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Abstract

Qualitative models are often more suitable than
classical quantitative models in tasks such as
Model-based Diagnosis (MBD), explaining system
behavior, and designing novel devices from first
principles. Monotonicity is an important feature
to leverage when constructing qualitative models.
Detecting monotonic pieces robustly and efficiently
from sensor or simulation data remains an open
problem. This paper presents scale-based mono-
tonicity: the notion that monotonicity can be de-
fined relative to a scale. Real-valued functions de-
fined on a finite set of reals e.g. sensor data or
simulation results, can be partitioned into quasi-
monotonic segments, i.e. segments monotonic with
respect to a scale, in linear time. A novel segmen-
tation algorithm is introduced along with a scale-
based definition of “flatness”.
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be fast O(n)) and not require excessive amounts of memory
(O(n)).

In this paper, we address the “scale-based monotonicity”
problem: monotonicity can be defined relative to a scale. We
define a metric for monotonic approximation. We solve the
following problem: given a number of segmens find K
segments having the smallest monotonic approximation error.

In short, the main novel results of this paper are:

1. A novel optimal segmentation algorithm;
2. A novel definition of scale-based flatness.

2 Monotonicity in Qualitative Modelling

We just list a few examples to show that the monotonic
features are important to leverage in qualitative modeling.
In QSIM [Kuipers, 1986, the qualitative valu&V(f,t), is

the pair<gmag, qdir-, where gmag is a landmark value
li or an interval made up of landmark valu@gl;;1), and
qdir takes a value from the sign domain (+,0,-) according
the f/(t) is increasing, steady, or decreasing respectively.
In Model-based Diagnosis (MBD), qualitative models are

Qualitative models are used in applications such as modelised to describe system behavior. Two kinds of qualitative
based diagnosi&an, 2003; Struss, 2002explaining system models, based respectively on absolute or relative quanti-
behavior [Suc, 2003; Forbus, 1984; Kuipers, 1986nd de- ties, rely on the monotonicity of the function. The first one
signing novel devices from first principlé®illiams, 1993. is Finite Relation Qualitative Mode(FRQ) [Struss, 2002;
It is a challenge to build qualitative models for complex realYan, 2003, where the qualitative relation is represented by
world engineering systems. Current research efforts are otuples of real valued intervals. For a monotonic segment
automatic generation of qualitative models from numericalxa,X,] of f, the tuple is determined by the bounding rect-
data obtained by numerical simulation or sensors. Many proangle O = [Xa,Xp] % [Min(f(Xa), f (Xp)), max(f(Xa), f (%p))],
posed methods, such as[Btruss, 200Pand[Consoleet al,  that is the smallest rectangle such tlgat f(X) AXa < x <
2003, work only when the functions are piecewise mono-x, = (x,y) € [J. The second one iQualitative Deviation
tonic. Hence, partitioning data arrays into quasi-monotonidvlodel [Consoleet al, 2003 where the qualitative relation
segments is an important probldian et al, 2004b; 2004k  is represented by the sign of deviatihy] from a refer-
One could segment a data array in monotonic segmen®nce pointxes defined as +,-, or 0, according to whether
using a naive algorithm: simply segment wherever there if is increasing, decreasing or flat. For examplef ifs
an extremum. For example, it is easy to segment the arrayonotonic increasing, we haj#y] = sign(f (x) — f (Xet)) =
{0, 1, 2, 3, 2, 1, O} in two monotonic segments. How- sign(X—Xref) = [AX].
ever, monotonic segments must be significant for the appli- In this paper, we focus on abstracting qualitative models
cation at hand and algorithms must be robust because tHeom scattered data obtained from numerical simulation or
data will unavoidably be subject to noise or insignificantsensors. This work is motivated by at least two kinds of appli-
features. Hence, we might want to consider that the arragations. First, when applying model-based diagnosis to real
{0, 1.2, 1.1, 3, 2, 1, O} has only two “significant” mono- world engineering systems, we need to build symbolic qual-
tonic segments since the drop from 1.2 to 1.1 is not largeatative models by a numerical simulation of the engineering
enough to indicate a downward trend. Also algorithms mustmodels. Second, we need to explain system behaviors from



sensor data. Qualitative model abstraction in this paper iminsco maxep |f — F| whereQ is eitherQ; or Q. Sign +

defined as transforming numerical values into qualitative valor - is associated tQ; or Q.

