1

Viewing Referring Expression Generation as Search

Bernd Bohnet* and Robert Daléef
*Institute for Intelligent Systems, University of StuttgaBermany
fCentre for Language Technology, Macquarie University,r&yd Australia

Bohnet @i s. uni -stuttgart. de,

Abstract

Almost all natural language generationLG) sys-
tems are faced with the problem of the genera-
tion of referring expressionssRE): given a sym-
bol corresponding to an intended referent, how do
we work out the semantic content of a referring ex-
pression that uniquely identifies the entity in ques-
tion? This is now one of the most widely explored
problems inNLG: over the last 15 years, a number
of algorithms have been proposed for addressing
different aspects of this problem, but the different
approaches taken make it very difficult to compare
and contrast the algorithms provided in any mean-
ingful way. In this paper, we show how viewing
the problem of referring expression generation as
a search problem allows us to recast existing algo-
rithms in a way that makes their similarities and
differences clear.

Introduction

Robert . Dal e@rg. edu. au

3. The goal of referring expression generation is therefore
to find some collection of attributes and their values
which distinguish the intended referent from all the po-
tential distractors in the context.

Over the last 15 years, a wide variety of algorithms have been
proposed to deal with specific aspects of this problem. For
example, while earlier algorithms focussed on the use of at-
tributes that correspond to simple one-place predicates (a
might be realised, for example, by means of adjectives such
asred or large), later work attempts to address the use of re-
lational predicates (as might be realised by prepositionhk s
asin andnext tg, and other work looks at the incorporation
of boolean operators such astandand Consequently, we
now have a considerable body of research in this area; how-
ever, it is difficult to establish just how these differerga
rithms relate to each other.

This paper represents a first step towards consol-
idating the results in this area, with the aim of developing
a framework within which different algorithms can be com-
pared and assessed. The structure of the paper is as follows.
In Section 2, we provide a brief overview of work on the gen-
eration of referring expressions to date. In Section 3, we bo

A major component task in natural language generatioiow a standard approach used in Artificial Intelligenss (o
(NLG) is the generation of referring expressions: given an enrepresent problems in an elegant and uniform way (see, for
tity that we want to refer to, how do we determine the contenexample,[Simon and Newell, 1963 [Russell and Norvig,

of a referring expression that uniquely identifies thatrialed
referent? This is now a widely explored problem in thes

2003), sketching howsRE algorithms can be expressed in

terms ofproblem-solving by searctin Section 4, we explore

literature; since at leafbale, 1989, the standard conception how the most well-known algorithms can be expressed in this

of this task has been as follows:

. In a typical context where we want to refer to some

framework. In Section 5, we discuss how this approach en-
ables a more fruitful comparison of existing algorithmsj an

1. We assume we have a knowledge base that characterisge point to ways of taking this work further.

the entities in the domain in terms of a set of attributes
and the values that the entities have for these attributes;
so, for example, our knowledge base might represent th
fact that entitye; has the valueupfor the attributetype
and the valueed for the attributecolour.

A Brief Review of Work To Date

Although the task of referring expression generation is dis
cussed informally in earlier work oRLG (in particular, see
[Winograd, 1972; McDonald, 1980; Appelt, 198the first
which we call theintended referentthere will be other formally explicit algorithm was introduced ifDale, 1989.
entities from which the intended referent must be dis-This algorithm, which we will refer to as the Full Brevity)
tinguished; these are generally referred tdiatractors algorithm, is still frequently used as a basis for otGerE al-
So, for example, we may want to distinguish a particulargorithms. TherB algorithm searches for the best solution
cup from all the other items present in the context of aamongst all possible referring expressions for an entitg; t
dining table. algorithm derives the smallest set of attributes for thenexit

