induce
only a partial order preference relation≺ calleddominance,

∀~f, ~f ′ ∈ Rq ~f ≺ ~f ′ ⇔ ∀i fi ≤ f ′i ∧ ~f 6= ~f ′ (2)

wherefi denotes the i-th element of vector~f .
Therefore, given two q-dimensional vectors~f and ~f ′, it

is not always possible to rank one as better than the other.
For example, in a two dimensional cost space, vector(2, 3)
dominates(2, 4), but no dominance relation exists between
vectors(2, 3) and(3, 2).

The essence of the multiobjective search problem is to find
the set ofall non-dominated solution paths. Therefore, an
analogy could be traced to a version of A* that aims at finding
all optimal paths. However, some important differences with
the scalar search problem can be pointed out.

First of all, given the dominance preference relation, two
(or more) uncomparable (non-dominated) paths may reach
any given node from the same or different parents. Several
important consequences can be identified:

1. The search tree used by A* to record the best known path
to generated nodes is no longer sufficient. A directed
acyclic graph can be used instead, to record the set of
non-dominated known paths to generated nodes.

2. The number of generated nodes may no longer be a
realistic estimate of the memory needed by the algo-
rithm. All arcs and non-dominated cost vectors reach-
ing each node need to be recorded as well. LetM be
an upper bound on the size of the largest set of non-
dominated vectors in a node, andO(M) a bound on the
size of the approximations to these sets. In the worst
caseO(MN) cost vectors need to be stored. Bent-
ley et al.[1978] prove that the average number of non-
dominated q-dimensional vectors in a set of sizeL is
O((log|L|)q−1), provided all(n!)q relative orderings are
equally probable.

3. Finally, each time a new path is generated to a known
node, its cost may need to be tested for dominance with
the set of all known costs reaching the node.

In general, heuristic estimates will involve a set of vectors
H(n) for each noden, estimating cost vectors of paths from
n to each goal node. Therefore, for each pathPsn from s
to n with cost~gP , there will be a set of heuristic evaluation
vectors,F (Psn). This function is the multiobjective analogue
to f(n) in A*,

F (Psn) = F (n,~gP) = nondom{~f | ~f = ~gP + ~h ∧ ~h ∈
H(n)}
wherenondom(X) denotes the set of non-dominated vectors
in setX.

Finally, note that at each iteration, A* selects and expands
an open node, i.e. considers all the possible extensions of
the path stored in the search tree to that node. In A* each
open node stands for a single partial solution path that can
be further expanded. However, in the multiobjective case,
if an acyclic graph is used instead of a tree to record partial
solutions, this will no longer be the case. The MOA* algo-
rithm [Stewart and White, 1991] was devised preservingnode
selection and expansion as the algorithm’s basic operations.
The next section introduces an extension of A* to the multi-
objective case that preservespathselection and expansion as
the basic operations.

3 A new algorithm for multiobjective A*
search

3.1 Brief description
The pseudocode of a new multiobjective A* search algorithm
is shown in table 1.

In accordance to the considerations in sec 2.2, we will de-
vise our extension of A* to the multiobjective case in the fol-
lowing way:

• The algorithm uses an acyclic search graphSG to record
interesting partial solution paths. For each noden in SG
two sets,Gcl(n) and Gop(n), denote the sets of non-
dominated cost vectors of paths reachingn that have or
have not been explored yet respectively (i.e. closed or
open). Each cost vector in this sets labels one or more
pointers emanating fromn to its parents with that cost.
Initially, s is the only node inSG.

• The algorithm keeps a listOPEN , of partial solution
paths that can be further expanded. For each noden in
SG and each nondominated cost vector~g ∈ Gop(n),
there will be a corresponding triple(n,~g, F (n,~g)) in
OPEN . Initially, (s,~gs, F (s,~gs)) is the only triple in
OPEN .

• At each iteration, the algorithm will consider the exten-
sion of an open triple(n,~g, F) that stands for a partial
solution path froms to n with cost~g.

• Two sets,GOALN andCOSTS, record all goal nodes
reached and all non-dominated cost vectors to goal
nodes respectively. Once a solution is known its cost
vector can be used to discard (filter) dominated open
triples.

