A New Approach to Multiobjective A* Search

L. Mandow and J.L. Pérez de la Cruz
Dpto. Lenguajes y Ciencias de la Compuderci
Universidad de Mlaga 29071 - Mlaga (Spain)

{lawrence, perea@Icc.uma.es

Abstract analogous to those of A*, that are not shared by MOA*. Ad-
ditionally, empirical tests show that the new algorithm offers
substantial savings in memory over MOA*.

The paper is organized as follows. Section 2 reviews pre-
vious relevant work in scalar search and points out analogies
and differences with the multiobjective search problem. Sec-
tion 3 presents a new algorithm and illustrates its behaviour
with a simple example. Relevant differences with MOA* are
identified. Section 4 proves the admissibility of the new al-
1 Introduction gorithm and a discusses on its efficiency. The performance

The multiobjective search problem is an extension of thd €Sults of multiobjective search over a set of randomly gener-
shortest path problem where arc costs become vectors. This§€d 9rid search problems is presented in section 5. Finally,
a genuinely different problem since vector costs induce Onl)}:onclusmns and future research are briefly summarized.
a partial order relation.

Loui [1989 studied the extension of Dijkstra’s algorithm 2 Scalar and multiobjective search
to the multiobjective case, and showed that some stochasti . .
search problems can be reduced to multiobjective ones. Stev?—'l Previous results in scalar graph search
art and Whitg 1991 outlined MOA*, a multiobjective exten- The shortest path problem can be stated as follows: given
sion of A*, and presented proofs on admissibility, node ex-a locally finite labelled directed grapi = (N, 4, ¢), of
pansion, and comparison of heuristics. Dasgupta 1999 |N| nodes, andA| arcs(n,n’) labelled with positive costs
extended this work in several ways, including a version forc(n,n') € R, a start nodes € NN, and a set of goal nodes
non-monotone heuristics (MOA**), with applications in the T' € N, find the minimum cost path i&' from s to a node in
area of VLSI design and the log cutting problem. Perny and-
Spanjaard2007 presented a generalization of MOA* with ~ The A* algorithm[Hartet al,, 196 is an efficient solution
application to a Web access problem. Mandow aacePde  to this problem. It is a best-first search algorithm that uses a
la Cruz[2009 presented a systematic extension of the heurissearch tree to store the set of known interesting partial solu-
tic search paradigm to the multicriteria case, and admissibilityion paths, a list of open nodes that can be further expanded,
conditions for algorithms with different multicriteria prefer- and a characteristic evaluation functiétm) = g(n) + h(n)
ence relations (multiobjective, multiattribute, lexicographic,to select the next open node to be expanded. While function
and goal-based). g(n) denotes the known cost of the path stored in the tree

This paper reconsiders the extension of A* to the multi-from s to n, the heuristic functiork(n) estimates of the cost
objective case and presents a new algorithm. The basic o@f a solution from node: to a goal node. Heuristic functions
erations in A* are selection and expansion of open nodes atan be devised for particular problems depending on their se-
each iteration. In A* each open node stands for a single pamantics.
tial solution path that can be further expanded. However, as Beautiful results have been presented to analyse the rela-
explained in the paper, this is no longer the case in multition between the accuracy bfn) and the properties of A*.
objective problems, where many interesting paths may reacAdmissibility: Let 2*(n) be the real optimal cost of a path
the same node. The MOA* algorithistewart and White, from n to a goal node. When the heuristic is an optimistic
1991], and subsequent extensions, were devised preservirggtimate f(n) < h*(n) Vn), the search is admissible, i.e. if
nodeselection and expansion as the algorithm’s basic opera solution exists it is guaranteed to find an optimal one. With
ations. This paper presents an extension of A* to the muladditional constraintsik(n) > 0 Vn, andc¢(n,n’) > ¢ >
tiobjective case that preservpath selection and expansion 0V(n,n’) € A) A*is admissible even on infinite graphs.
as the basic operations. Admissibility can be proven venEfficiency: WhenVn h(n) = 0, A* behaves like Dijkstra’s
easily. The new algorithm also shows important propertiesalgorithm. Wherh(n) is consistentr satisfies the equivalent

