
Abstract 
Ensemble methods such as bagging and boosting 
have been successfully applied to classification 
problems. Two important issues associated with an 
ensemble approach are: how to generate models to 
construct an ensemble, and how to combine them 
for classification. In this paper, we focus on the 
problem of model generation for heterogeneous 
data classification. If we could partition heteroge-
neous data into a number of homogeneous parti-
tions, we will likely generate reliable and accurate 
classification models over the homogeneous parti-
tions. We examine different ways of forming ho-
mogeneous subsets and propose a novel method 
that allows a data point to be assigned multiple 
times in order to generate homogeneous partitions 
for ensemble learning. We present the details of the 
new algorithm and empirical studies over the UCI 
benchmark datasets and datasets of image classifi-
cation, and show that the proposed approach is ef-
fective for heterogeneous data classification. 

1 Introduction 
Ensemble approaches such as bagging and boosting have 

been successfully applied to many classification problems 
[Dietterich, 2000; Bauer and Kohavi, 1999]. The basic idea 
of ensemble methods is to construct a number of classifiers 
over training data and then classify new data points by tak-
ing a (weighted) vote of their predictions. Thus, two impor-
tant issues associated with an ensemble approach are: 1) 
how to generate accurate yet diverse classification models, 
and 2) how to combine the models for ensemble classifica-
tion. Diverse classifiers ensure good ensembles [Quinlan, 
1996]. In this paper, we focus on the first issue with an em-
phasis on heterogeneous data classification. Heterogeneous 
data classification refers to the problem when input data of a 
single class are widely distributed into multiple modes. It 
arises when training data are collected under different envi-
ronments or through different sources. An example of het-
erogeneous data classification is image classification, in 
which labeled images are acquired from multiple resources 
and exhibit disparate characteristics. For instance, some 
images are black and white, and others are colorful.  

A widely used approach for constructing an ensemble of 
models is to sample different subsets from the training data 
and create a classification model for each subset. Bagging 
[Briemann, 1996] and AdaBoost [Schapire and Singer, 
1999] are two representative methods in this category. Bag-
ging randomly draws samples from the training data with 
replacement and AdaBoost samples training data according 
to a dynamically changed distribution, which is updated by 
putting more weight on the misclassified examples and 
smaller weights on the correctly classified examples. 
Clearly, both methods do not treat homogeneous data and 
heterogeneous data differently.  

For ensemble methods to work effectively on heteroge-
neous data, one intuitive solution is to first divide the het-
erogeneous data into a set of homogeneous partitions and 
then to create a model for each partition of data. Member 
classifiers built with different homogeneous partitions will 
likely result in good diversity of an ensemble. One way to 
realize this homogeneity-based partition is to employ stan-
dard clustering algorithms, such as K-means [Hartigan and 
Wong, 1979] and the EM clustering algorithm [Celeux and 
Govaert, 1992]. An example is the Gaussian Mixture Model 
(GMM). But, in general, there are two problems with this 
simple clustering approach:  

• Single cluster membership. Most clustering algo-
rithms assume that cluster membership is mutually exclu-
sive and each data point can only belong to a single cluster. 
Even though the EM clustering algorithm allows soft mem-
bership for a data point, in the resulting clusters, each data 
point still only belongs to a single cluster [Witten and 
Frank, 2000]. Therefore, when we use these clustering algo-
rithms to partition data, if the number of clusters is large and 
the subsets of training data formed by a clustering algorithm 
are mutually disjoint, some clusters may have a very small 
number of data points, which can lead to unreliable classifi-
cation models. This is similar to the data fragmentation 
problem occurred in decision tree induction [Quinlan, 
1993]. In contrast, the subsets of training data produced by 
Bagging and AdaBoost are not mutually disjoint. For exam-
ple, in bootstrap sampling, each subset contains around 
63.2% of the original training data.  

• Unbalanced cluster sizes. Since most clustering al-
gorithms do not have control over cluster sizes, unbalanced 
cluster sizes resulting from clustering cannot be easily cor-
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rected. When the resulting clusters have very different sizes, 
a classifier built over a small cluster can be unreliable and 
thus degrade the performance of the ensemble in forming 
final ensemble classification. On the contrary, both Bagging 
and AdaBoost have data samples of similar sizes when 
learning different models. Note that there have been previ-
ous efforts on balancing the sizes of different clusters, par-
ticularly for spectral clustering algorithms (e.g., the normal-
ized cut algorithm [Melta & Shi, 2001]). But, since the con-
trol of cluster size comes indirectly from the objective func-
tion, the resulting clusters can still have unbalanced sizes.  