Figure 1: Sample graph and heuristic function.

Figure 2: Search graph (iteration 2).

• Search terminates only when theOPEN list is empty,
i.e. when all open triples have been selected or filtered.

3.2 Example

We will illustrate the workings of the previous algorithm on
the sample graph in figure 1. A heuristic evaluation function
H(n) is also presented. A single heuristic vector is given for
each node for the sake of simplicity. A trace of the search
graph is shown in figures 2-6. Values ofGop and Gcl are
shown at each iteration. Values that do not change from the
previous iteration are omitted for brevity. Table 2 shows a
trace ofOPEN .

At iteration 1,SG has only nodes at its root,Gop(s) =
{(0, 0)}, andGcl(s) = ∅. The only path inOPEN is se-
lected, and its three extensions to nodesn1, n2, andn3 added
to SG andOPEN . At iteration 2 two alternatives have non-
dominated estimates inOPEN (n1 with estimate(9, 3), and
n2 with estimate(3, 9)). Let’s assume ties between non-
dominated estimates are always broken choosing the smaller
first component in estimated cost vectors. The path leading
to n2 would be selected, and its extension ton3 generated.
At iteration 3 two non-dominated paths lead to noden3 (each
cost vector inGop(n3) would label a different pointer). One
of them is non-dominated inOPEN and selected. At itera-
tion 4 a path leading to the goal nodeγ has a non-dominated
estimate inOPEN . It is selected, added toGOALN , and its
cost vector included inCOSTS. At iteration 5 the path lead-
ing to noden4 has been filtered (its estimate is dominated by
the vector inCOSTS). The only non-dominated alternatives
are selected at iterations 5 and 6. At iteration 6 a new solu-
tion path leading toγ is selected. Therefore, the setCOSTS
is updated to{(4, 10)(9, 3)}. At iteration 7 all remaining al-
ternatives are filtered andOPEN is empty. The algorithm
would backtrack fromγ returning the two paths found with
costs(4, 8) and(9, 3).

Table 1: A new path expansion algorithm for multiobjective
A* search.

1. CREATE:

• An acyclic search graphSG rooted ins.
• List of alternatives,OPEN = {(s,~gs, F (s,~gs)) }.
• Two empty sets,GOALN , COSTS.

2. CHECK TERMINATION. If OPEN is empty, then
backtrack inSG from the nodes inGOALN and return
the set of solution paths with costs inCOSTS.

3. PATH SELECTION. Select an alternative(n,~gn, F)
from OPEN with~f ∈ F non-dominated inOPEN , i.e.

∀(n′, ~gn′ , F ′) ∈ OPEN @~f ′ ∈ F ′ | ~f ′ ≺ ~f (3)

Delete (n,~gn, F) from OPEN , and move~gn from
Gop(n) to Gcl(n).

4. SOLUTION RECORDING. Ifn ∈ Γ, then

• Includen in GOALN and~gn in COSTS.
• Eliminate fromOPEN all alternatives(x, gx, Fx)

such that all vectors inFx are dominated by~gn

(FILTERING).
• Go back to step 2

5. PATH EXPANSION: Ifn 6∈ Γ, then
For all successors nodesm of n that do not produce cy-
cles inSG do:

(a) Calculate the cost of the new path found tom:
~gm = ~gn + ~c(n, m).

(b) If m is a new node
i. CalculateFm = F (m,~gm) filtering estimates

dominated byCOSTS.
ii. If Fm is not empty, put(m,~gm, Fm) in OPEN ,

and put~gm in Gop(m) labelling a pointer ton.
iii. Go to step 2.

else (m is not a new node), in case
• ~gm ∈ Gop(m) or ~gm ∈ Gcl(m): label with~gm a

pointer ton, and go to step 2.
• If ~gm is non-dominated by any cost vectors in

Gop(m) ∪ Gcl(m) (a path tom with new cost
has been found), then :

i. Eliminate from Gop(m) and Gcl(m) vectors
dominated by~gm

ii. CalculateFm = F (m,~gm) filtering estimates
dominated byCOSTS.

iii. If Fm is not empty, put (m,~gm, Fm) in
OPEN , and put~gm in Gop(m) labelling a
pointer ton.

iv. Go to step 2.
• Otherwise: go to step 2.