in question, producing a referring expression that is laath problem.
equape(inthe sense that i'gprovides enoughinforr_nationto do Within the wider context ofal, [Russell and
What_ it needs to dc_J) armfflc_lent(ln th_e sense that it does not Norvig, 2003 present an elegant definition of a general al-
provide any more information than it needs to). gorithm for problem solving by search. The search graph
This initial algorithm limited its application to consists ohodeswith the componentstateandpath-costa
one-place predicate¢Dale and Haddock, 199introduced problem is represented by aritial-state, anexpand-method
a constraint-based procedure that could generate rejesxin ~ which identifies new states in the search spacqueuing-
pressions involving relations (hencefortt), using a greedy methodwvhich determines the order in which the states should
heuristic to guide the search. be considered, andpath-cost-functiomvhich determines the
As a response to the computational complexity ofcost of rgaching a given state. In this framewqu, the search
greedy algorithms[Reiter and Dale, 1992; Dale and Re- strategy is determln_ed by the combinatiomokuing-method
iter, 1995 introduced the psycholinguistically motivated In- @nhdpath-cost-functiomised.
cremental Algorithm ia). The most used and adapted al- In the following, we use this framework to pro-
gorithm, this is based on the observation that people oftenide a characterisation of existirgRE algorithms in terms
produce referring expressions which are informationadly r of problem solving by search. Given an intended referent,
dundant; the algorithm uses a preference ordering over tha set of properties true of the intended refefeand the set
attributes to be used in a referring expression, incorpayat of distractor entities from which we wish to distinguish the
those attributes which rule out at least one potentialaistr. intended referent, we can conceptualise the search space as
In recent years there have been a number of im_consist_ing of states that correspond to possible desonipti
portant extensions to the. The Context-Sensitive extension Of the intended referent. Each state has three components:
(cs; [Krahmer and Theune, 20))3s able to generate refer- a_descrlptlon_t_hat is true of the _mt_ended refere_nt, the Bet o
ring expressions for the most salient entity in a contexe; th distractor entities that the description also applies ides
Boolean Expressions algorithrae; [van Deemter, 2002 is the intended referent, and the set of properties of thet_de_tdn
able to derive expressions containing boolean operaters, 4eferent that have not yet been considered in describing the
in the cup that does not have a handénd the Sets algo- referent.
rithm (SET, [van Deemter, 2042 extends the basic approach o _ .
to references to sets, astine red cups Some approaches 1+ Theinitial-stateis of the form({},C, P), whereC is
reuse parts of other algorithms: the Branch and Bowas(the set of dlstrac_:tors in the |n|t_|al context, aidis the
[Krahmeret al, 2003) algorithm uses the Full Brevity al- set of all properties true of the intended referent.
gorithm, but is able to generate referring expressions with
both attributes and relational descriptions using a gtagted
technique.

2. The goal state is of the form
{\xPy, \xPs,.. . },{}, P'), where the first term

. . . contains a set of properties of the intended referent that,

_ We have identified here what we believe to be the py virtue of the second term (the set of distractors)

most cited strands of research in this area, but of course paing an empty set, distinguish the intended referent;

there are many other algorithms described in the litera- p/ contains any properties of the intended referent not

ture: see, for exampleHoracek, 1997; Bateman, 1999; yet used in the description.

Stone, 200D Space limitations prevent a complete summary

of this other work here, but our intention is to extend thdana 3. Al other states in the search space are then intermediate
ysis presented in this paper to as many of these other algo- states through which an algorithm will move as it adds
rithms as possible. new properties to the description.

All these algorithms focus on the generation of
definite references. In principle, they would be embedded 4. The search strategy is carried out by éxpand-method
in a higher-level algorithm that includes cases for when the and thequeuing-methadvhich together characterise the
entity has not been previously mentioned (thus leading to SpecificGRE algorithm (for examplerB, GH or 1A) that
an initial indefinite reference) or when the referent is in is used.
focus (thus leading to a pronominal reference). However,
in practice, most work tends to focus exclusively on defi- 5. Thepath-cost-functiorallows us to route the search as
nite reference; seiale, 1989; Krahmer and Theune, 2002; required; this can be used to take account of salience
Dale, 2003 for further discussion of the more general case. weights, or to embody some kind of heuristic search.

. For any given algorithm, not all of the methods and functions
3 GRE_from the Perspective of Problem need to be implemented; in particular, we will see that some
Solving algorithms do not require jpath-cost-function

With so many algorithms to choose from, it would be useful

to have a ynlform framework in W_h|9h to d|SCU_SS and com- we will use the notion of a property to correspond to an at-
pare algorithms; unfortunately, this is rather difficulvgmn tribute and its value; this will considerably simplify thetation we
the variety of different approaches that have been takdmeto t provide.