The paper presents a new algorithm for multiob-
jective heuristic graph search problems. The algo-
rithm presents some nice properties that are easily
proven. Additionally, empirical tests show that sub-
stantial savings in memory can be achieved over
previous proposals.



monotoneproperty, 3. Finally, each time a new path is generated to a known
node, its cost may need to be tested for dominance with
h(n) +c(n,n') < h(n') ¥(n,n') € A 1) the set of all known costs reaching the node.

A* solves the problem irO(|N|) iterations, storing)(|N|) In general, heuristic estimates will involve a set of vectors
nodes in memory, in the worst case. Particularly;ilenotes [ (n) for each noder, estimating cost vectors of paths from
the optimal solution cost, A* will always expand all nodes ,, to each goal node. Therefore, for each p&th from s
with f(n) < c¢*, butat most those witffi(n) < c*. Therefore, to n with costgp, there will be a set of heuristic evaluation
given an optimistic estimate, big values/gfr) can push the  vectors,F( Py, ). This function is the multiobjective analogue
evaluation of more and more nodes beyond fle) = ¢* to f(n) in A%,

frontier, reducing search effort. F(P..) = F(n.dp) = nondom{f| f=adr+h Ah €
Optimality: When the heuristic is monotone A* can also be g7 n( sn) (n. gp) U1f=gr

proven optimal among the class of admissible best-first a|90\7vherenondom( X) denotes the set of non-dominated vectors
rithms that are guided by path-dependent evaluation functiong, gt .
[Dechter and Pearl, 1985 Finally, note that at each iteration, A* selects and expands
. . an open node, i.e. considers all the possible extensions of
2.2 Extension to the multiobjective case the pF;th stored in the search tree to t%at node. In A* each
The multiobjective search problem can be stated as followsppen node stands for a single partial solution path that can
given a locally finite labelled directed gragh= (N, A,¢),  be further expanded. However, in the multiobjective case,
of [N] nodes, andA| arcs(n, n’) labelled with positive vec-  if an acyclic graph is used instead of a tree to record partial
torsé(n,n’) € R?, astartnode € N, and a setof goal nodes solutions, this will no longer be the case. The MOA* algo-
I' € N, find the set of non-dominated cost pathgifrom s rithm [Stewart and White, 199vas devised preservingde
to nodes in". selection and expansion as the algorithm’s basic operations.
In multiobjective problems cost vectorgn,n’) induce  The next section introduces an extension of A* to the multi-
only a partial order preference relatiencalleddominance  objective case that preserveathselection and expansion as

- - , , — the basic operations.
VEFERT f<f e Vi i<fiANfES (D)

wheref; denotes the i-th element of vectfr
Therefore, given two g-dimensional vectofsand f7, it search
is not always possible to rank one as better than the otheg.1 Brief description

For example, in a two dimensional cost space, ve@08)  rpa hseydocode of a new multiobjective A* search algorithm
dominates(2, 4), but no dominance relation exists between;q <t o in table 1

vectors(2,3) and(3, 2). In accordance to the considerations in sec 2.2, we will de-

The essence of the multiobjective search problem is to find;se o extension of A* to the multiobjective case in the fol-
the set ofall non-dominated solution paths. Therefore, anlowing way:

analogy could be traced to a version of A* that aims at finding
all optimal paths. However, some important differences with ® The algorithm uses an acyclic search grajhto record
the scalar search pr0b|em can be pointed out. interesting partial solution paths. For each nade SG
First of all, given the dominance preference relation, two ~ two sets,G(n) and G,,(n), denote the sets of non-
(or more) uncomparable (non-dominated) paths may reach ~dominated cost vectors of paths reachinthat have or

any given node from the same or different parents. Several have not been explored yet respectively (i.e. closed or
important consequences can be identified: open). Each cost vector in this sets labels one or more