ues and functions into qualitative constraifisic and Bratko, The segmentation of a seD is a sequenceS =

2001. Monotonicity Analysis is defined as partitioning a fi- X, ..., Xn oOf closed intervals (calledsegment®) in D with

nite series of real valueg, xo, ..., X, over an intervaD into [minD,maxD] = [J; X such that maX; = minX;;; andX N

“monotonic” segments. Xj=0for j#i,i+1,i—1. Alternatively, we can define a
Monotonicity analysis is a crucial step to abstract qualita-segmentation from the set of poitsn X1 = {yi}. Given

tive models from scattered data but it rises a problem. Thé& : {X1,...,%n} — R and a segmentatiof; }, the Optimal

difficulty is that when the scattered data contains noise, th€iecewise Monotonic Approximation Function Error (OP-

monotonicity is not absolute in a neighborhood of any point MAFE) of the segmentation is given by m&MAFE(F |x)

The monotonic segments need to be significant in the contexthere the directions of the segmed{sare alternating and

of the problem. The small fluctuations caused by noise mussuch that the direction of the first segment is chosen so as to

be ignored. This requires that noise be removed by compuninimize the OPMAFE.

tationally efficient methods such that the number of remain- Solving for a best monotonic function can be done as fol-

ing segments is dependent only on the characterization of tHews. If we seek the best monotonic increasing function, we

noise. first definef, (x) = max{F(y) : y < x} (the maximum of all
Linear splines is an obvious approach to solve this probprevious values) andT(x) =min{F(y) : y > x} (the mini-

lem. We can use top-down, bottom-up and sliding windowp,ym of all values to come). If we seek the best monotonic

algorithms to approximate the data with a set of stralghqjecreasing function, we defing (x) = max{F(y) : y > x}

lines[Keoghet al, 2001. Then the same-sign slopes can begthe maximum of all values to come) amﬁj(x) — min{F(y):
aggregated as monotonic segments. Various algorithms are —

derived from classic algorithmiKey et al, 2004 [Hunter Y < X} (the minimum of all previous values). These func-
and McIntosh, 1999 The downside of these methods is that tions which can be computed in linear time are all we need
there is no link between linear spline approximation error and® Solve for the best approximation function as shown by the
the actual monotonicity of the data (consiger ). Hence, ~next theorem which is a well-known resiiBrooks, 1994;
using linear splines, it is difficult to specify either the desiredUbhaya, 1974
number of monotonic segments or some “monotonicity error'Theorem 1. Given F: D = {x1,...,%} — R, a best mono-
threshold. In addition, linear fitting algorithms are relatively tonic increasing approximation function to F is given by
expensive. fif _ _ _
Inductive learning is used iiuc and Bratko, 20dt0 au- |1 = — and a best monotonic decreasing approxima-

tomatically construct qualitative models from quantitative €X-tjon function is given by f= Tﬁ;il' The corresponding er-

amples. The induced qualitative model is a binary tree, called F100—f, (0|

a qualitative tree, which contains internal nodes (called splitsjor (OMAFE) is given bymaxcp % (monotonic in-
and qualitatively constrained functions at the leaves. A quali- . [T,00-f, () ) )

tative constrained function takes the fokiu--Sn: R™ R,  Creasing) omaxep 2 (monotonic decreasing).

s € {+,—} and represents a function with real-valued at- The implementation of the algorithm suggested by the the-
tributes strictly monotone increasing with respect toittle  orem is straight-forward. Given a segmentation, we can com-
attribute ifs = +, or strictly monotone decreasingsf=—.  pute the OPMAFE irO(n) time using at most two passes.