4 GREAlgorithms in Terms of Problem Definition 2: The Basic Algorithm Structure

Solving makeRefExp(

We adopt here an object oriented formalidmsince this al- Z ;;ggsei'enm:“[ﬂzsvuﬁ %’;?n?tagzg)%?e
lows the representation of dependencies between the algo- e nodeQueue + 0 do

rithms by means of inheritance and overwriting.

node «— removeFrontnodeQueue)

To enable more fruitful comparison of the different if goalnode.getStateYthen
GRE algorithms, we want to distinguish those aspects of the return node// success
algorithms which are true of all algorithms, and those which end

nodeQueue «— queuénodeQueue,expandnode))
end
return nil // failure

are unique to each particular algorithm. In Section 4.1, we
first describe the elements that are shared by all the algo-
rithms; we then go on to describe the distinct aspects of each }
algorithm in turn.

4.1 Common Elements

algorithms. One such ‘utility function’ is the methadle-
sOut which takes a property or relatiprand a set of distrac-
tors, and returns the set of distractors which are ruled put b

P.

Following from the previous section, the definitions of the
nodeandstateclasses are as shown in Definition 1. This fig-
ure also shows the definitions fimitial-stateandgoal, which

remain constant across the algorithms. i i :)
With this machinery in place, we can now rede-

fine the existing algorithms in terms of their core differesc
which correspond essentially to different ways of expagdin

Definition 1: The Node and State Classes

classNode{ h rch
< // State the search space.
th-cost I/ Cost of the path to this node . .
ZZtStZC;Z() P 4.2 The Full Brevity Algorithm

{retum s} // returns the state of the node The distinctive property of the Full Brevity8) algorithm is

classStatef that it computes all combinations of the available propsrti

L II Set of chosen properties and/or relations P with increasing length, so that it may find the shortest com-
C /I Set of distractors bination that succeeds in identifying the intended referen
P I/ Set of available properties and/or relations This behaviour is captured by tlespandmethod

shown in Definition 3. The method creates a set of successors
by creating a node for each propegtywhich has not so far
been checked, provided thatrules out at least one distractor.

}
initialState(){return new State(,C,P)}
// the goal is the empty set of distractors

goak(s) {
if s.C = () then return true The FB algorithm uses a breadth-first search im-
else returnfalse plementation of the queue, as shown in Definition 4. Conse-
} quently, any solution for whiclyoal returnstrue will have a

minimal number of properties, since the breadth-first dearc
)) considers smaller combinations of properties first.
Given these components, the main metmoak-

eRefExps then as represented in Definition 2. This takes two The FB algorithm uses thexpandmethod, and

arguments, which serve as the parameters that distingnésh O_createNodemethod which are shown in Definition 3 and it

algorithm from another: aaxpandmethod to create the suc- IS mvgkgd by a call ofnakeRefExmethod which is shown
cessors of a given state, andjaeuemethod, which defines in Definition 2.

how to insert nodes into the node queue. Depending on the or- .

der in which the nodes are inserted, different search giee 4-3 The Incremental Algorithm

can be realized: for example, when the nodes are inserted e distinctive property of the Incremental Algorithm isith
the front of the queue, the search strategy is depth-firstrwh i requces the computational complexity of constructing a

the nodes are inserted at the end of the queue, the searteh Stigyterring expression by considering properties to use in se
egy is breadth-first; when the nodes of the queue are sortegl,ence from a predefined ordering of the available propertie
by the estimated distance to the goal, then the search type ¢ jmplementation of thexpandmethod shown in Defini-
best-first; and so on. tion 5 provides this behaviour.

In addition, we may require a number of general- If the set of properties of the current staté® is

purpose methods which can be used by a number of differenjq; empty, then the first propertyaccording to the given or-

2We follow the code conventions typically used in 00- derO is chosen from the set of properties of the current state
languages, where the names of classes start with upper kase ¢ s-, and a node is created with a new state by the method
acters, and the names of methods and variables start with kmge ~ createNode Note that thecreateNodenethod is the same as
characters. that used in thes algorithm and shown in Definition 3.

