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Abstract commonly accepted representation (if any at all), and all the
current solvers return a little more thaisat/unsat answer.

A certificate of satisfiability for a quantified Despite these issuesat-certificates for QBFs are ex-
boolean formula is a compact representation of  tremely desirable thank to their potential benefits on appli-
one of its models which is used to provide solver-  cations and solvers. For example, a certificate is a conclu-
independent evidence of satisfiability. In addition, sive means to judge conflicting answers given by different
it can be inspected to gather explicit information solvers on the very same instance. Clearly, this event reveals
about the semantics of the formula. Due to the  no finer problem than a bug in the implementation, which we
intrinsic nature of quantified formulas, such cer- might think is not worth considering. This happens fairly of-
tificates demand much care to be efficiently ex-  ten though, and as long as we treat solvers as black boxes,
tracted, compactly represented, and easily queried.  a proof-of-satisfiability approach is the only realistic way to
We show how to solve all these problems. tell the truth. We quotéLe Berreet al., 2004:

The question of how to check the answer of the QBF
1 Introducti solvers in an effective way is still unanswefed
ntroauction the question of what is a good certificate of satisfia-

The term “certificate” has a fairly general meaning, originat-  Pility/unsatisfiability[...] remains open. This point

ing in language recognition and complexity theory. Onee is not only an issue for the QBF evaluation, but

ified, a certificate proves that the string it refers to actually ~ @lso for the implementationf...] we had sound-
belongs to a language of interest. Applied to logic, the term  Ness problems with 4 QBF solvefs.]

denotes any means of providing evidence of (un)satisfiabilityet, a certificate is much more than a way to ensure satisfi-
for a given statement, other than a refutationally-compete deability: It can beinspectedo gather semantics from the un-
ductive approach. In essence, we verify that a given logicatlerlying formula. This is of paramount importance in appli-
formula belongs to the language of (un)satisfiable statementsations, where certificates add valuable information to a mere

The most naturatertificate of satisfiabilitysat-certificate) ~ sat/unsat answer. For example,sat answer to the proposi-
for a formula is an explicit representation of some ofitsd-  tional (PROP) encoding of (the negation of) a desired prop-
els. A formula is indeed satisfiable if and only if some model erty over a logic circuit means that the circuit is faulty w.r.t.
makes it evaluate to true. The validity of a certificate can behat property. But, it takes a certificate to outline a definite
verified by whoever is knowledgeable about #ealuation ~ scenario in which the fault shows up. As opposed to QBF
apparatusof the logic (deductive capabilities are unneces-certificates, such PROP certificates are easy to represent and
sary), independently of how it was obtained. verify, hence they have had a wide application.

In this paper, we focus osat-certificates forQuantified The relevance of certificates enlarges with the scope of ap-
Boolean FormulagQBFs). Such certificates have never beenplication of the underlying logic. In this respect, QBF is a
proposed or used so far for a number of reasons. First, theotable case with plenty of applications. Every problem that
intrinsic nature of a QBF confers a tree-shaped structure t6an be stated as a two-player finite game can be modeled in
its models, whose explicit representation may become unafQRBF. An insightful example is obtained by considering the
fordable. Second, theoretical arguments exist that make it urfamous game “Connect-4". It is known that the player who
likely to find polynomial-time verification procedures (QBF moves first can always win. The rules of the game and the
satisfiability is PSPACE-completéStockmeyer and Meyer, €Xistence of a winning strategy can be encoded into a QBF
1973). Finally, present QBF solvers find it either impractical instancd Gent and Rowley, 20Q3expected to beat. Which
or not straightforward to collect all the information needed toiS the winning strategy? A certificate would disclose such in-
construct a model. As a consequence, QBF models feature fgrmation: The first player would prevail by just inspecting

the certificate at each move, whatever the opponent does.

