
Viewing Referring Expression Generation as Search

Bernd Bohnet∗ and Robert Dale†
∗Institute for Intelligent Systems, University of Stuttgart, Germany

†Centre for Language Technology, Macquarie University, Sydney, Australia
Bohnet@iis.uni-stuttgart.de, Robert.Dale@mq.edu.au

Abstract

Almost all natural language generation (NLG) sys-
tems are faced with the problem of the genera-
tion of referring expressions (GRE): given a sym-
bol corresponding to an intended referent, how do
we work out the semantic content of a referring ex-
pression that uniquely identifies the entity in ques-
tion? This is now one of the most widely explored
problems inNLG: over the last 15 years, a number
of algorithms have been proposed for addressing
different aspects of this problem, but the different
approaches taken make it very difficult to compare
and contrast the algorithms provided in any mean-
ingful way. In this paper, we show how viewing
the problem of referring expression generation as
a search problem allows us to recast existing algo-
rithms in a way that makes their similarities and
differences clear.

1 Introduction

A major component task in natural language generation
(NLG) is the generation of referring expressions: given an en-
tity that we want to refer to, how do we determine the content
of a referring expression that uniquely identifies that intended
referent? This is now a widely explored problem in theNLG
literature; since at least[Dale, 1989], the standard conception
of this task has been as follows:

1. We assume we have a knowledge base that characterises
the entities in the domain in terms of a set of attributes
and the values that the entities have for these attributes;
so, for example, our knowledge base might represent the
fact that entitye1 has the valuecupfor the attributetype,
and the valuered for the attributecolour.

2. In a typical context where we want to refer to someei,
which we call theintended referent, there will be other
entities from which the intended referent must be dis-
tinguished; these are generally referred to asdistractors.
So, for example, we may want to distinguish a particular
cup from all the other items present in the context of a
dining table.

3. The goal of referring expression generation is therefore
to find some collection of attributes and their values
which distinguish the intended referent from all the po-
tential distractors in the context.

Over the last 15 years, a wide variety of algorithms have been
proposed to deal with specific aspects of this problem. For
example, while earlier algorithms focussed on the use of at-
tributes that correspond to simple one-place predicates (as
might be realised, for example, by means of adjectives such
asred or large), later work attempts to address the use of re-
lational predicates (as might be realised by prepositions such
as in andnext to), and other work looks at the incorporation
of boolean operators such asnot andand. Consequently, we
now have a considerable body of research in this area; how-
ever, it is difficult to establish just how these different algo-
rithms relate to each other.

This paper represents a first step towards consol-
idating the results in this area, with the aim of developing
a framework within which different algorithms can be com-
pared and assessed. The structure of the paper is as follows.
In Section 2, we provide a brief overview of work on the gen-
eration of referring expressions to date. In Section 3, we bor-
row a standard approach used in Artificial Intelligence (AI) to
represent problems in an elegant and uniform way (see, for
example,[Simon and Newell, 1963]; [Russell and Norvig,
2003]), sketching howGRE algorithms can be expressed in
terms ofproblem-solving by search. In Section 4, we explore
how the most well-known algorithms can be expressed in this
framework. In Section 5, we discuss how this approach en-
ables a more fruitful comparison of existing algorithms, and
we point to ways of taking this work further.

2 A Brief Review of Work To Date

Although the task of referring expression generation is dis-
cussed informally in earlier work onNLG (in particular, see
[Winograd, 1972; McDonald, 1980; Appelt, 1981], the first
formally explicit algorithm was introduced in[Dale, 1989].
This algorithm, which we will refer to as the Full Brevity (FB)
algorithm, is still frequently used as a basis for otherGRE al-
gorithms. TheFB algorithm searches for the best solution
amongst all possible referring expressions for an entity; the
algorithm derives the smallest set of attributes for the referent

in question, producing a referring expression that is bothad-
equate(in the sense that it provides enough information to do
what it needs to do) andefficient(in the sense that it does not
provide any more information than it needs to).

This initial algorithm limited its application to
one-place predicates.[Dale and Haddock, 1991] introduced
a constraint-based procedure that could generate referring ex-
pressions involving relations (henceforthIR), using a greedy
heuristic to guide the search.