ointers emanating from to its parents with that cost.
1. The search tree used by A* to record the best known path Ipnitially sis the oniqy node irSG.p

to generated nodes is no longer sufficient. A directed . . . .
acyclic graph can be used instead, to record the set of ® The algorithm keeps a listPEN, of partial solution

non-dominated known paths to generated nodes. paths that can be further expanded. For each moute
SG and each nondominated cost vecire G,,(n),
2. The number of generated nodes may no longer be a  there will be a corresponding tripler, g, F(n, §)) in

realistic estimate of the memory needed by the algo-  oppy. Initially, (s, Gs, F(s,d,)) is the only triple in
rithm. All arcs and non-dominated cost vectors reach- OPEN.

ing each node need to be recorded as well. Mebe

an upper bound on the size of the largest set of non- . X a ;
dominated vectors in a node, aBd /) a bound on the sion of an open triplgn, g, F') that stands for a partial
size of the approximations to these sets. In the worst ~ Solution path froms to n with costg.

caseO(MN) cost vectors need to be stored. Bent- e Two setsGOALN andCOSTS, record all goal nodes

3 A new algorithm for multiobjective A*

e At each iteration, the algorithm will consider the exten-

ley et al.[197] prove that the average number of non- reached and all non-dominated cost vectors to goal
dominated g-dimensional vectors in a set of sizés nodes respectively. Once a solution is known its cost
O((log|L|)?~1), provided all(n!)? relative orderings are vector can be used to discard (filter) dominated open

equally probable. triples.



n Hin)
5 13,33
nl 2,2
n2 2,2 . . . . . .
™ |i,D) Table 1: A new path expansion algorithm for multiobjective
nd 10,0 A* search.
L 1. CREATE:
e An acyclic search grapBG rooted ins.
o List of alternativesOPEN = {(s, s, F (s, gs)) }-
i 1S | h and heuristic functi e Two empty setsGOALN, COSTS.
IguIe 2 >ample graph and REUrstic function. 2. CHECK TERMINATION. If OPEN is empty, then

@ Ou®=0
3, Ml =(7,1) Gale)= (0,00

G )= 3
Gppn3) = ((8,4) Gopn2)=((1,7)
G,n3) =0 G,n2) =2

Figure 2: Search graph (iteration 2).

e Search terminates only when thBPE N list is empty,
i.e. when all open triples have been selected or filtered.

3.2 Example

We will illustrate the workings of the previous algorithm on 5.

the sample graph in figure 1. A heuristic evaluation function
H(n) is also presented. A single heuristic vector is given for
each node for the sake of simplicity. A trace of the search
graph is shown in figures 2-6. Values 6%, andG,; are
shown at each iteration. Values that do not change from the
previous iteration are omitted for brevity. Table 2 shows a
trace ofOPEN.

At iteration 1, SG has only nodes at its root,G,,(s) =
{(0,0)}, andG(s) = 0. The only path inOPEN is se-
lected, and its three extensions to nodesn.,, andns added
to SG andOPEN. At iteration 2 two alternatives have non-
dominated estimates BBPEN (n; with estimate(9, 3), and
ny With estimate(3,9)). Let's assume ties between non-
dominated estimates are always broken choosing the smaller
first component in estimated cost vectors. The path leading
to ny would be selected, and its extensionrit9 generated.

At iteration 3 two non-dominated paths lead to negdeach
cost vector inG,,(ng) would label a different pointer). One
of them is non-dominated i@ PEN and selected. At itera-
tion 4 a path leading to the goal nogidhnas a non-dominated
estimate MO PEN. Itis selected, added BOALN, and its
cost vector included iI€OST'S. At iteration 5 the path lead-
ing to nodeny has been filtered (its estimate is dominated by
the vector inCOST'S). The only non-dominated alternatives
are selected at iterations 5 and 6. At iteration 6 a new solu-
tion path leading toy is selected. Therefore, the $6OST'S

is updated td (4, 10)(9, 3)}. At iteration 7 all remaining al-
ternatives are filtered an@ PEN is empty. The algorithm
would backtrack fromy returning the two paths found with
costs(4, 8) and(9, 3).

backtrack inSG from the nodes ilGOALN and return
the set of solution paths with costsGrO.ST'S.