In sum, a clustering approach may produce homogeneous 
data partitions, but cannot ensure similar sizes of different 
partitions; methods like Bagging can produce equally sized 
partitions, but partitions are not homogeneous. Therefore, 
we need a novel approach to partitioning data into homoge-
neous subsets of similar sizes in ensemble learning for het-
erogeneous data classification. 

The goal of this work is to divide heterogeneous data into 
homogeneous subsets of similar sizes in order to generate 
reliable and accurate classification models. By focusing on 
homogeneous subsets, we do not require that each data point 
belong to one subset; by ensuring similar sizes of data sub-
sets, each classification model can be built with a similar 
number of data points. In this paper, we propose a HISS 
(Homogeneous data In Similar Size) algorithm specially 
designed for the above purposes for heterogeneous data 
classification. Specifically, HISS allows the user to specify 
the size of a subset. For example, the user can ask the algo-
rithm to create 20 subsets with each containing 40% of the 
original data. This algorithm is similar to the bootstrap sam-
pling procedure in that both the number of subsets and the 
percentage of training data covered by each cluster can be 
specified and varied. However, it differs from the simple 
bootstrap sampling procedure in that it puts the similar data 
points into a single subset while bootstrap sampling ran-
domly selects data to form a subset. This property is impor-
tant in ensemble learning for classifying heterogeneous data. 
We will use strata for the homogeneous data partitions, and 
subsets for data partitions resulting from random sampling. 

2 Related Work 
There have been many previous studies on how to create an 
ensemble of models. The methods for constructing an en-
semble of models can be categorized into five groups [Diet-
terich, 2000]: 1) Bayesian methods, which creates an en-
semble of model by sampling them from a estimated poste-
rior model distribution; 2) Sampling training examples, 
which creates multiple subsets of training examples and 
trains a classifier for each of the subsets; 3) Sampling input 
features, which creates a number of subsets of the input 
features and a classifier is built for each subset of input fea-
tures;  4) Error correct output code (ECOC), which convert 
a multiple class problem into a set of binary class problems; 
5) Injecting randomness, that generates ensembles of classi-
fiers by injecting randomness into the learning algorithm.  

Among the five categories, our work is closely related to 
the second one, which creates multiple classifiers by sam-

pling training examples. Important methods in this group 
include Bagging [Brieman, 1996] and AdaBoost [Schapire 
and Singer, 1999]. Although these methods have been 
shown to be effective for classification, they are not de-
signed to take into account characteristics of heterogeneous 
data. In this paper, we propose HISS –an algorithm that 
constructs homogeneous strata from heterogeneous data 
while maintains the nice property of boostrap sampling pro-
cedure - each stratum contains a similar number of data 
points.  

Another line of research closely related to this work is the 
study of clustering algorithms. In general, clustering algo-
rithms can be categorized into parametric approaches and 
non-parametric approaches. The parametric approach is to 
find a parametric model that minimizes a cost function asso-
ciated with instance-cluster assignments. Such methods in-
clude the Mixture Model [Celeux and Govaert, 1992] and 
K-means algorithm. For the non-parametric approaches, a 
cost function is minimized by either merging two separate 
clusters into a larger one or dividing a cluster into two 
smaller ones. The representative examples of this category 
are the agglomerative approach and the divisive approach.  

Most clustering approaches assume that each data point 
only belongs to a single cluster. This assumption may not be 
appropriate since the ultimate goal of clustering is to group 
similar data points together. When it is uncertain to assign a 
data point to a single cluster, it is better off assigning it to 
multiple clusters. Although the traditional probabilistic 
model and the fuzzy clustering algorithm allow for multi- or 
soft-memberships, the uncertainty of cluster membership is 
only exploited during the process of estimation. In the re-
sulting clusters, each data point is assigned to only a single 
cluster. Furthermore, most clustering algorithms do not have 
any control over the size of clusters. Hence, the resulting 
clusters can be very unbalanced in size and the clusters of 
too small sizes could be useless in learning.  