As a response to the computational complexity of
greedy algorithms,[Reiter and Dale, 1992; Dale and Re-
iter, 1995] introduced the psycholinguistically motivated In-
cremental Algorithm (IA). The most used and adapted al-
gorithm, this is based on the observation that people often
produce referring expressions which are informationally re-
dundant; the algorithm uses a preference ordering over the
attributes to be used in a referring expression, incorporating
those attributes which rule out at least one potential distractor.

In recent years there have been a number of im-
portant extensions to theIA . The Context-Sensitive extension
(CS; [Krahmer and Theune, 2002]) is able to generate refer-
ring expressions for the most salient entity in a context; the
Boolean Expressions algorithm (BE; [van Deemter, 2002]) is
able to derive expressions containing boolean operators, as
in the cup that does not have a handle; and the Sets algo-
rithm (SET; [van Deemter, 2002]) extends the basic approach
to references to sets, as inthe red cups. Some approaches
reuse parts of other algorithms: the Branch and Bound (BaB;
[Krahmeret al., 2003]) algorithm uses the Full Brevity al-
gorithm, but is able to generate referring expressions with
both attributes and relational descriptions using a graph-based
technique.

We have identified here what we believe to be the
most cited strands of research in this area, but of course
there are many other algorithms described in the litera-
ture: see, for example,[Horacek, 1997; Bateman, 1999;
Stone, 2000]. Space limitations prevent a complete summary
of this other work here, but our intention is to extend the anal-
ysis presented in this paper to as many of these other algo-
rithms as possible.

All these algorithms focus on the generation of
definite references. In principle, they would be embedded
in a higher-level algorithm that includes cases for when the
entity has not been previously mentioned (thus leading to
an initial indefinite reference) or when the referent is in
focus (thus leading to a pronominal reference). However,
in practice, most work tends to focus exclusively on defi-
nite reference; see[Dale, 1989; Krahmer and Theune, 2002;
Dale, 2003] for further discussion of the more general case.

3 GRE from the Perspective of Problem
Solving

With so many algorithms to choose from, it would be useful
to have a uniform framework in which to discuss and com-
pare algorithms; unfortunately, this is rather difficult given
the variety of different approaches that have been taken to the

problem.

Within the wider context ofAI , [Russell and
Norvig, 2003] present an elegant definition of a general al-
gorithm for problem solving by search. The search graph
consists ofnodeswith the componentsstateandpath-cost; a
problem is represented by aninitial-state, anexpand-method
which identifies new states in the search space, aqueuing-
methodwhich determines the order in which the states should
be considered, and apath-cost-functionwhich determines the
cost of reaching a given state. In this framework, the search
strategy is determined by the combination ofqueuing-method
andpath-cost-functionused.

In the following, we use this framework to pro-
vide a characterisation of existingGRE algorithms in terms
of problem solving by search. Given an intended referent,
a set of properties true of the intended referent,1 and the set
of distractor entities from which we wish to distinguish the
intended referent, we can conceptualise the search space as
consisting of states that correspond to possible descriptions
of the intended referent. Each state has three components:
a description that is true of the intended referent, the set of
distractor entities that the description also applies to besides
the intended referent, and the set of properties of the intended
referent that have not yet been considered in describing the
referent.

1. The initial-state is of the form〈{}, C, P 〉, whereC is
the set of distractors in the initial context, andP is the
set of all properties true of the intended referent.

2. The goal state is of the form
〈{λxP1, λxP2, . . .}, {}, P

′〉, where the first term
contains a set of properties of the intended referent that,
by virtue of the second term (the set of distractors)
being an empty set, distinguish the intended referent;
P ′ contains any properties of the intended referent not
yet used in the description.

3. All other states in the search space are then intermediate
states through which an algorithm will move as it adds
new properties to the description.

4. The search strategy is carried out by theexpand-method
and thequeuing-method, which together characterise the
specificGRE algorithm (for example,FB, GH or IA) that
is used.

5. Thepath-cost-functionallows us to route the search as
required; this can be used to take account of salience
weights, or to embody some kind of heuristic search.

For any given algorithm, not all of the methods and functions
need to be implemented; in particular, we will see that some
algorithms do not require apath-cost-function.