. PATH SELECTION. Select an alternative:, g,,, F)

from OPEN withf € F non-dominated ifDPEN, i.e.
¥(n',Gu, F') €OPEN 3f e F' | ['<f (3)

Delete (n, §,, F) from OPEN, and moveg, from
Gop(n) 10 G (n).

. SOLUTION RECORDING. Ifn € T, then

e Includen in GOALN andg, in COSTS.

e Eliminate fromOPEN all alternative§x, g,., F;)
such that all vectors irf,, are dominated byj,
(FILTERING).

e Go back to step 2

PATH EXPANSION: Ifn € T', then

For all successors nodes of n that do not produce cy-
clesinSG do:

(a) Calculate the cost of the new path foundta

Jm = Gn + c(n,m).

(b) If m is a new node

i. CalculateF,, = F(m,g,) filtering estimates
dominated byCOSTS.

ii. If F,,, is notempty, putm, g, Fi,) in OPEN,
and putg,, in G,,(m) labelling a pointer tou.

iii. Go to step 2.

else (n is not a new node), in case

® G € Gop(m) OF Gy, € Gy (m): label with g, a
pointer ton, and go to step 2.

e If g, is non-dominated by any cost vectors in
Gop(m) U G (m) (a path tom with new cost
has been found), then :

i. Eliminate from G,,(m) and G, (m) vectors
dominated by,

ii. CalculateF,, = F(m,g,,) filtering estimates
dominated byCOST'S.

ii. If F,, is not empty, put(m,gm,Fy) in
OPEN, and putg,, in G,,(m) labelling a
pointer ton.

iv. Goto step 2.

e Otherwise: go to step 2.
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Figure 3: Search graph (iteration 3).
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Figure 4: Search graph (iteration 4).

COSTS = ((4,10)
GOALN=(y)

Galt) = /@/
Gt = (¢4, 10) @

Figure 5: Search graph (iteration 5).

G ) = (530 "
Gpy013) = ((8,4%32,20)

Figure 6: Search graph (iteration 6).

Table 2: OPEN alternatives at each iteration (dom = domi-

nated;— = selected).

It. | OPEN

1 | (5(0,0),((3,3))) <

2 (n17(771)ﬂ((973)))
(n2,(1,7),((3,9))) «
(TL3, (87 4)3 ((97 5))) dom

3 (nl?(771)’((973)))
(TL3, (87 4)3 ((97 5))) dom
(n3,(2,8),((3,9))) <

4 [ (n,(7,1),((9.3)))
(n37 (87 4)a ((97 5))) dom
(’I’L4, (87 12)a ((87 12))) om
(7,(4,10),((4,10))) <

S) (nl?(771)a((973))) —
(n3, (8,4),((9,5))) dom

6 (’I’L3, (87 4)a ((97 5))) dom
(7,(9,3),((9,3))) <
(n37 (97 2)7 ((107 3)) dom

3.3 Selection and expansion: paths versus nodes

MOA* has been for more than a decade the reference mul-
tiobjective heuristic search algorithm. Unlike the algorithm
presented in section 3.1, MOA* is built around the idea of
node selection and expansion. Particularly, it makes no dis-
tinction in SG between the set§,,(n) and G (n), and a
single selG(n) = Gop(n) U G (n) is kept for each node. A
heuristic evaluation functiof'(n) is defined for eachode

F(n) = nondom{f | f = §+h AG e G(n)Ah € H(n)}
The OPEN list can be considered a list of paifs, F'(n))
where nodes with non-dominatgds F(n) are selected. The
distinction between individual paths reaching each node
lost and, accordingly, all known paths reaching each node
are either simultaneously open or closed. Essentially MOA*
presents two distinguishing features when compared to the
algorithm in section 3.1:

1. Eachtime a new non-dominated path is found to a closed
node, the whole node is put back iltPEN.

2. Each time a node is selected for expansion, all known
non-dominated paths reaching that node are extended.

The first difference may result in unnecesary reexpansion
of nodes. The second may result in unnecessary extension of
paths inSG and storage of uninteresting cost vectors. Ad-
ditionally, when a goal node is selected, all cost vectors
in G(v) may enter inCOSTS. In general, it is not possi-
ble to know which of these cost vectors belong to truly non-
dominated solutions until all of them have been found.

These differences can be illustrated with the example pre-
sented in section 3.2. Provided ties in the selection of
OPEN paths were broken in the same way, search with
MOA* would produce the same results in the first two iter-
ations. In iteration 3, the selection of nodg for expansion
would produce in MOA* the extension dfoth known non-
dominated paths to that node. Accordingly, all cost vectors
in G(ns) = {(8,4)(2,8)} would be extended resulting in
G(na) = {(14,8)(8,12)} andG(v) = {(10,6)(4,10)}, and
nodens would be marked aslosed Note that the new algo-
rithm did not need to store cost vectdisl, 8) in noden,, or
(10,6) in .

At iteration 4 nodey would be selected, and two different
cost vectorg (10, 6)(4, 10)} would be included irCOSTS.
One of them does not belong to a truly non-dominated solu-
tion, but MOA* will not be able to tell until termination.

Finally, note that at iteration 5, the expansion of nede
results in a new non-dominated pathstg. MOA* would
place accordinglyhs back inOPEN with all its heuristic
evaluation cost vectors. This implies that prior to termination,
MOA* will need to reexpandnz. This was unnecessary in
the new algorithm since the newly found patmtpcan never
lead to a non-dominated solution.

4 Properties

This section presents proofs on the admissibility of the new
algorithm presented in section 3, and bounds on the number
of paths selected and stored in memory.

A scalar algorithm is said to bedmissiblef it is guaran-
teed to return an optimal solution whenever a solution exists.



We extend the definition as follows: a multiobjective searchTheorem 3 The algorithm is N-admissible.

algorlthm_ |sN-adm|s§|bIe|f It terminates W'th.the set oéll Proof. From theorems 1 and 2 follows that the algorithm will
non-dominated solutions whenever this set is finite and non;

i X X - .- always terminate with all non-dominated solutions. It suffices
empty, or if it does not terminate whenever this set s infinite., g\ that a dominated solution can never be selected. Let's
Let C* be the set of non-dominated solution cogt&P) :

the cost vector of patP. and < the relation “dominates or 25SUMe; for the purpose of contradiction, that a dominated
equals” VLetm* _p (m*’ . m) derl10te the'dleal op solution P with costgp is selected, i.e. exis®& € C* with
. — 15 Qg v = —p — — — —

timal cost vector, i.e. a vector thag[ would attain the Optimalgth:r\?vligs'e%n\(ljvgéll;)h avégggénltﬁ?:;ztdbﬁoﬁ So?nstﬁgé:g:n 1
cost for gach mdw@ual dimension. Note thqt problems Wherqeor all @ ¢ C* not found yet there is at least one path=
ideal optimal solutions are reachable are highly unusual. - o

The proofs presented in this section rely on a set of reasors - - - 7%:) Such that existy’ ¢ F(Pi))f with r{ = ¢, and
able assumptions, analogous to those present¢Stawart (> 9(F:), F'(Fi)) is in OPEN. Now, from the transitivity
and White, 199]Lto prove the admissibility of MOA*: of the dominance relation follows thgt < ¢* < gp and P