3 The HISS Algorithm for Model Generation  

3.1 From Probabilistic Clustering to HISS 
We first describe the traditional probabilistic clustering 

algorithm, and then introduce algorithm HISS. 
The general idea of probabilistic clustering is to describe 

data with a mixture of generative models. Optimal parame-
ters are usually obtained by maximizing the likelihood of 
data using the mixture model. Let n be the number of input 
data points, K be the number clusters, 1 2{ , ,..., }nx x x  be the 
input data, and 1 2{ , ,..., }Km m m  be the underlying models 
that generate the data. By assuming that each data point is 
generated from a mixture of models 1 2{ , ,..., }Km m m , we 
have the likelihood of the data written as: 
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where ( | )i jp x m  is the likelihood of generating ix from the 

model jm , and j
iτ  is the likelihood for data point ix  to be 

in the j-th cluster. Based on the assumption that each data 
point can only belong to a single cluster, we have constraint 
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where jθ  denotes the prior for the j-th cluster, and jµ  and 

jΣ  are the mean and variance matrix for the j-th cluster, 
respectively. Expectation and Maximization algorithm (EM) 
(Dempster et al, 1977) can be used to search for the optimal 
parameters.  

By removing the constraint 
1

1K j
ij

τ
=

=∑ , we allow each 

data point to belong to multiple homogeneous clusters, or in 
short, strata. Hence, the optimization problem becomes 
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where all j
iτ  are constrained to between 0 and 1 to maintain 

the probability interpretation. It is easy to see that the opti-
mal solution is to set all j

iτ  to be 1, which means that each 
data point is included in every stratum. 

To avoid the trivial solution for j
iτ , we choose to enforce 

the percentage of training data that are covered by each 
cluster to be a predefined constantγ , i.e., 

With the above constraint, we guarantee that the number of 
data points that support each stratum is around nγ .  

Compared to the single membership constraint, this new 
constraint has the following two advantages: 1) It does not 
assume that each data point has to belong to one stratum. 
For this new stratifying method, on average each data point 
can belong to Kγ  number of strata. Therefore, when Kγ  is 
larger than one, each data point is allowed to be in more 
than one stratum simultaneously. 2) It ensures that differ-
ent strata have balanced numbers of data points. In con-
trast to most clustering algorithms, the new algorithm en-
sures almost the same size for each stratum. This is particu-
larly important to the research goal of this paper - generat-

ing a reliable and accurate ensemble for heterogeneous data. 
By setting γ  to be a reasonably large value (0.4 in this 
work), we ensure that each stratum has a sufficiently large 
number of examples for building a statistical learning 
model. For later reference, we refer this new clustering ap-
proach as “HISS”, which stands for Homogeneous data In 
Similar Size.  

3.2 Optimization for HISS 
Putting Equations (3) and (4) together, we have: 
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Let us assume the Gaussian distribution for ( | )i jp x m , i.e., 

( | ) ~ ( , )j j jp x m N µ σ . Following the idea of the EM algo-
rithm, the difference in the likelihood of data between two 
consecutive iterations is bound by: 
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Thus, the optimal solutions for the mean and variance of 
Gaussian distribution can be obtained as follows: 
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However, the optimal solution for j
iτ  is rather difficult to 

obtain because of the inequality constraints 0 1 j
iτ≤ ≤ . 

Directly optimizing the Equation (6) with only the equality 
constraint will result in the following solution for ( 1)j

i tτ + : 
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Apparently, the above solution will always be nonnegative 
if  ( )j

i tτ  is nonnegative. However, it does not guarantee that  
( 1)j

i tτ +  is not greater than 1.  
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In order to satisfy the inequality constraints 0 1 j
iτ≤ ≤ , 

we use the KKT conditions [Fletcher, 1987] to efficiently 
adjust the value of ( 1)j

i tτ + . The basic idea is to reset j
iτ  to 

be 1 whenever the output from Equation (10) violates the 
constraint 0 1 j

iτ≤ ≤ . After the adjustment, we will re-
compute ( 1)j

i tτ +  that are less than 1 using Equation (8). 
The procedure of adjusting and recomputing ( 1)j

i tτ +  will 
continue until no ( 1)j

i tτ +  violates the constraint. Figure 1 
shows the detailed steps for finding the optimal solution for 

( 1)j
i tτ + . Due to the space limit, the proof for the optimality 

of the algorithm in Figure 1 is not provided here.  