For example,f = M™~(x,y) meansf is increasing whex  The functionsf; and f; are sometimes called the standard

is increasing, and decreasing whgis increasing. A split  optimal monotone functions as the solution is not unique in
is a partition of a variable. The unsupervised learning algogeneral.

rithm eg-QUIN determines the landmarks for the splits. The

training data set is all possible pairs _of data points. eq-QUINg Scale-Based Monotonicity

checks the best split against all possible hypotheses. Its com-

plexity is O(n?2™). QUIN is a more efficient algorithm that We present the notion of scale-based monotonicity. The in-
uses greedy search. Its complexitydgn?m?). We do not  tuition is that the fluctuations within a certain scale can be

address multidimensional data in this paper. ignored.
Given an ordered set of real valuBs= {x1,Xo,...,%n},
3 Monotonicity Error considerF : D = {x1,Xp,..., X} — R. Given some toler-

ance valusd > 0, we could say that the data points @
In this section, we define a measure of monotonicity. Supgoing downor are upward monotoneif consecutive mea-
pose we are given a set of ordered samples notel :  sures do not go down by more thénthat is, are such that
D= {x1,..., X} CR — R with real values=(x1),...,F(%)  F(x)—F(x1) < 8. However, this definition is not very use-
andx; < X2 <... <X, We define,F|p as the restric- ful because measures can repeatedly go down and thus the
tion of F overDN[ab]. We seek the best monotonic (in- end value can be substantially lower than the start value. A
creasing or decreasing) functidn: R — R approximating more useful definition ofipward monotonicityvould be to
F. Let Q; (resp. Q)) be the set of all monotonic increas- require that we cannot find two valugsandx; (X < Xj) such
ing (resp. decreasing) functions. Tkptimal Monotonic  thatF (x;) is lower thanF (x;) by & (i.e. F(x) —F(xj) < 9).
Approximation Function Error (OMAFE) of F is given by  This definition is more useful because in the worst case, the



Figure 1: Ad-pair.

last measure will be onlp smaller than the first measure.

However, we are still not guaranteed that the data does in fact
increase at any point. Hence, we add the constraint that we

can find at least two data pointg < x such thatF(x) is
greater thark (x) by at leas® (F (x) — F(xc) > ).

To summarize, given some valde> 0, we say that a se-
guence of measures igpwarddmonotonef no two succes-
sive measures decrease by as muach, and at least one pair
of successive measures increases by at eaSimilarly, we
say that a set of measuregiswnwardd-monotonef no two
successive measures increase by as muadh aad at least
two measures decrease by at Idast

This generalized definition of monotonicity was introduced
in [Brooks, 1994 usingd-pairs (see Fig. 1):

Definition 1.

e x<ye Disad-pair (or a pair of scaled) for F if |F(y) —
F(x)| > d and for all ze D, x < z< y implies|F(z) —
F(x)| < dand|F(y)—F(2)| <o.

e Ad-pair's direction isincreasingor decreasingaccord-
ing to whether Ry) > F(X) or F(y) < F(X).

Notice that pairs of scal@ having opposite directions can-
not overlap but they may share an endpoint. Pairs of stale

of the same direction may overlap, but may not be nested for

a certaind.
We can defin@-monotonicity as follows:

Definition 2. Let X be an interval, F i$-monotoneon X
if all d-pairs in X have the same direction; F is stricidy
monotonic when there exists at least one sbigair. In this
case:

e F is &-increasingon X if X contains an increasing-
pair.

e Fisod-decreasingn X if X contains a decreasirdgpair.

We say that a pair is significant at scaldf it is of scaled’
for & > 0.

5 A Scale-Based Algorithm for
Quasi-Monotonic Segmentation

Suppose thaD is a finite set of reals having at least two ele-
ments.F is a real-valued function oD, i.e.,F :D — R.

We begin by defining a segmentation at scaler a &-
segmentation.

Definition 3. Let S= Xy,...,X, be a segmentation of D, and
let d > 0, then S is a&-segmentatiorof F when all the fol-
lowing conditions hold.

Each X is &monotone.
Each X fori # 1, n is strictlyd-monotone.
At least one Xis strictly &monotone.

Adjacent strictlyd-monotone segments have opposite di-
rections.

For each strictlyd-monotone X and for all xe X;, F(X)
lies in the closed interval bounded by(finX;) and
F (maxX).