*This work is supported by PATPfovincia Autonoma di Trento The interesting point here is that many real-world appli-
Italy), under grant n. 3248/2003. cations can be modeled as two-player games: Unbounded



model checking for finite-state systefiRintanen, 200fland 3 Certificate representation

conformant planningRintanen, 1999—just to name two rel- - .
evant examples—have handy QBF formulations. g‘ ?Bf m?del can hbe rfprese”iwtﬂ“f'g?/ bygmploymg
In the rest of this paper, after a brief introduction to QBFs ata structures such as trees or truth tables. Lr, we may pur-

and their models (Section 2), we present a soIver-independeﬁk‘ecomp"’wtnesat the expense of managing amplicit rep-

representation for QBBat-certificates (Section 3). As ex- sentatiohrequiring computation to yield values.

pected, we are able to describe how to verify them (Section 4 G\n |d$qlt certlflctate should dbe comp:ct (easy ftol P‘nadnagﬁe)
beforethe more complex task of their extraction is addresse ndexplicit (easy to verify and query). A successful tradeo

: : ; : .~ 1s obtained by employinBinary Decision Diagram§Bryant,
(()??J?Jtrl(;?:)gz&)a\évﬁ ;r?g ?L%dﬁjt%edﬁgﬁf ?Isnegc;{igi |g)1plementat|o 98d. We consider theireduced orderedersion (ROBDDs,

or just BDDs henceforth) wittomplemented arcsA BDD

& representing a total functiof'(uy, us, . .., u,) from B"

2 QBFs and their models to B is a directed acyclic graph with one root (labeledby

and one sink node (labeled by “1"). Each internal node is la-

With no loss of generality, we consider QBFsgrenex con-  beled by one variable itV = {uy,us,...u,}, and always
junctive normal form(CNF). They consist in grefixexhibit-  has two children, one attached to the outconiren-arg the

|ng an arbltral’y r.]l..]mber Of alternations of EXIStent_lally andother to thEElse_arc Thee|se_arcfnay or may not beomp|e_
universally quantified variables, followed bynaatrix, i.e. @ mented A unique path from the root to the sink is identified
conjunction of clauses. For example: by assigning a value to each variablelin The then-arcis

VavbAcVdIedf.(—bveVf) A (aVev ) A (avdve)A chosen for variables assigned tpthe else-arcis followed
(maV—bV—dVe) A (—aVbV—c) A (—avV-ev—-f)A (1)  otherwise. The functiol’ represented by evaluates td on
(aV—dV—e) A (maVdV—e) A (aV-eV—f) (1,1, ..., 1y,) € B™ iff an even number of complemented

arcs is encountered along the path definedby)s, .. ., 1¥,.

Given a QBFF, we denote byF' its matrix, by vars(F) As an example, let us consider the BDD aside,

(vary(F)) the set of existentially (universally) quantified : where solid arrows denote then-arcs, while

variables inF’, and byvary(F,e) C vary(F) the set of uni- ' dashed (dotted) arcs are used for regular (com-

versal variables preceding (dominating e € vars(F) in plemented) else-arcs. It represents a binary func-

the prefix (we posé(e) = |vary(F,e)|). Given a CNF ma- tion F(a,b,c) of three binary variables:, b

trix F, the formulaF « [ is the CNF obtained bgssigning andc. ltis, for example,F'(0,1,1) = 1 and

the literall, i.e. by removing from¥ each— literal and each F(1,1,1) = 0. The represented function may

clause containing. This notation is readily extended to sets be written ast” = b A (a V ¢) A (-a V —c). Ina

of literals. A matrixF is satisfiedby a set of literals\/ (writ- set-oriented interpretation, this BDD represents
~ ~ . theone-seof I, i.e. the set having’ as charac-

tenM = F)whenF x M is the empty formula.

X . _ _ teristic function. In our case, it stands for the set
The alternations of quantifiers in the prefix guide us to ex- {(0,1,1),(1,1,0)} whereF evaluates td.
tending this notion of satisfiability from matrixes to QBFs.