3.3 Classifying Heterogeneous Data 
For classification problems, heterogeneous data can be 

found in many applications and in experiments:  
1) Data acquired from multiple sources. In many cases, 
training data are acquired from multiple sources. Because 
each source has its own data distribution that may be differ-
ent from others, the data merged from multiple sources are 
therefore heterogeneous. For example, consider building a 
classification model for outdoor scenes. The training images 
are collected from several different types of videos. Some of 
the videos are news stories and some of them are of adver-
tisement. Some of them are of high quality and some of 
them are not. Thus, the widely disparate characteristics in 
videos cause the merged data to be heterogeneous. 
2) Data by converting a multiple class problem into a set 
of binary class problems. In order to apply the binary class 
classification algorithm to multiple class case, we need to 

convert the classification problem of multiple classes into a 
set of binary class problems. The representative examples 
include the one-against-all approach and error correct output 
coding (ECOC) method [Dietterich, 1995]. During this 
process, multiple classes are grouped into two subsets of 
classes. Data points from one subset of classes are used as 
positive examples and the remaining are used as negative 
examples. Because both the positive and negative pools can 
be comprised of examples from multiple classes, it will cre-
ate data heterogeneity for each of the binary classes. 

As discussed, an intuitive solution to classifying hetero-
geneous data is to create a set of classification models with 
each classifier built on a homogeneous partition (stratum) of 
the data, and then combine classifiers for the final predic-
tion.  The traditional clustering algorithms are not designed 
for this task because of the potential unbalanced cluster-
sizes and the data fragmentation problem. With the pro-
posed algorithm HISS, we can avoid these two problems by 
setting the parameter to be large (0.4 in the experiment).  

In sum, to classify heterogeneous data, we first apply 
HISS to obtain homogeneous strata and then create a classi-
fication model for each stratum to form an ensemble. We 
will refer to this model generation method as ‘HISS-based 
Model Generation’ in our empirical study next. Finally, a 
stacking approach [Wolpert, 1992] is used to combine mod-
els that are generated by the HISS-based model generation 
method for the final prediction of the ensemble. 

4. Experimental Study 
The experimental study is designed to answer the following 
questions: 
1) Is the proposed model generation method effective for 
classifying heterogeneous data? To this end, we compare 
the proposed model generation method to Bagging and 
AdaBoost in classifying heterogeneous datasets.  
2) Is the proposed HISS algorithm effective for generating 
reliable models? To address this question, we will apply 
both the proposed HISS algorithm and the probabilistic 
clustering algorithm to partition the training data and build a 
classification model for each partition.  

4.1 Experimental Design 
Seven different datasets are used in the experiments: five 
multiple class datasets from the UCI Machine Learning re-
pository [Blake and Merz, 1998] and two binary class data-
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Figure 1: Algorithm for finding optimal ( 1)j
i tτ +  

Data Set # Examples #Class # Features
Ecoli 327 5 7 

Pendigit 2000 10 16 
Glass 204 5 10 
Yeast 1479 10 8 

Vehicle 946 4 17 
Image/Indoor 3500 2 190 

Image/Outdoor 3500 2 126 
Table 1: Description of datasets for the experi-
ment for heterogeneous data classification. 



sets for image classification. The characteristics of these 
seven datasets are listed in Table 1. 
  For the multiple class datasets, we introduce the hetero-
geneity into the data by converting the original multiple-
class problem into a binary one. Similar to the one-against-
all approach, examples from the most popular class are used 
as the positive instances and examples from the remaining 
classes are assigned to the negative class. Because data of 
the negative class are from multiple classes, we would ex-
pect some degree of heterogeneity inside the negative class. 
For the two datasets of image classification, they both are 
binary classification problems. The heterogeneity of data is 
due to the fact that images are from seven different video 
clips and each video clip provides 500 images. Since each 
video clip is of different type (e.g., varied quality in im-
ages), we would expect certain amount of heterogeneity 
within the data.   