Figure 3: Search graph (iteration 3).

Figure 4: Search graph (iteration 4).

Figure 5: Search graph (iteration 5).

Figure 6: Search graph (iteration 6).

Table 2:OPEN alternatives at each iteration (dom = domi-
nated;← = selected).

It. OPEN
1 (s, (0, 0), ((3, 3)))←
2 (n1, (7, 1), ((9, 3)))

(n2, (1, 7), ((3, 9)))←
(n3, (8, 4), ((9, 5))) dom

3 (n1, (7, 1), ((9, 3)))
(n3, (8, 4), ((9, 5))) dom
(n3, (2, 8), ((3, 9)))←

4 (n1, (7, 1), ((9, 3)))
(n3, (8, 4), ((9, 5))) dom
(n4, (8, 12), ((8, 12))) dom
(γ, (4, 10), ((4, 10)))←

5 (n1, (7, 1), ((9, 3)))←
(n3, (8, 4), ((9, 5))) dom

6 (n3, (8, 4), ((9, 5))) dom
(γ, (9, 3), ((9, 3)))←
(n3, (9, 2), ((10, 3))) dom

3.3 Selection and expansion: paths versus nodes
MOA* has been for more than a decade the reference mul-
tiobjective heuristic search algorithm. Unlike the algorithm
presented in section 3.1, MOA* is built around the idea of
node selection and expansion. Particularly, it makes no dis-
tinction in SG between the setsGop(n) andGcl(n), and a
single setG(n) = Gop(n) ∪Gcl(n) is kept for each node. A
heuristic evaluation functionF (n) is defined for eachnode,

F (n) = nondom{~f | ~f = ~g+~h ∧~g ∈ G(n)∧~h ∈ H(n)}
The OPEN list can be considered a list of pairs(n, F (n))
where nodes with non-dominated~f ∈ F (n) are selected. The
distinction between individual paths reaching each noden is
lost and, accordingly, all known paths reaching each noden
are either simultaneously open or closed. Essentially MOA*
presents two distinguishing features when compared to the
algorithm in section 3.1:

1. Each time a new non-dominated path is found to a closed
node, the whole node is put back intoOPEN .

2. Each time a node is selected for expansion, all known
non-dominated paths reaching that node are extended.

The first difference may result in unnecesary reexpansion
of nodes. The second may result in unnecessary extension of
paths inSG and storage of uninteresting cost vectors. Ad-
ditionally, when a goal nodeγ is selected, all cost vectors
in G(γ) may enter inCOSTS. In general, it is not possi-
ble to know which of these cost vectors belong to truly non-
dominated solutions until all of them have been found.

These differences can be illustrated with the example pre-
sented in section 3.2. Provided ties in the selection of
OPEN paths were broken in the same way, search with
MOA* would produce the same results in the first two iter-
ations. In iteration 3, the selection of noden3 for expansion
would produce in MOA* the extension ofboth known non-
dominated paths to that node. Accordingly, all cost vectors
in G(n3) = {(8, 4)(2, 8)} would be extended resulting in
G(n4) = {(14, 8)(8, 12)} andG(γ) = {(10, 6)(4, 10)}, and
noden3 would be marked asclosed. Note that the new algo-
rithm did not need to store cost vectors(14, 8) in noden4, or
(10, 6) in γ.

At iteration 4 nodeγ would be selected, and two different
cost vectors{(10, 6)(4, 10)} would be included inCOSTS.
One of them does not belong to a truly non-dominated solu-
tion, but MOA* will not be able to tell until termination.

Finally, note that at iteration 5, the expansion of noden1

results in a new non-dominated path ton3. MOA* would
place accordinglyn3 back inOPEN with all its heuristic
evaluation cost vectors. This implies that prior to termination,
MOA* will need to reexpandn3. This was unnecessary in
the new algorithm since the newly found path ton3 can never
lead to a non-dominated solution.

4 Properties
This section presents proofs on the admissibility of the new
algorithm presented in section 3, and bounds on the number
of paths selected and stored in memory.

A scalar algorithm is said to beadmissibleif it is guaran-
teed to return an optimal solution whenever a solution exists.