When X is not strictly >-monotone, then for all x
X1 —maxX;, F(x) lies in the open interval bounded
by F(minXp) and F(maxXp); and when X is not
strictly 8-monotone, then for all x X, — minX,, F(x)
lies in the open interval bounded by(fRinX,_1) and
F(maxXn_1).

Each X is called ad-segment of S. When striclymonotone,
X; is a properd-segment; when not strictd~monotone, X
or X, is an improperd-segment. For stricthip-monotone X
minX; andmaxX; are &-extrema.

As the following theorems show, allsegmentations are
“equivalent” and the monotonic approximation error (OP-
MAFE) is known precisely.

Theorem 2. Letd > 0. Let § and $ be d-segmentations of
F; then |S| = |S|. Furthermore, the firsb-segments of ;S
and $ are both either proper or improper, and similarly for
the lastd-segments.

Theorem 3. Letd > 0. Let S be any-segmentation of F;
then the monotonic approximation error (OPMAFE)/2.

Now we want to compute &segmentation giveR. There
are two approaches depending on the application one has in
mind. The first one is to choos® and then solve for the
segmentdBrooks, 1994, when the magnitude of noise is
known. When one doesn’t know how to cho@s¢he second
approach is to set the maximal number of segmEntsspe-
cially when one knows the shape of the function. We focus
on this second approach. We begin by labelling the extrema
with a corresponding scal¥x).
Definition 4. Let xe D be a local extremum of F. x@elta-
scale A(x) is the largestd > 0 such that there exists &
segmentation having x asdaextremum.

It is immediate from the definition that & > A(x), then
X can't be ad-extremum, but also that ¥ is a d-extremum,
thenA(x) > 8. This is stated in the following proposition.

Proposition 1. Let d > 0, and let S= Xi,..., X, be ad-

In the next section, we discuss how to partition the data sesegmentation of F. Thek(x) > & for everyd-extremum, X, of

into monotonic segments.

S.



We observe that there must be a smalesuch that the Algorithm 1 computed(x) for every extremumx € D. The
cardinality of X5 = {x|A(x) > &} is at mostK. However the inputto Algorithm 1 is a list of extrema - i.e. the extrema data
set X5 might contain repeated maxima or repeated minimgpoints in the data array.
and those might be removed before the Xgtan define a

d-segmentation. This is stated in the next theorem. Algorithm 1 This algorithm labels the extrema in linear time

Theorem 4. Let3 > 0 and consider the set of extremg %  (as in Definition 4).
{X|A(x) > &} of F as an ordered set. Each extremum in X  INPUT: data - a list of the successive extremal values of F, al-
is either a maximum or a minimum, and a sequence of two ternating between maximum and minimum. Each element is an

minima or two maxima is possible. Consider asub%&t)& "extremum record”, having three fields: value, sense, and index.
such that Index identifies the data point, value gives F’s value at that data

point, and sense indicates whether the extremum is a maximum
e it has no repeated maxima or minima; or minimum.
. , ;. . OUTPUT: a list of "scale records". Each scale record has two
o there is no supersetzXof X; in Xs without repeated ex-  fi|ds: scale and extrema_list. Extrema_list comprises either one
trema; or two extremum records. The semantics of a scale record is that
then there exists &segmentation S of F such thaf ¥ ex- :\Te indicgted eﬁ(trezna hr;ve ”l‘;a Ii_r)dicated scale asddtta)lta-fcale.
otes about the algorithm ists are accessed by element
actly the set ob-extrema of S. numbers; e.g. data(2) is the second element of data. 2) Lists

In order to compute&(x) for all extremax, it is useful to are manipulated with functions Push and Pop. Push( thing, list)

introduce the following definitions. adds thing to list, resulting in thing being the first element of list.
. . Pop(list) removes the first element of list, and returns this first