PR The BDDs we utilize ar@rderedandreduced The same
For example, the satisfiability problem on (1) asks whether _ . L
for each possible (consistent) combination of literals.@md variable ordering is followed along each path, and no two

. : nodes representing the same set exist, so that each function
bthere exists a way to choose a literalesuch that for both - ¢ only onecanonicrepresentation. Furthermore, the ver-
possible literals oved, two literals one and f exist such that

the resulting set satisfies the matrix. Hence, a QBF model i%'O?hg';g&%ﬂggéng(i?;iz 't‘z S\/tljlct:ft: ;hggﬁfﬁedrﬁggtg?c)
a set oflvars(F)| functions, each one specifying the literal y P :

be ch i h The BDD way of representing sets is regardedysbolic
d to be chosen (if any) on the ex- i, that it avoids the explicit enumeration of sets’ elements
istential variables as a function

a of the choices on all the univer- !n favor of a more abs_tract, diagram-based way of comput-
d | ables dominai T ing chqractensncfuncqons. Such representations may be ex-
sal variables dominating. 1o oheniially more succinct than explicit ones (§ééegener,
~a represent all these functions at 200d), and all the operations on the sets/functions they rep-
d oncg Wetﬁan use a_(;ab?jled_ t;_ee, resent (union/disjunction, intersection/conjunction, etc.) can
= Zu;oggl fo? ?1'1)9 ﬁs\;v:’caﬁjpr:img be performed by manipulating the involved BD[Bryant,
. . 1984. With a small abuse of notation, we treat BDDs as if
d versal hypothesi®very CONsis-  yhoy were the sets they represent. For example, € is an
tent set of universal literals (or, - gjement in the subset 8" individuated bye.
equwalemly, every .aSS|gnm(_ant When we manage collections of BDDs, canonicity spans
1[/7)‘1 e: %1’ e 1{16”1}:) 1{’/\7& ﬁa?ial;/nl\i/r?frosr%amyla}talaﬁsé ‘f["r'éz over their set of nodes as a whole. This allows the sharing of
K3 - 9 1 1 L]

. : . .structural information among diagrams. A BDD in such a set
structure like the one above is a model for a QBF with matrix g diag

E iff for every universal hypothesiH t_hg—:- set of exist_er]tial 1in [Biining and Zhao, 2004oropositional formulas and QBFs
literals collected along the branch individuatedibyatisfies \yith free variables are usetmplicitnessis not an issue for the au-

FsxU (seelBuining and Zhao, 20Q4or details). thors as they focus on characterizing classes of models/formulas.




of interconnected diagrams—callediorest—is identified by @)

> : (Fabd) (fabd)
a (complemented) arc pointing to its root node. :

/
;-

Definition 3.1 (QBF sat-certificate, validity) A sat-certi-
ficate for a QBFF with vars(F)={e1,...,emn}, vary(F)=

{u1,...,u,}, andd; =d(e;) is a forest of BDDs containing
two roots(&;", ) for eachi in [1,m]. Both&;" and&; are
defined ovevary(F, e;)={u1,...,us, }. The certificate

C(F) = (&, ETVEFEY, .. (EFE
(F) =& 600 82, &) < L Figure 1: A BDD-basedat-certificate for the QBF (1).
is consistentwhenVi € [1,m] itis & NE =0. Itis
valid for F* when for any(iy, ... ,9n) € B" the formula An easy but impractical way of checking a certificate
Fruy—g1,....un=v, IS satisfied by{ei:s(”(wl, cos,), 1 € would be to check thaM produces a satisfying assignment
[1,mm]}, where the functions®) : 8% — 9% are defined as under all the possible universal hypotheses. Fortunately, the
symbolic nature of the certificate helps us to perform a much

_ Lif (1,0 10s,) € EF more efficient, clause by clause, BDD-based verification. Let
sO (1, 5,) =0 if (... 0s,) € & us use the exclusive org” to construct literals out of vari-
undef. otherwise ables p®v meansy wheny = 0, and—wv wheny = 1).