We extend the definition as follows: a multiobjective search
algorithm isN-admissibleif it terminates with the set ofall
non-dominated solutions whenever this set is finite and non-
empty, or if it does not terminate whenever this set is infinite.

Let C∗ be the set of non-dominated solution costs,~g(P)
the cost vector of pathP , and� the relation “dominates or
equals”. Let~m∗ = (m∗

1,m
∗
2, . . . m

∗
q) denote theideal op-

timal cost vector, i.e. a vector that would attain the optimal
cost for each individual dimension. Note that problems where
ideal optimal solutions are reachable are highly unusual.

The proofs presented in this section rely on a set of reason-
able assumptions, analogous to those presented in[Stewart
and White, 1991] to prove the admissibility of MOA*:

1. The graphG = (N,A) to be searched is locally finite.

2. The heuristic function H(n) is admissible,
i.e. for all non-dominated solution paths
P ∗ = (s, n1, . . . , ni, ni+1 . . . γk), γk ∈ Γ and
each subpathP ∗

i = (s, n1, . . . , ni) of P ∗,

∃~h ∈ H(ni) | ~g(P ∗
i) + ~h � ~g(P ∗)

3. For infinite graphs,

(a) hk ≥ 0 ∀k ∀n ∀~h ∈ H(n)
(b) ~ck(n, n′) ≥ ε > 0 ∀k ∀(n, n′) ∈ A

Theorem 1 : For each non-dominated solution pathP ∗ =
(s, n1, . . . , ni, ni+1 . . . γ) with cost~g(P ∗) = ~c∗, there is al-
ways before its discovery a subpathP ∗

i = (s, n1, . . . , ni) of
P ∗ such that: a)P ∗

i is recorded inSG; b) ~g(P ∗
i) ∈ Gop(ni);

c) ∃~f ∈ F (P ∗
i) | ~f � ~c∗.

Proof. We first consider parts (a), and (b). The proposition
is true at iteration 1, whens is in OPEN and at the root of
SG. It is also true in subsequent iterations, since subpaths
of non-dominated solutions can never be pruned fromSG.
Let P ∗

i make the proposition true for some non-dominated
solution P ∗. By definition, P ∗

i is non-dominated toni,
therefore~g(P ∗

i) will never be removed fromGop(ni) unless
(ni, ~g(P ∗

i), F (P ∗
i)) is selected for expansion. Upon selec-

tion, if ni = γ, thenP ∗
i = P ∗ is discovered. Ifni 6= γ, a new

non-dominated path toni+1, P ∗
i+1 = (s, n1, . . . , ni, ni+1)

will be generated,~g(P ∗
i+1) included inGop(ni+1) andP ∗

i+1
will satisfy the proposition. Part (c) follows then trivially
from the definition ofF and admissible heuristic. This, in
turn, preventsP ∗ or any of its subpaths from filtering.

Theorem 2 If there is a solution, the algorithm terminates
even on infinite graphs.

Proof. All best first search algorithms that prune cycles ter-
minate on finite graphs[Pearl, 1984]. Given the assumptions
for infinite graphs, all pathsP with length longer than

maxi{m∗
i }

ε

will trivially attain ~g(P) such that~c∗ ≺ ~f for all ~c∗ ∈ C∗

and all ~f ∈ F (P). Since the graphG is locally finite,
there can only be a finite number of partial solution paths
non-dominated byC∗. Therefore, from theorem 1, all non-
dominated solutions will eventually be found, and all infinite
paths will be pruned or filtered fromOPEN in a finite num-
ber of steps.

Theorem 3 The algorithm is N-admissible.

Proof. From theorems 1 and 2 follows that the algorithm will
always terminate with all non-dominated solutions. It suffices
to show that a dominated solution can never be selected. Let’s
assume, for the purpose of contradiction, that a dominated
solutionP with cost~gP is selected, i.e. exists~c∗ ∈ C∗ with
~c∗ ≺ ~gP , andF (P) = {~gP }. It must be~c∗ 6∈ COSTS, for
otherwiseP would have been filtered. Now, from theorem 1,
for all ~c∗ ∈ C∗ not found yet there is at least one pathPi =
(s, . . . , ni) such that exists~f ∈ F (Pi)) with ~f � ~c∗, and
(ni, ~g(Pi), F (Pi)) is in OPEN . Now, from the transitivity
of the dominance relation follows that~f � ~c∗ ≺ ~gP andP
cannot be selected for expansion.