Definition 5. Opposite-sense extremaxz € X C D are an element as the value of the function call. akeList(item®*)
extremal pairfor X if for all y € X, x< y < z implies Ry) pushes the items into a list generated, starting from the first item.
lies in the closed interval defined by(¥j) and F(z). The ex- 4) MakeScaleRecordreates a scale record.
tremal pair has an exterfF (x), F(z)] or [F(z), F(x)] and
increasing or decreasing direction according t¥ < F(2) LET extrema = empty_list
or F(x) > F(z). An extremal pair ismaximal for X when LET scales = empty_list

no other extremal pair in X has larger extent. Similarly, an  Push(Pop(data),extrema)
extremal pair is a maximal increasing (decreasing) when no Push( Pop(data),extrema)

. - . : for next_extremum IN datdo
increasing (decreasing) extremal pair has larger extent. while Length(extrema) > 1 AND {{sense.next_extremum =

Intuitively, a maximal extremal pair forms the largest de- "maximum” AND value.next_extremum > value.extrema(2)}

creasing (increasing) segment inside a larger increasing (de- OR {sense.next_extremum = "minimum” AND
creasing) segmeix. value.next_extremum < value.extrema(2§l¢

o ) ) . o Push(MakeScaleRecorfyalue.extrema(l) -
Definition 6. We recursively definerdinary and specialin- value.extrema(2), MakeList( extrema(2), extrema(1) )),
tervals: D is an ordinary interval. When | is an ordinary scales)
interval, then an interval & | is special when J’s endpoints Pop(extrema)
constitute a maximal extremal pair in I; in this case J has Pop(extrema)
direction inherited directly from its endpoints. Recursively, if ~ if Length( extrema ) = then
J is special and interval’JC J has endpoints constituting a Push( Pop( extrema_list.scales(1) ), extrema)

Push( next_extremum, extrema )

while Length(extrema) > tlo
Push( MakeScaleRecorfvalue.extrema(1) -
value.extrema(2), MakeList( extrema(1) )), scales)

maximal extremal pair in J of direction opposite to that of J,
then J is special. LetJi = 1...n be all special intervals in
an ordinary or special interval X. Choose any honempty sub-

set of the collectiofJ }, and let S be the segmentation of X Pop(extrema)
defined by the endpoints of the special intervals in the subset. pysh (extrema(1), extrema_list.scales(1) )
Then any segmentd S that does not contain any of theis RETURN scales

an ordinary interval.

One can see that the special intervals are nested. The The principle of Algorithm 1 is as follows: thehile loop
endpointsx, z of the special intervals havA(x) = A(z) =  inside thefor loop detects the special interval and labels the
|F (x) —F(2)|. We can call them “twins” due to the samdéx)  both endpoints with the difference of their values. But if the
value. The ordinary intervals are not nested. The endpointextrema list is empty after this labelling, which means that
of the ordinary intervals have differef{x). We call each of the top item in the list needs to be checked against the com-
them “singleton”. ing data, this top item is popped back to extrema inittel-

If there are several extrema having an equal value, the walpwing the abovenhile. Then the next extremum is pushed
to choose the endpoints to constitute a maximal extremal painto the extrema list for the nefbr loops. Thewhile outside
is not unique. Therefore, there are different sets of speciahefor loop determines thé for the ordinary intervals. The
intervals. They are equivalent. For simplicity, we do not con-last pushstates that the last extremum in the extrema list has
sider the case of equal valued extrema in Algorithm 1 andhe same scale as the one just popped into scale. Actually the
Algorithm 2. Instead, we explain how to deal with it verbally endpoints of the biggest ordinary interval are always the last
after introducing the algorithms. two pushed into scale record list and their scales are identical.