1. The graph = (N, A) to be searched is locally finite. ~ €@nnot be selected for expansion.

2. The heuristic function H(n) is admissible, Corolary1l Atany timeCOSTS C C*. Therefore, the al-

ie. for all non-dominated solution paths gorithm may terminate at any time returning the set of non-
P* = (s,n1,...,ninig1---7),% € I and dominated solutions found so far.
e§Ch Subpattf;” = (S’nj’ -+ ymq) Of P, Corolary 2 All paths P in SG with f € F(P) such that
3h € H(n;) | g(P7)+h = g(P7) ver € C*, & £ f will either be pruned at later iterations, or
3. For infinite graphs, selected for expansion.
@ hy >0  VkVnVh e H(n) Corolary 3 No pathP such that/f € F(P)3&* € C*,& <
(b) ci(n,n') 2e>0  VkV(nn')eA f will ever be selected for expansion.
Theorem 1 : For each non-dominated solution pafh* = . >
(5,711, -+ T3, Tigs1 - - .) With COStF(P*) = ¢, there is al- Corolaryﬁk4 For eflcfk patthre.corded mSG such that/f €
ways before its discovery a subpai = (s,n,...,n;) of F(P) 3¢ € C%.& < f, its extensions will never be
P* such that: ap; is recorded inSG; b) §(P¥) € Gop(n;); ~ recordedinSG.
c)3f € F(P) | f=e. Proofs of corolaries 1, 3 and 4 are trivial from the proof

Proof. We first consider parts (a), and (b). The propositionOf thgorem 3. Corolary 2 is also trivial since otherwise the
is true at iteration 1, whes is in OPEN and at the root of ~&/gorithm would not'termlnat*e. ,

SG. Itis also true in subsequent iterations, since subpaths NOte that a version of A* that found all optimal paths
of non-dominated solutions can never be pruned fi®@ would also satisfy corolary 1. Corolaries 2 and 3 give lower
Let P make the proposition true for some non-dominated®"d UPper bounds on the paths selected for expansion. These
solution P* By definition, P* is non-dominated ton, are analogous to the efficiency bounds of A* (see section 2.1).
thereforegj(].?-*) will never be removed front o, (1) unless The example presented in section 3.2 shows that corolaries
(ni, §(Pr), F(P?)) is selected for expansion. Upon selec- 1, 3, and 4 do not apply to MOA*. Particularly, for MOA*,
tion, if n; = 7, thenP? = P* is discovered. If; # v, anew N0 Upper bound can be given for the cost of paths whose ex-
non-dominated pach @1, Py = (s,n1,... 05 nis1) tensions will be recorded i6G depending orC*.

will be generatedg( P}, ) included inG,,(n;41) and Py, )

will satisfy the proposition. Part (c) follows then trivially 5 EXperimental test

from the definition of " and admissible heuristic. This, in 51 gearch space and practical issues

turn, prevents?* or any of its subpaths from filtering. . .
P y P 9 Search in square grids of nodes was used to test the algo-

Theorem 2 If there is a solution, the algorithm terminates (jthms. These experiments provide further insight into the

even on infinite graphs. workings of both algorithms, as well as a preliminary evalua-

Proof. All best first search algorithms that prune cycles ter-tion of the memory savings that can be achieved with the new

minate on finite graphkPearl, 198} Given the assumptions algorithm. In two dimensional grids, each node (identified by

for infinite graphs, all path® with length longer than its coordinates) has its four neighbours as successors. Note
max; {m;} that, for this problem, storing each node takes less space than
—_— storing each cost vector fgr> 2.

o ) . Vector costs were generated randomly with integer compo-
will trivially attain g(P) such thae” < f forall ¢ € C*  nents in the rangfl, 10]. A single goal node was generated
and all f € F(P). Since the grapltG is locally finite, for each problem instance, at a random distance between 2
there can only be a finite number of partial solution pathsand 30 arcs from the start node. Manhattan distance to the
non-dominated by”*. Therefore, from theorem 1, all non- goal can be used as an optimistic cost estimate for each com-

dominated solutions will eventually be found, and all infinite ponent of the cost vectors.
paths will be pruned or filtered fro@ PEN in a finite num- A lexicographic order was used to sort alternatives in
ber of steps. the OPEN set, as sugested {iLoui, 1983. Particularly,

€



only the current lexicographically optimal evaluation vector
fis placed inOPEN for each node with open alternatives.