Corolary 1 At any timeCOSTS ⊆ C∗. Therefore, the al-
gorithm may terminate at any time returning the set of non-
dominated solutions found so far.

Corolary 2 All paths P in SG with ~f ∈ F (P) such that
∀~c∗ ∈ C∗,~c∗ ⊀ ~f will either be pruned at later iterations, or
selected for expansion.

Corolary 3 No pathP such that∀~f ∈ F (P) ∃~c∗ ∈ C∗,~c∗ ≺
~f will ever be selected for expansion.

Corolary 4 For each pathP recorded inSG such that∀~f ∈
F (P) ∃~c∗ ∈ C∗,~c∗ ≺ ~f , its extensions will never be
recorded inSG.

Proofs of corolaries 1, 3 and 4 are trivial from the proof
of theorem 3. Corolary 2 is also trivial since otherwise the
algorithm would not terminate.

Note that a version of A* that found all optimal paths
would also satisfy corolary 1. Corolaries 2 and 3 give lower
and upper bounds on the paths selected for expansion. These
are analogous to the efficiency bounds of A* (see section 2.1).

The example presented in section 3.2 shows that corolaries
1, 3, and 4 do not apply to MOA*. Particularly, for MOA*,
no upper bound can be given for the cost of paths whose ex-
tensions will be recorded inSG depending onC∗.

5 Experimental test
5.1 Search space and practical issues
Search in square grids of nodes was used to test the algo-
rithms. These experiments provide further insight into the
workings of both algorithms, as well as a preliminary evalua-
tion of the memory savings that can be achieved with the new
algorithm. In two dimensional grids, each node (identified by
its coordinates) has its four neighbours as successors. Note
that, for this problem, storing each node takes less space than
storing each cost vector forq > 2.

Vector costs were generated randomly with integer compo-
nents in the range[1, 10]. A single goal node was generated
for each problem instance, at a random distance between 2
and 30 arcs from the start node. Manhattan distance to the
goal can be used as an optimistic cost estimate for each com-
ponent of the cost vectors.

A lexicographic order was used to sort alternatives in
the OPEN set, as sugested in[Loui, 1983]. Particularly,

only the current lexicographically optimal evaluation vector
~f is placed inOPEN for each node with open alternatives.
Therefore, the size ofOPEN is O(|N |) in the worst case
for both algorithms, and alternatives can be deleted and in-
serted inO(log|N |) in a binary heap. Proofs on admissibility
are not affected by this selection mechanism, since a lexico-
graphic optimum is always a non-dominated vector.

5.2 Results
Table 3 summarizes relevant parameters of the search car-
ried out over a set of 1000 problems by both algorithms1.
The set involved two-dimensional grids with three objectives.
The number of nodes involved in selections was the same on
both cases. The new algorithm performed1208% more itera-
tions, but took only3% more time on average to complete
the searches. In fact the new algorithm performed slower
than MOA* only in 297 of the searches and faster in669 of
them. On the memory side, the number of nodes stored by
the new algorithm was slightly higher, the number of arcs
slightly lower, and the number of stored cost vectors was
clearly lower. MOA* had lower requirements only in two
problem instances, and needed41.4% more space on aver-
age.

Several phenomena can be observed. The higher average
size of theOPEN list may slow insertions and deletions in
the new algorithm. An average search with MOA* needed to
expand only 2.47 goal nodes to find all solution paths, while
the new algorithm needed 75.57 on average (at least one for
each cost vector inC∗). This suggests MOA* may benefit in
some cases from earlier filtering, accounting for the slightly
lower number of nodes recorded inSG and the two very sim-
ple cases in which MOA* stored less cost vectos. However,
memory consumption is clearly dominated by the number of
paths (or cost vectors) stored inSG where the new algorithm
performs consistently better.

In summary, the new algorithm performed much better
in memory requirements but found solutions slightly more
slowly on average. Time values are the only measure subject
to implementation details and should be taken with caution,
but show clearly that the number of iterations is not a good
indicator to compare the running time of both algorithms.