Definition 3: The Full Brevity Algorithm

Definition 6: The Set Algorithm

expandnode) {
N «— 0
s <« node.getState()
foreachp € s.P do
N «— N U { createNod&node, p) }
end
return N

}
createNodéuode, p) {
s < mnode.getState()
out «+ rulesOufp, s.C)
if out # () then
return new Node.C' — out, s.L U {p},
s.P —{p})
else return newNode.C, s.L, s.P — {p})

}

Definition 4: Breadth-first Queueing

queudact Nodes, newNodes) {
/I append the nodes at the end
return actNodes U newNodes

}

Unlike the expandmethod used in th&s algo-

R /I Set of referents
createNodéode,p) {
out «+ rulesOut(p, s.C)
if (-3z € R&z € out)&(Ix € C&x € out) then
return new Node(.C' — out, s.LU{p},s.P — {p})
else return newNode.C, s.L, s.P — {p})

}

from the set of intended referenisand when it rules out at
least one entity from the set of distractars If a property
does not fulfil that condition, then a node with the current
state is returned and the process is continued, as imathe
with the next property.

4.5 GREInvolving Relations

The algorithm forGrE Involving Relations (R) introduced

by [Dale and Haddock, 1991is constraint-based. The search
strategy used to fulfil the constraints is a combination of a
greedy search, which chooses the relation that leads to the
smallest set of distractors, and depth-first search to itescr
the entities, that is, the intended referent as well asiestit
which are referenced in the relations.

The strategy can be explained best by means of an
AND/OR-tree, as shown in Figure 1. Here, the top node rep-

rithm, however, the set of nodes returned here contains onlsesents a state in which relational properties are to bedons

one node. The main method applies goal predicate to this

ered as additions to the set of chosen properties. Eachhsearc

node; if this returns true, then the node containing theestatstep consists of two stages: in the first stage, we choose the

with the list of properties for the referring expressionés r

turned.

Definition 5: The Incremental Algorithm

O /I Predefined constant order of properties
expandnode) {

N «— 0

s <« node.getState()

if s.P # () then

p < choose the first p in O, whegee s.P

N «— NU {createNodéwode, p) }
end
return N

}

4.4 Extension of the IA to Sets

relationp; which rules out the largest number of distractors;

in the second stage, each entity which is referenced by the
chosen relation has to be described by repeating the process
recursively. This is done in a depth-first manner, but if the
related entity is not uniquely distinguished then the ngxt

that the intended referent participates in is chosen, and so
on. This process continues until all entities are uniquely d
scribed §ucceskor no further relations can be chosdailf

ure).

N=({bowl(x)},[Cx={b1, b2}]}

choose relation

between(x,w,v)

describe entity

The algorithms considered so far have been concerned w v

with constructing descriptions for individual referenfgan
Deemter, 200Rintroduced an algorithm which extends the

Figure 1: Expansion tree for the algorithm

IA to sets. The extension is shown in terms of our framework

in Definition 6.

The algorithm is represented in the problem solv-

Note that, precisely because this algorithm is aning paradigm as in Definition 7. Here, tlexpandmethod

extension of thea algorithm, we reuse thexpandmethod

chooses a relation which rules out the largest number of dis-

from that algorithm. Consequently, the extension requiresractors; it then calls the methareateNode which recur-
only the rewriting of thecreateNodamethod, whereby an at- sively callsmakeRefExfior each new referent contained in
tribute p; is only chosen when it does not rule out entitiesthe relation.

Definition 7: Involving Relations

Definition 8: Context-Sensitive Algorithm

r /I Referent
expandnode) {
s <« node.getState()
pe < nil
/I Chosen relation ig., wherep rules out
// the largest number of distractors
foreachp € s.P do
if pc = nil or
[rulesOutp, s.C')| > |rulesOutpc, s.C)|
thenp. «—p
end
end
node. < createNodénode, p.)
if (node. = nil) then return ()
else return {node. }

createNodérode, p) {

s <« node.getState()

C «— s.C—rulesOufp, s.C)