In essence, aat-certificate is a compact but explicit repre- L€mma 4.1 The algorithmcheckvalidity  answersTRUE
sentation of the dependencies that have to exist between e0 (£ C) if and only ifC is a valid certificate forf".

istential (dependent) and uni_versal (independent) variables_ iDet us consider, for example, the clause; \V e; V us V
order to satisfy the matrix whichever the universal hypothesis.c, \/ 5 under the prefix/u; Je; VusJesJes. The only rele-
Lemma 3.1 If C(F) is valid for a QBFF, thenF is satisfi- vant universal hypotheses for this clause are those assigning

able. Every satisfiable QBF has at least one valid certificate POthu1=1 andu,=0: All the others immediately satisfy the
clause via one of its universal literals. So, it remains to verify

Proof sketch. A QBF is satisfiable iff it has at least one that under the assignmeht, =1, u,=0] at least one of the
model, i.e. iff we find at least one tree-like structure (like three remaining literals in the clause is true, i.e. that every
the one introduced in Section 2), such that for every assigngniversal hypothesis containing = 1, u, = 0 falls within
mentU = [u; =11,...,u,=1,] to the universal variables the one-set of at least one out®f (for e;), & (for —ey),

the set of existential literals collected along the branch iNand&; (for es). This is a two-step check: First, we collect
dividuated byU satisfiesF” « U. Given a consistent certifi- the universal hypothesés= £;" U &, U £+ under which the

cateC' for F, we insert the literak; into the label of the c|ause is satisfied by some existential literal. Then, we check

node reached following the; = v1,...,us, = s, path  that all the hypotheses (in which no existential literal satis-

iff (1,...,9s,) € & (and, dually,—e; appears in the label fies the clause) assign either = 1, or us = 0, or both, so

iff (¢1,...,%s,) € & ). By construction, if the certificate that the clause is satisfied by a universal literal.

is valid according to the notion of validity given in Defini-  The meaning of a successful verification is twofold: We

tion 3.1, the tree-like structure obtained is a model. [ are ensured that the formulagat, and that the certificate en-

A valid sat-certificate for (1) is depicted in Figure 1. codes a model. Conversely, the verification fails when either

- e L. the certificate is invalid or the formula imsat (we cannot

4 Certificate verification tell right away which circumstance has occurred). Validity

The first thing we wish to do with a consistent certificéite check is a coNP-complete probld®iining and Zhao, 2034
for F'is to verify its validity. We check that by choosing the
truth values of the existential variables according to what th&s  Certificate Extraction

certificate suggests, we always satisfy the matrix. For certificate extraction to be symbolic in the same sense as
our certificate is, we want it to work on a BDD-based repre-

Function checkValidity( QBF F, certificateC) sentation of the problem. We describe one such representa-

] tion (Section 5.1), and show how it relates to certificates (Sec-

Letvars(F) befer, ..., em}j tion 5.2). Then, a two-step procedure is discussed to (a) eval-

Letvary (£ )+be i“l’ Y “ﬁ}’ uate the instance (Section 5.3), and (b) construct a certificate

LetC be[(£,, £17), (€5, E5) -, (Emy Em)); on the basis of the steps taken in the evaluation (Section 5.4).
forall T' € F do

Let" bet @ug, V- Vb ®u;, V 5.1 Symbolic Formulas via Skolemization

PLOCs VoV PR D The Skolem theorem shows how to transform any giviest

fgf (U‘i’izogﬂt) U (Ugi=1€,,); Order Logic (FOL) statementF' into a skolemizedormula

i &, —vr..us, —v) 7 0 then return FALSE; Sk(F) that has two properties: (9%(F) contains no exis-
return TRUE: tential quantifier, and (25%k(F) is satisfiable iff /" is satis-
fiable. Existential quantifiers are eliminated by replacing the




variables they bind witfSkolem functionsvhose definition  vary(F') with a Skolem functios® (u1, ua, . .., u,). For ex-
domains are appositely chosen to preserve satisfiability. I@mple, the instance (1) with matriX, is sat-equivalent to
the outer form of skolemization, the function introduced for _

e € vars(F) depends on the universal variables- (F, e) VavVb¥d. N(s%(a,b)/c, s°(a,b,d)/e, s'(a,b,d)/f] (2)
that havee in their scope (for prenex formulas: all the univer-

sal variables to the left of in the prefix). Then, we propositionally encode thaefinability of the