The baseline algorithm used in this experiment is support 
vector machine [Burger, 1998]. In all the experiments, each 
ensemble method generates 20 different SVMs; a stacking 
approach [Wolpert, 1992] that also uses a SVM is employed 
to combine the outputs from all 20 models to form the final 
prediction of the ensemble. For each experiment, we ran-
domly select 70% of the data as training and the remaining 
30% as testing. The experiment is repeated 10 times and the 
average classification error of the ten runs is used as the 
final result with the variance of classification errors.  

4.2 Heterogeneous Data Classification 
Table 2 shows classification errors for the baseline support 

vector machine, the proposed HISS-based ensemble learn-
ing approach, standard Bagging and standard AdaBoost. 
First, we can see that the baseline model performs well 
comparing with both standard Bagging and AdaBoost. This 
observation indicates that these seven heterogeneous data-
sets are rather difficult for the standard ensemble ap-
proaches to learn. In contrast, the proposed HISS-based en-
semble method performs better than the baseline model and 
the two standard ensemble methods. For the datasets 
‘Glass’, ‘Vehicle’, and ‘Image/Outdoor’, the improvement 
is substantial, from 38.2% to 16.1% for ‘Galss’, 10.3% to 
4.8% for ‘Vehicle’, and from 11.6% to 8.8% for ‘Im-
age/Outdoor’.  

Since the HISS-based ensemble method uses the stacking 
approach for combining different models, it is different from 
the combination method that is used by AdaBoost and Bag-
ging. To address this difference, we conduct the experi-
ments that apply a stacking method to combine the models 
generated by both Bagging and AdaBoost. The results are 
listed in Table 2 on the right side of the HISS-based ap-
proach, titled as ‘Bagging (Stacking)’ and ‘AdaBoost 
(Stacking)’, respectively. Compared these results to the re-
sults of ‘Bagging (Standard)’ and ‘AdaBoost (Standard)’, 
we see that there is no substantial change in classification 
errors when using a stacking approach to combine models in 
ensemble learning. For all the seven datasets, the ensemble 
of models generated by HISS performs the best. The reason 
why a stacking approach is useful for the HISS-based model 
generation method but not to the other two is that models 
generated by the HISS-based algorithm are much more di-
verse than the ones generated by both Bagging and 
AdaBoost. As a result, applying another layer of classifica-
tion model to combine the outputs from the distinguishable 
models (or stacking) will be able to take full advantage of 
all the models and obtain the best performance. 

Based on the above discussion, we conclude that the 
HISS-based ensemble model is more effective for classify-
ing heterogeneous data than existing ensemble approaches. 

4.3 Comparison with Other Clustering-based En-
semble Methods 

The advantage of HISS versus the traditional clustering al-
gorithms is that HISS allows each data point to be in multi-
ple different strata. Thus it can ensure that the number of 

Data Set Baseline AdaBoost     
(Standard) 

Bagging     
(Standard) 

HISS-based 
Ensemble  

Bagging  
(Stacking) 

AdaBoost  
(Stacking) 

Ecoli 0.047 (0.012) 0.046 (0.006) 0.057 (0.014) 0.037 (0.006) 0.046 (0.006) 0.059 (0.006) 
Pendigit 0.010 (0.003) 0.013 (0.003) 0.012 (0.002) 0.008 (0.002) 0.012 (0.001) 0.012 (0.003) 
Glass 0.382 (0.027) 0.385 (0.081) 0.379 (0.046) 0.161 (0.044) 0.379 (0.027) 0.379 (0.027) 
Yeast 0.314 (0.012) 0.320 (0.023) 0.313 (0.013) 0.313 (0.013) 0.315 (0.012) 0.315 (0.008) 
Vehicle 0.103 (0.020) 0.163 (0.048) 0.131 (0.024) 0.048 (0.012) 0.100 (0.017) 0.085 (0.033) 
Image/Indoor 0.153 (0.008) 0.140 (0.007) 0.156 (0.014) 0.140 (0.013) 0.157 (0.011) 0.144 (0.007) 
Image/Outdoor 0.116 (0.008) 0.111 (0.017) 0.120 (0.011) 0.088 (0.005) 0.114 (0.006) 0.112 (0.007) 
Table 2: Classification errors for the baseline model (SVM), AdaBoost, Bagging and the propose model generation 
method (‘HISS-based Ensemble’). The column ‘Bagging (Stacking)’ refers to the case when the ensemble of mod-
els is created by the Bagging algorithm but combined through the stacking approach using an SVM. The same is 
for the column ‘AdaBoost (Stacking)’.  The variance of classification error is listed in parenthesis. 