L — s.LU{p}

/I Extend Description

foreachr’ € {r,|r, € referent$p) & r, # r} do
node,. «+— makeRefExp’)
if node,» = nil then return n:l // failure
L — L Unode.getState().L

end

return new Node(C, L, s.P — {p})

}

4.6 Context-SensitiveGRE

[Krahmer and Theune, 20D2lso introduced a number of ex-

r I/ Referent
createNodénode, p) {
s « node.getState()
out < rulesOutp, s.C)
C — s.C —out
L «— s.L
if (out # () or contrastivér, p)) then
L—Lu{p}
if v expresses a relation betweeandr’ then
node,» «— makeRefExp’)
L — L U node,.getState().L
end
end
if mostSalier(t, L, C) then
L+« L U {defArt}
/l The most salient rules out all distractors:
C— 10
end
return new Node(C, L, s.P — {p})
}

is viewed as a search problem, where we effectively build a
search space consisting of possible descriptions.

There are three significant advantages to this ap-
proach.

First, it allows us to determine what the algorithms
have in common. This is particularly interesting in thatlit a
lows us to begin to assemble a collection of core function-
alities that are usable in a variety of different approadbes
GRE. This is apparent not only in terms of the general frame-

tensions to thea: the use of salience weights in order to add o,k (where, for example, the notions of states and their ini

a definite article to the description for the most salienitgnt
contrastive properties in order to add properties whichosep

tialisation, the definition of what it is to be a goal stategdan
the overall algorithmic pattern) are shared, but in terms of

a contrast between two entities; and a relational extensionpg|per routines (such asulesOutand mostSalientwhich

similar in spirit but not in form to that in ther algorithm
described above.

Again, as for theseTsalgorithm, the commonality

can be modularised out of the essence of different algogthm
and reused elsewhere.

Second, it makes it possible to see more clearly

with the A algorithm surfaces as the reuse of the latter algoyynat the essential differences between the algorithmiyreal

rithm’s expandmethod; only thereateNodenethod needs to

are. In their original forms, these differences are obsture

be rewritten, as in Definition 8. To model this variant in our 4,e to the absence of a common vocabulary for expressing the

framework, we introduce the following additional methods

(cf. [Krahmer and Theune, 2002

e contrastivetakes a referentand a property;,; it checks

whether the property under consideration is contrastive

algorithms; by representing the algorithms within a common
framework, it becomes easier to see where the algorithms dif
fer, and where the differences are simply due to differeirces

notation or presentation. By using the framework of problem

solving as search, we have effectively decomposed the algo-

» mostSalientakes a referent, a set of properties, and a rithms into a number of key elements: a search srategy,tepre
set of distractors; it checks whether every entity in thesented by theueuing-methodand arexpand-methadvhich

set of distractors has a lower salience weight than

5 Conclusions and Future Work

encompasses two aspects of each algorithm: the basic strat-
egy adopted and the particular kinds of referring expressio
covered. Furthermore, thexpand-methodecomposes into a
general strategy for expansion (as found in, for exampée, th

In the foregoing, we have shown how a number of the mosfull Brevity algorithm an.d the I.ncrementall Algorithm), and
frequently discussed algorithms for the generation ofrrefe &createNodenethod, which varies depending upon the kind

ring expressions can be represented within a common fram&f referring expression targetted.

work. The framework is, we believe, an intuitively appeal-

Third, it allows us to see more clearly the logical

ing one: the process of constructing a referring expressiospace within which the algorithms reside, and to see ways of

combining aspects of different algorithms. At its simplest ceedings of the Australasian Language Technology Work-
this is clearest with respect to the kind of search stratsggu shop University of Melbourne, 2003.

in the algorithms. Present formulations conflate the_chofce [Horacek, 199F H. Horacek. An Algorithm for Generating
search strategy with the other aspects of the algorithmh(suc pgeferential Descriptions with Flexible Interfaces. Rro-

as how subsequent nodes in the se:_:lrch space are computed)Ceedings of the 35th Annual Meeting of the AChiver-
our approach separates out these different facets of tie alg sity of Madrid, 1997.

rithms, and makes it much easier to see that the choice of))
search strategy is an independent decision. Consequiently, Horacek, 2004 H. Horacek. On Referring toSets of Objects

example, we can easily experiment with a variant of ke Naturally. In H. Buntand R. Muskens, editor$)ird Inter-
algorithm that uses breadth-first search rather than diasth- ~ national Natural Language Generation Conferenpages
search. 70 — 79. Springer-Verlag Heidelberg, 2004.