1We will use the notion of a property to correspond to an at-
tribute and its value; this will considerably simplify the notation we
provide.

4 GRE Algorithms in Terms of Problem
Solving

We adopt here an object oriented formalism,2 since this al-
lows the representation of dependencies between the algo-
rithms by means of inheritance and overwriting.

To enable more fruitful comparison of the different
GRE algorithms, we want to distinguish those aspects of the
algorithms which are true of all algorithms, and those which
are unique to each particular algorithm. In Section 4.1, we
first describe the elements that are shared by all the algo-
rithms; we then go on to describe the distinct aspects of each
algorithm in turn.

4.1 Common Elements

Following from the previous section, the definitions of the
nodeandstateclasses are as shown in Definition 1. This fig-
ure also shows the definitions forinitial-stateandgoal, which
remain constant across the algorithms.

Definition 1: The Node and State Classes
classNode{
s // State
path-cost // Cost of the path to this node
getState()
{return s} // returns the state of the node
}
classState{
L // Set of chosen properties and/or relations
C // Set of distractors
P // Set of available properties and/or relations
}
initialState(){return new State(∅,C,P)}
// the goal is the empty set of distractors
goal(s) {

if s.C = ∅ then return true
else return false
}

Given these components, the main methodmak-
eRefExpis then as represented in Definition 2. This takes two
arguments, which serve as the parameters that distinguish one
algorithm from another: anexpandmethod to create the suc-
cessors of a given state, and aqueuemethod, which defines
how to insert nodes into the node queue. Depending on the or-
der in which the nodes are inserted, different search strategies
can be realized: for example, when the nodes are inserted at
the front of the queue, the search strategy is depth-first; when
the nodes are inserted at the end of the queue, the search strat-
egy is breadth-first; when the nodes of the queue are sorted
by the estimated distance to the goal, then the search type is
best-first; and so on.

In addition, we may require a number of general-
purpose methods which can be used by a number of different

2We follow the code conventions typically used in OO-
languages, where the names of classes start with upper case char-
acters, and the names of methods and variables start with lower case
characters.

Definition 2: The Basic Algorithm Structure

makeRefExp(){
// create a initial queue with a single node
nodeQueue ← [newNode(initialState())]
while nodeQueue 6= ∅ do

node← removeFront(nodeQueue)
if goal(node.getState()) then

return node// success
end
nodeQueue← queue(nodeQueue,expand(node))

end
return nil // failure
}

algorithms. One such ‘utility function’ is the methodrule-
sOut, which takes a property or relationp and a set of distrac-
tors, and returns the set of distractors which are ruled out by
p.

With this machinery in place, we can now rede-
fine the existing algorithms in terms of their core differences,
which correspond essentially to different ways of expanding
the search space.

4.2 The Full Brevity Algorithm

The distinctive property of the Full Brevity (FB) algorithm is
that it computes all combinations of the available properties
P with increasing length, so that it may find the shortest com-
bination that succeeds in identifying the intended referent.

This behaviour is captured by theexpandmethod
shown in Definition 3. The method creates a set of successors
by creating a node for each propertypi which has not so far
been checked, provided thatpi rules out at least one distractor.

The FB algorithm uses a breadth-first search im-
plementation of the queue, as shown in Definition 4. Conse-
quently, any solution for whichgoal returnstrue will have a
minimal number of properties, since the breadth-first search
considers smaller combinations of properties first.

The FB algorithm uses theexpandmethod, and
createNodemethod which are shown in Definition 3 and it
is invoked by a call ofmakeRefExpmethod which is shown
in Definition 2.

4.3 The Incremental Algorithm

The distinctive property of the Incremental Algorithm is that
it reduces the computational complexity of constructing a
referring expression by considering properties to use in se-
quence from a predefined ordering of the available properties.
The implementation of theexpandmethod shown in Defini-
tion 5 provides this behaviour.

If the set of properties of the current states.P is
not empty, then the first propertyp according to the given or-
derO is chosen from the set of properties of the current state
s.P , and a node is created with a new state by the method
createNode. Note that thecreateNodemethod is the same as
that used in theFB algorithm and shown in Definition 3.