Data Set HISS EM 
(3 Clusters) 

EM 
(10 Clusters)

Ecoli 0.037(0.006) 0.448 (0.021) 0.448 (0.021)
Pendigit 0.008(0.002) 0.081 (0.043) 0.110 (0.023)
Glass 0.161(0.044) 0.292 (0.101) 0.353 (0.017)
Yeast 0.313 (0.013) 0.314 (0.013) 0.314 (0.019)
Vehicle 0.048 (0.012) 0.219 (0.068) 0.052 (0.026)
Image/Indoor 0.140(0.013) 0.184 (0.022) 0.203 (0.014)
Image/Outdoor 0.088(0.005) 0.156 (0.031) 0.182 (0.036)

Table 3: Classification error for using different cluster-
ing algorithms for model generation. ‘EM’ refers to us-
ing Expectation-Maximization algorithm to cluster data.  



data points distributed over each stratum is of similar size 
and sufficiently large. 

In this experiment, we use both the traditional clustering 
algorithm and the proposed HISS algorithm for model gen-
eration and see how different they are in classifying the het-
erogeneous datasets. To observe the effect due to the trade-
off between the number of strata and the number of data 
points in each stratum, we consider two different numbers 
of strata (or clusters) for the traditional clustering algorithm: 
10 and 3( 1/γ≈ ). We did not use 20 clusters in the compari-
son because for some datasets the traditional clustering al-
gorithm is unable to produce the full twenty clusters. The 
traditional clustering algorithm used in the experiment is the 
probabilistic EM clustering algorithm. Similar to the HISS-
based ensemble approach, a stacking method is used to 
combine models generated by the EM clustering algorithm. 
The results for using EM clustering algorithms for model 
construction are listed in Table 3, titled ‘EM (3 clusters)’ 
and ‘EM (10 clusters)’. As suggested by Table 3, the in-
creasing number of clusters can lead to degraded perform-
ance. This is because a large number of clusters will form 
clusters with a small number of data points, which can be 
insufficient for building a reliable classification model. On 
the other hand, as already indicated in the previous study 
[Ditterich, 2000], being able to generate a relatively large 
number of models is critical to the success of the ensemble 
approach. The proposed HISS algorithm can satisfy both 
needs by introducing the substantial overlapping between 
different clusters. As shown in Table 3, the HISS-based 
method outperforms the EM_clustering-based ensemble 
approaches substantially for almost all datasets except for 
‘Yeast’ (similar). The most noticeable cases are ‘Ecoli’ and 
‘Pendigit’, for which the classification errors of EM-based 
clustering approaches are one order more than that of the 
HISS-based ensemble algorithm. 

Based on the above experiments and analysis, we con-
clude that the HISS-based model generation is an effective 
method for model generation in ensemble learning for het-
erogeneous data classification. 

5. Conclusion and Future Work 
In this paper, we propose and examine a new method for 

generating an ensemble of models, which is to first partition 
data into homogeneous subsets and then create a model for 
each subset. A traditional clustering algorithm like EM is 
not suitable for the task of partitioning data due to potential 
size-unbalanced clusters and the data fragmentation prob-
lem. To address these two problems, we propose a novel 
algorithm HISS, which allows for data overlapping between 
different clusters (strata) and promises size-balanced clus-
ters. Empirical studies over seven different heterogeneous 
datasets have shown that this new HISS-based model gen-
eration method performs very well for heterogeneous data 
classification. Currently, the proposed HISS algorithm as-
sumes equal size for each stratum (cluster). One possible 
extension is to examine alternatives to balance sizes of clus-
ters. For example, instead of enforcing all the clusters to 
have one size, we can constrain the sizes of the clusters into 

a specified range to allow some flexibility in maintaining 
high homogeneity of clusters. 
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