Table 3: Test results [average (min; max; stnd. dev.)].

Therefore, the size dDPEN is O(|N|) in the worst case

X . . | Iterations 8396.22 (6.00 ; 63722.00 ; 10024.38)

for both algorithms, and alternatives can be deleted and in- . i
serted inO(log|N|) in a binary heap. Proofs on admissibility Goal nodes sel. 75.57(1.00;433.00; 77.26)
are not affectged by this selection rﬁechanism since a Iexicc-'\IOdes IS 427.60 (9.00;1147.00; 245.2%)
y ’ Arcsin SG 805.30 (9.00; 2318.00 ; 498.22)

graphic optimum is always a non-dominated vector.

5.2 Results
Table 3 summarizes relevant parameters of the search c3

New algorithm

Cost vect. inSG
Avg. OPEN size
LJime (s)

9248.19 (9.00 ; 67904.00 ; 10809.98)

171.89 (1.67 ;524.04 ; 112.76
7.99(0.00;169.18; 16.35

ried out over a set of 1000 problems by both algorithims

The set involved two-dimensional grids with three objectives Ict;%r:ltirc])cr)lge ol 694'802( 27001 (2)83815?%04518824;)
The number of nodes invol_ved in selections was theg same OnNodes inS(S;’S ) 41111 ('9 O(O _‘112’4 0'0 ) 237 66)
both cases. The new algorithm perform@d8% more itera- Arcs in SG 817.34 (9.00 : 2401.00 : 504.26)

tions, but took only3% more time on average to complete
the searches. In fact the new algorithm performed slowe

" MOA*

Cost vect. inSG

" Avg. OPEN size

13080.49 (9.00 ; 88684.00 ; 14648.5
40.56 (1.67;80.71; 16.25

1)

than MOA* only in 297 of the searches and fasterdf9 of

them. On the memory side, the number of nodes stored

the new algorithm was slightly higher, the number of arcs

slightly lower, and the number of stored cost vectors washeuristic accuracy in the performance of the algorithm. Fu-

clearly lower. MOA* had lower requirements only in two ture work includes detailed average time complexity analysis

problem instances, and needétd4% more space on aver- of the algorithms, a detailed study on the influence of heuris-

age. tic information on time and space efficiency, and, eventually,
Several phenomena can be observed. The higher averaga extension of Dechter and PeaflX084 analysis on the

size of theOPEN list may slow insertions and deletions in optimality of A* to the multiobjective case.

the new algorithm. An average search with MOA* needed to

expand only 2.47 goal nodes to find all solution paths, whileReferences

the new algorithm needed 75.57 on average (at least one f B
o ; i entleyet al,, 1974 J.L. Bentley, H.T. Kung, M. Schkol-
each cost vector in’*). This suggests MOA* may benefit in ? nick yand CD. 'Ighomson. On);he averagegnumber of max-

some case o ater lrngsccouningfr e IO a3 o vectors and ppleaionannal o e
ACM, 25(4):536-543, October 1978.

ple cases in which MOA* stored less cost vectos. However )
memory consumption is clearly dominated by the number ofDasgupteet al, 1999 Pallab Dasgupta, P.P. Chakrabarti,

paths (or cost vectors) stored$€; where the new algorithm and S.C. DeSakar. Multiobjective Heuristic Search
performs consistently better. Vieweg, Braunschweig/Wiesbaden, 1999.

_ In summary, the new algorithm performed much betterfDechter and Pearl, 19BRina Dechter and Judea Pearl.
in memory requirements but found solutions slightly more  Generalized best-first search strategies and the optimality

slowly on average. Time values are the only measure subject of A*. Journal of the ACM32(3):505-536, July 1985.
to implementation details and should be taken with caution
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