Definition 3: The Full Brevity Algorithm

expand(node) {
N ← ∅
s ← node.getState()
foreachp ∈ s.P do

N ← N ∪ { createNode(node, p)}
end
return N
}
createNode(node, p) {

s ← node.getState()
out ← rulesOut(p, s.C)
if out 6= ∅ then

return new Node(s.C − out, s.L ∪ {p},
s.P − {p})

else return newNode(s.C, s.L, s.P − {p})
}

Definition 4: Breadth-first Queueing

queue(actNodes, newNodes) {
// append the nodes at the end
return actNodes ∪ newNodes
}

Unlike the expandmethod used in theFB algo-
rithm, however, the set of nodes returned here contains only
one node. The main method applies thegoalpredicate to this
node; if this returns true, then the node containing the state
with the list of properties for the referring expression is re-
turned.

Definition 5: The Incremental Algorithm

O // Predefined constant order of properties
expand(node) {

N ← ∅
s ← node.getState()
if s.P 6= ∅ then

p ← choose the first p in O, wherep ∈ s.P
N ← N ∪ { createNode(node, p) }

end
return N
}

4.4 Extension of the IA to Sets

The algorithms considered so far have been concerned
with constructing descriptions for individual referents;[van
Deemter, 2002] introduced an algorithm which extends the
IA to sets. The extension is shown in terms of our framework
in Definition 6.

Note that, precisely because this algorithm is an
extension of theIA algorithm, we reuse theexpandmethod
from that algorithm. Consequently, the extension requires
only the rewriting of thecreateNodemethod, whereby an at-
tribute pi is only chosen when it does not rule out entities

Definition 6: The Set Algorithm

R // Set of referents
createNode(node,p) {

out← rulesOut(p, s.C)
if (¬∃x ∈ R&x ∈ out)&(∃x ∈ C&x ∈ out) then

return new Node(s.C − out, s.L∪{p},s.P − {p})
else return newNode(s.C, s.L, s.P − {p})
}

from the set of intended referentsR and when it rules out at
least one entity from the set of distractorsC. If a property
does not fulfil that condition, then a node with the current
state is returned and the process is continued, as in theIA ,
with the next property.

4.5 GRE Involving Relations

The algorithm forGRE Involving Relations (IR) introduced
by [Dale and Haddock, 1991] is constraint-based. The search
strategy used to fulfil the constraints is a combination of a
greedy search, which chooses the relation that leads to the
smallest set of distractors, and depth-first search to describe
the entities, that is, the intended referent as well as entities
which are referenced in the relations.

The strategy can be explained best by means of an
AND /OR-tree, as shown in Figure 1. Here, the top node rep-
resents a state in which relational properties are to be consid-
ered as additions to the set of chosen properties. Each search
step consists of two stages: in the first stage, we choose the
relationpi which rules out the largest number of distractors;
in the second stage, each entity which is referenced by the
chosen relation has to be described by repeating the process
recursively. This is done in a depth-first manner, but if the
related entity is not uniquely distinguished then the nextpj

that the intended referent participates in is chosen, and so
on. This process continues until all entities are uniquely de-
scribed (success) or no further relations can be chosen (fail-
ure).

...

vw

describe entity

choose relation

N=({bowl(x)},[Cx={b1, b2}]}

on(x,y)between(x,w,v)

Figure 1: Expansion tree for theIR algorithm

The algorithm is represented in the problem solv-
ing paradigm as in Definition 7. Here, theexpandmethod
chooses a relation which rules out the largest number of dis-
tractors; it then calls the methodcreateNode, which recur-
sively callsmakeRefExpfor each new referent contained in
the relation.

Definition 7: Involving Relations

r // Referent
expand(node) {

s ← node.getState()
pc ← nil
// Chosen relation ispc, wherep rules out
// the largest number of distractors
foreachp ∈ s.P do

if pc = nil or
|rulesOut(p, s.C)| > |rulesOut(pc, s.C)|

then pc ← p
end

end
nodec ← createNode(node, pc)
if (nodec = nil) then return ∅
else return{nodec}
}
createNode(node, p) {

s ← node.getState()
C ← s.C− rulesOut(p, s.C)
L← s.L ∪ {p}
// Extend Description
foreach r′ ∈ {rp|rp ∈ referents(p) & rp 6= r} do

noder′ ← makeRefExp(r′)
if noder′ = nil then return nil // failure
L← L ∪ node.getState().L

end
return new Node(C, L, s.P − {p})
}

4.6 Context-SensitiveGRE

[Krahmer and Theune, 2002] also introduced a number of ex-
tensions to theIA : the use of salience weights in order to add
a definite article to the description for the most salient entity;
contrastive properties in order to add properties which impose
a contrast between two entities; and a relational extension,
similar in spirit but not in form to that in theIR algorithm
described above.