6 Conclusions and future work
A new admissible algorithm based on path selection and
expansion has been presented for multiobjective heuristic
search. The algorithm is amenable to formal analysis and
presents several interesting properties: the algorithm may be
stopped at any time, returning the subset of non-dominated
solutions found so far; bounds can be given on the number of
paths stored inSG, and selected for expansion, as a function
of C∗. An example is shown where MOA*, a previous algo-
rithm, violates the upper bounds. Preliminary experimental
tests confirm that the new algorithm consistently saves sub-
stantial amounts of memory, though more complete experi-
mental evaluation in needed.

The properties presented in the paper are a necessary first
step in a proper analysis on the influence of monotonicity and

1Problem sets and solutions are available from the authors.

Table 3: Test results [average (min; max; stnd. dev.)].
New algorithm
Iterations 8396.22 (6.00 ; 63722.00 ; 10024.38)
Goal nodes sel. 75.57 (1.00 ; 433.00 ; 77.26)
Nodes inSG 427.60 (9.00 ; 1147.00 ; 245.25)
Arcs inSG 805.30 (9.00 ; 2318.00 ; 498.22)
Cost vect. inSG 9248.19 (9.00 ; 67904.00 ; 10809.98)
Avg. OPEN size 171.89 (1.67 ; 524.04 ; 112.76)
Time (s) 7.99 (0.00 ; 169.18 ; 16.35)
MOA*
Iterations 694.80 (6.00 ; 2338.00 ; 458.23)
Goal nodes sel. 2.47 (1.00 ; 15.00 ; 1.84)
Nodes inSG 411.11 (9.00 ; 1124.00 ; 237.66)
Arcs inSG 817.34 (9.00 ; 2401.00 ; 504.26)
Cost vect. inSG 13080.49 (9.00 ; 88684.00 ; 14648.51)
Avg. OPEN size 40.56 (1.67 ; 80.71 ; 16.25)
Time (s) 7.75 (0.00 ; 149.86 ; 13.66)

heuristic accuracy in the performance of the algorithm. Fu-
ture work includes detailed average time complexity analysis
of the algorithms, a detailed study on the influence of heuris-
tic information on time and space efficiency, and, eventually,
an extension of Dechter and Pearl’s[1985] analysis on the
optimality of A* to the multiobjective case.

References
[Bentleyet al., 1978] J.L. Bentley, H.T. Kung, M. Schkol-

nick, and C.D. Thomson. On the average number of max-
ima in a set of vectors and applications.Journal of the
ACM, 25(4):536–543, October 1978.

[Dasguptaet al., 1999] Pallab Dasgupta, P.P. Chakrabarti,
and S.C. DeSakar. Multiobjective Heuristic Search.
Vieweg, Braunschweig/Wiesbaden, 1999.

[Dechter and Pearl, 1985] Rina Dechter and Judea Pearl.
Generalized best-first search strategies and the optimality
of A*. Journal of the ACM, 32(3):505–536, July 1985.

[Hartet al., 1968] P.E. Hart, N.J. Nilsson, and B. Raphael. A
formal basis for the heuristic determination of minimum
cost paths.IEEE Trans. Systems Science and Cybernetics
SSC-4, 2:100–107, 1968.

[Loui, 1983] Ronald P. Loui. Optimal paths in graphs with
stochastic or multidimensional weights.Communications
of the ACM, 26(9):670–676, September 1983.

[Mandow and Ṕerez de la Cruz, 2003] L. Mandow and J.L.
Pérez de la Cruz. Multicriteria heuristic search.European
Journal of Operational Research, 150:253–280, 2003.

[Pearl, 1984] Judea Pearl. Heuristics. Addison-Wesley,
Reading, Massachusetts, 1984.

[Perny and Spanjaard, 2002] Patrice Perny and Olivier Span-
jaard. On preference-based search in state space graphs. In
Proc. Eighteenth Nat. Conf. on AI, pages 751–756. AAAI
Press, July 2002.

[Stewart and White, 1991] Bradley S. Stewart and
Chelsea C. White. Multiobjective A*. Journal of
the ACM, 38(4):775–814, October 1991.