So far, we have used the framwework to expresgKrahmer and Theune, 20DE. Krahmer and M. Theune.
the most widely-known algorithms in the literature. Prelim Efficient context-sensitive generation of referring expre
nary examination of the algorithms[Krahmeret al,, 2004, sions. Ininformation Sharing: Reference and Presuppo-
[van Deemeter and Krahmer, forthcomipgnd [Horacek, sition in NLG and Interpretationpages 223-264. CSLI,
2004 suggests that these will also be expressible within the 2002.
framework described here. As we capture more algorithm$Krahmeret al, 2003 E. Krahmer, S. van Erk, and A. Ver-
in the framework, our intention is to tease out an inventory |eg. Graph-based generation of referring expressions.
of basic constituent elements which can then be reassembled Computational Linguistig29(1):53-72, 2003.
for Understanding of the nature of the problem of referringMCDONald, 1980 D. . McDonald. - Natural Language

Generation as a Process of Decision-making Under Con-

expression generation. straints PhD thesis, Massachusetts Institute of Technol-
ogy, 1980.

Acknowledgements [Reiter and Dale, 1992E. Reiter and R. Dale. A fast algo-

This work was carried out_while_: the.fir,st author was a visit- géhen(;'i;%rstg? tﬁgrlleélrt?‘tgggggr]eefrzrérwzg_%gtelsésg%ﬁs.Plnm
ing researcher at Macquarie University’s Centre for Lamgua _ o
Technology; the visit was supported by Macquarie Univer-[Russell and Norvig, 2043S. Russell and P. NorvigArtifi-
sity’s Research Development Scheme. We are grateful to Cial Intelligence: A Modern ApproactPrentice-Hall, En-
the members of the Centre for Language Technology who glewood Cliffs, NJ, 2nd edition, 2003.

provided insightful comments on earlier presentation$isf t [Simon and Newell, 1943H. Simon and A. NewellGPS, a
work, and to the anonymous IJCAI reviewers for their helpful program that simulates thougtgages 279-293. 1963.

comments. [Stone, 200D M. Stone. On identifying sets. IRroceed-
ings of the First International Natural Language Genera-
References tion ConferenceMitzpe Ramon, 2000.

[Appelt, 1981 D. E. Appelt. Planning Natural Language [van Deemeter and Krahmer, forthcomin§. van Deemeter

Utterances to Satisfy Multiple GoalBhD thesis, Stanford ~ @nd E. Krahmer. Graphs and booleans: On the genera-
University, 1981. tion of referring expressions. In H. Bunt and R. Muskens,

) . editors,Computing Meaning Vol. llIDordrecht: Kluwer,
[Bateman, 1990 J. Bateman. Using Aggregation for Select- forthcoming.

ing Content when generating Referring Expressions.
Proceedings of the 37th Annual Meeting of the AGhi-
versity of Marylad, 1999.

[Dale and Haddock, 1991R. Dale and N. Haddock. Gen-
erating referring expressions involving relations. Aro-
ceedings of the 5th EAClpages 161-166, Berlin, Ger-
many, 1991.

[Dale and Reiter, 1995R. Dale and E. Reiter. Computa-
tional interpretations of the gricean maxims in the gen-
eration of referring expressions. Cognitive Science
19(2):233-263, 1995.

[Dale, 1989 R. Dale. Cooking up referring expressions. In
Proceedings of the Twenty-Seventh Annual Meeting of the
ACL, pages 68-75, Vancouver, British Columbia, 1989.

[Dale, 2003 R Dale. One-anaphora and the case for
discourse-driven referring expression generationPrio-

IrIvan Deemter, 20Q2K. van Deemter. Generating referring
expressions: Boolean extensions of the incremental algo-
rithm. Computational Linguistic28(1):37-52, 2002.

[Winograd, 1972 T. Winograd. Understanding Natural
Language Academic Press, 1972.