Again, as for theSETSalgorithm, the commonality
with the IA algorithm surfaces as the reuse of the latter algo-
rithm’s expandmethod; only thecreateNodemethod needs to
be rewritten, as in Definition 8. To model this variant in our
framework, we introduce the following additional methods
(cf. [Krahmer and Theune, 2002]):

• contrastivetakes a referentr and a propertypi; it checks
whether the property under consideration is contrastive.

• mostSalienttakes a referentr, a set of properties, and a
set of distractors; it checks whether every entity in the
set of distractors has a lower salience weight thanr.

5 Conclusions and Future Work

In the foregoing, we have shown how a number of the most
frequently discussed algorithms for the generation of refer-
ring expressions can be represented within a common frame-
work. The framework is, we believe, an intuitively appeal-
ing one: the process of constructing a referring expression

Definition 8: Context-Sensitive Algorithm

r // Referent
createNode(node, p) {

s ← node.getState()
out← rulesOut(p, s.C)
C ← s.C − out
L← s.L
if (out 6= ∅ or contrastive(r, p)) then

L← L ∪ {p }
if v expresses a relation betweenr andr′ then

noder′ ← makeRefExp(r′)
L← L ∪ noder′ .getState().L

end
end
if mostSalient(r, L, C) then

L← L ∪ { defArt}
// The most salient rules out all distractors:
C ← ∅

end
return new Node(C, L, s.P − {p})
}

is viewed as a search problem, where we effectively build a
search space consisting of possible descriptions.

There are three significant advantages to this ap-
proach.

First, it allows us to determine what the algorithms
have in common. This is particularly interesting in that it al-
lows us to begin to assemble a collection of core function-
alities that are usable in a variety of different approachesto
GRE. This is apparent not only in terms of the general frame-
work (where, for example, the notions of states and their ini-
tialisation, the definition of what it is to be a goal state, and
the overall algorithmic pattern) are shared, but in terms of
‘helper’ routines (such asrulesOutand mostSalient) which
can be modularised out of the essence of different algorithms
and reused elsewhere.

Second, it makes it possible to see more clearly
what the essential differences between the algorithms really
are. In their original forms, these differences are obscured,
due to the absence of a common vocabulary for expressing the
algorithms; by representing the algorithms within a common
framework, it becomes easier to see where the algorithms dif-
fer, and where the differences are simply due to differencesin
notation or presentation. By using the framework of problem
solving as search, we have effectively decomposed the algo-
rithms into a number of key elements: a search srategy, repre-
sented by thequeuing-method, and anexpand-method, which
encompasses two aspects of each algorithm: the basic strat-
egy adopted and the particular kinds of referring expressions
covered. Furthermore, theexpand-methoddecomposes into a
general strategy for expansion (as found in, for example, the
Full Brevity algorithm and the Incremental Algorithm), and
a createNodemethod, which varies depending upon the kind
of referring expression targetted.

Third, it allows us to see more clearly the logical
space within which the algorithms reside, and to see ways of

combining aspects of different algorithms. At its simplest,
this is clearest with respect to the kind of search strategy used
in the algorithms. Present formulations conflate the choiceof
search strategy with the other aspects of the algorithm (such
as how subsequent nodes in the search space are computed);
our approach separates out these different facets of the algo-
rithms, and makes it much easier to see that the choice of
search strategy is an independent decision. Consequently,for
example, we can easily experiment with a variant of theIR
algorithm that uses breadth-first search rather than depth-first
search.

So far, we have used the framwework to express
the most widely-known algorithms in the literature. Prelimi-
nary examination of the algorithms in[Krahmeret al., 2003],
[van Deemeter and Krahmer, forthcoming], and [Horacek,
2004] suggests that these will also be expressible within the
framework described here. As we capture more algorithms
in the framework, our intention is to tease out an inventory
of basic constituent elements which can then be reassembled
and integrated in different ways, so that we can derive a bet-
ter understanding of the nature of the problem of referring
expression generation.