If one desires no more thatisegments, it is a simple mat-
ter of pickingd as small as possible so that you have no more
thanK + 1 significant extrema/((x) > d) together with the
first and last extrema (indexes 0 and- 1). Algorithm 2
shows how once the labelling is complete, one can compute
the segmentation in tim@®(nKlogK) which we consider to
be linear time wherK is small compared to. It also uses
a fixed amount of memoryQ(K)). The principle of Algo-
rithm 2 is to select th& + 1 data points to be the endpoints Figure 2: Input flow of tank A (left) and level of tank B (right)
of K segments. Since the endpointsibare by default, the with added white noise.
remaining endpoints come from the largéstxtrema. The
for is to select the largegtextrema. As in Algorithm 1, we 6 Scale-Based Flatness
know that the labels are either "twins" or "singleton". Thus
in thefor loop, a maximum oK + 2 data points are chosen. For applications, it is important to be able to find “flat” seg-
Then, after the firsif outsidefor, the smallesb-extrema are ments robustly in a data set. We propose the following defi-
removed to reduce the total endpoints to at nkost1. The  nition:
rest of the code checks whether the first and the last endpoini§efinition 7. Givend > 0, consider ad-monotonic segment
of D are included. If not, the smallestextrema will be re- i, 5 5 segmentation, an interval | in this segmentigiat if
moved in favor of the first and 'the last endpoints. The numbefne standard optimal monotonic approximating function (as
of segments can be less tharsince several extrema can take gefined in Theorem 1) is constant over I.
the samed value and can be removed together.

Because we can compute the standard optimal monotonic
approximating function irO(n) time, we can find flat seg-
Algorithm 2 Given a labelling algorithm (see Algorithm 1), ments inO(n) time.
this algorithm returns an optimal segmentation using at most The next proposition addresses the flat segments in differ-
K segments. Itis assumed that there are at least extrema  entd-segmentations. The first point is derived from the fact

to begin with. that when thed increases, the new segments are always the
INPUT: an arrayd containing the values indexed from Orte- 1 result of mergers of the previous segments. Hence, the seg-
INPUT: K a bound on the number of segments desired ments at a smal are always subsets of the segments at a
OUTPUT: segmentation points as per Theorem 4 and Proposilargerd. The second point says that the old flat segments will
tion 1 still be flat in the merged segment.

L «— empty array (capaciti + 3) . .
for eis index of an extremum id having scal@, eare visited in ~ PYOPOsition 2. Let S be &5-segmentation and let e ad'-

increasing ordedo segmentation fod' > 9, then 1) anyd-segment Xc S is a
insert(e, ) in L so thatl_ is sorted by scale in decreasing order Subset of som&-segment Xe S, 2) for anyd-flat interval |
(sort ond) using binary search in X, | is alsod-flat in X'.
if length() = K + 3 then

pop last(L) .

if length(L) > K+1then 7 Experimental Results

remove all elements df having the scale of last(L). 7.1 Cascade Tank Sample Data

if indexes{0,n—1} ¢ L then . . .
if (index Oc L OR indexn—1 € L) AND length(L) = K+1  As a source of synthetic data, we consider a system which

then consists of two cascade tanks A and B. Each tank has an in-
remove all elements df having the scale of last(L). put pipe (incoming water) and an output pipe (outgoing wa-

if (index 0Z L AND indexn—1¢ L) AND length() > K then ter). Tank A's output pipe is the input pipe of tank B. In the
remove all elements df having the scale of last(L). equations below, let A and B be the level of water for the two

RETURN: the indexes irl. adding 0 and/on—1 when notal-  tanks respectively. The change of water level is proportional
ready present to the difference of the input flow and the output flow. As-
sumein is the input flow of tank A.f(A) is the out flow of

_ tank A. g(B) is the output flow of tank HKuipers, 1994.
Algorithms 1 and 2 assume that no two extrema can havghys we have

the same value. In case of equal valued extrema, we can mod-

ify these algorithms without increasing their complexity. In A = in—-f(A

Algorithm 1, we can generalize ScaleRecord so that entries in B = f(A)—g(B)

the extrema_list field can also be lists of extrema of the same

value. Then in thevhile loop, we can put the extrema of the  In principle, f (A) andg(B) are increasing functions. We
same value into the corresponding list. For Algorithm 2, weassumef (A) = kjA andg(B) = kzB. If we variate the input

just need to remember that whenever removing a middle poirftow of tank A, in, we can control the level of tank B. In this
between two equal valued extrema, the two equal valued exvay, we generated some sample data and added noise to it.
trema have to be treated as one extrema to avoid having tw8ee Fig. 2 for the the input flown, of tank A at the left and
adjacent minima or maxima. the level of tank B at the right.
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