Acknowledgements

This work was carried out while the first author was a visit-
ing researcher at Macquarie University’s Centre for Language
Technology; the visit was supported by Macquarie Univer-
sity’s Research Development Scheme. We are grateful to
the members of the Centre for Language Technology who
provided insightful comments on earlier presentations of this
work, and to the anonymous IJCAI reviewers for their helpful
comments.

References

[Appelt, 1981] D. E. Appelt. Planning Natural Language
Utterances to Satisfy Multiple Goals. PhD thesis, Stanford
University, 1981.

[Bateman, 1999] J. Bateman. Using Aggregation for Select-
ing Content when generating Referring Expressions. In
Proceedings of the 37th Annual Meeting of the ACL. Uni-
versity of Marylad, 1999.

[Dale and Haddock, 1991] R. Dale and N. Haddock. Gen-
erating referring expressions involving relations. InPro-
ceedings of the 5th EACL, pages 161–166, Berlin, Ger-
many, 1991.

[Dale and Reiter, 1995] R. Dale and E. Reiter. Computa-
tional interpretations of the gricean maxims in the gen-
eration of referring expressions. Cognitive Science,
19(2):233–263, 1995.

[Dale, 1989] R. Dale. Cooking up referring expressions. In
Proceedings of the Twenty-Seventh Annual Meeting of the
ACL, pages 68–75, Vancouver, British Columbia, 1989.

[Dale, 2003] R Dale. One-anaphora and the case for
discourse-driven referring expression generation. InPro-

ceedings of the Australasian Language Technology Work-
shop. University of Melbourne, 2003.

[Horacek, 1997] H. Horacek. An Algorithm for Generating
Referential Descriptions with Flexible Interfaces. InPro-
ceedings of the 35th Annual Meeting of the ACL. Univer-
sity of Madrid, 1997.

[Horacek, 2004] H. Horacek. On Referring toSets of Objects
Naturally. In H. Bunt and R. Muskens, editors,Third Inter-
national Natural Language Generation Conference, pages
70 – 79. Springer-Verlag Heidelberg, 2004.

[Krahmer and Theune, 2002] E. Krahmer and M. Theune.
Efficient context-sensitive generation of referring expres-
sions. InInformation Sharing: Reference and Presuppo-
sition in NLG and Interpretation, pages 223–264. CSLI,
2002.

[Krahmeret al., 2003] E. Krahmer, S. van Erk, and A. Ver-
leg. Graph-based generation of referring expressions.
Computational Linguistics, 29(1):53–72, 2003.

[McDonald, 1980] D. D. McDonald. Natural Language
Generation as a Process of Decision-making Under Con-
straints. PhD thesis, Massachusetts Institute of Technol-
ogy, 1980.

[Reiter and Dale, 1992] E. Reiter and R. Dale. A fast algo-
rithm for the generation of referring expressions. InPro-
ceedings of the 14th ACL, pages 232–238, 1992.

[Russell and Norvig, 2003] S. Russell and P. Norvig.Artifi-
cial Intelligence: A Modern Approach. Prentice-Hall, En-
glewood Cliffs, NJ, 2nd edition, 2003.

[Simon and Newell, 1963] H. Simon and A. Newell.GPS, a
program that simulates thought, pages 279–293. 1963.

[Stone, 2000] M. Stone. On identifying sets. InProceed-
ings of the First International Natural Language Genera-
tion Conference. Mitzpe Ramon, 2000.

[van Deemeter and Krahmer, forthcoming] K. van Deemeter
and E. Krahmer. Graphs and booleans: On the genera-
tion of referring expressions. In H. Bunt and R. Muskens,
editors,Computing Meaning Vol. III. Dordrecht: Kluwer,
forthcoming.

[van Deemter, 2002] K. van Deemter. Generating referring
expressions: Boolean extensions of the incremental algo-
rithm. Computational Linguistics, 28(1):37–52, 2002.

[Winograd, 1972] T. Winograd. Understanding Natural
Language. Academic Press, 1972.