Skolemization-based solvers replace the original formulal.sﬁg;e rzr;”t(:,;;nps%lgtrgrc]itl:)c%d,(floerviga;ﬁ;ng ing)tevxg;t?g Iﬁ:;[/ure:

e .y sl (1€ Uy SpeGed 2" boclean parameters, and iave a
ger prop : ' %rect CNF representation. For example, if we denote by

capture its semantics without exceeding the expressive power . 2
o . - ; ,{a, By € B<} the four boolean parameters represent-

of prop(_)smonal Io_g|c, by explicitly managing the trgth value_s m‘safhéot‘nﬁi] value}ofsc over(z. y), we orkJ)tain forse (a b;Dthe

of the”(lnterpret_atlon of) skolem terms in each point of thelrf ﬁ ; itional skol Y ’t' 6k(5°) = s¢ 7b g

definition domains, as shown [Benedetti, 2006 ollowing propositional skolemizatiofk(s°) = s°(a, ):

The duty we pay is a (possibly) exponential blowup in the (aVbVvsf,) A (aV-bVs;) A (maVbVsSy) A (maV-bVsS,)

si;e of the problem. BDDs come out to be precious in keeping?3 i ] . )

this space explosion problem under control: What we actuBY replacing each € vars(F) with Sk(s”) we obtainSk(F')

ally manage is aymbolic formulai.e. a compact BDD-based cmea f ~ . d .

representation of a propositional instance representindehe 35°35°3s7VaVvd. N[Sk(s®)/c, Sk(s®), Sk(s)/e]

finability of the set of skolem terms introducedsik (F'). where 3s¢ stands for3s§,3s5; 3s5,3s¢;, and similarly for
Let as denote by|;, thek-bit long prefix of& € B",n >  the other functions. This formula is easily turned—clause
k. The notion is extended to sefBl;, = {¥|,.V € 7}. by clause—into a CNF. By distributing the connectives, re-

Definition 5.1 (Symbolic formula) A symbolic formulaF is moving clauses with complementary literals, and eliminating
a BDD-based representation of a CNF instance. It con-literals over universal quantifiers, we obtaiti”) " clauses
sists of asymbo“c prefix[el]él . [em}(sm on the variables outofa QBF claus& with m universal literals. FOI’ eXampIe,
var(F) = {e1,...,em}, With0 < 6, < --- < §,,, fol- W€ obtain2~'=4 clauses from the clause/cV f in (1):

lowed by asymbolic matrixF, i.e. a conjunction obymbolic c f c f c f c f
clauses A symbolic claus&; is made up by a consistent set (860 V S000) A (860 V Spo1) A (861 V $p10) A (861 V Spa1)
I'=[p1 ®@ei,...,0on @ e, of literals onvar(F), and a  All the clauses coming out of a given QBF clause mention
(BDD represented) subsg&tof B°(1), §(T') = max;er 6(1).  the same skolem functions. What makes one differ from an-
The CNF represented by is calledpropositional expansion other are the subscripted indexes. This allows us to write

of F. It has variables{sg),i € [1,m],® e B%)}, andis them compactly by representing function names apart from

defined asProp(F) = Ar,erProp(I'z), where indexes. For example, the four clauses above may be suc-
) " (m) cinctly represented a7 = [c, fl{000,001,010,011}, Where
Prop(T7) = J\ P1@Sy VoV em@Sy 7 < 8% contains one element per clause, and e
vez component of eacl € 7 refers to the universal variable

Symbolic formulas inherit the semantics of their proposi-u;: OnceV¥ € 7 is selected, each literdlobtains its own
tional expansions (which we also cagitound counterparts). subscript byprojecting ¥ onto the subspace related to the
Noticeably, a consistent se¥! = {[l1]z,, ..., [lm]z,, } of  first 6(I) components, writtenW|;;, . For example, given
symbolic literals satisfies” (M = F) iff its expansion =010 itis ¥|5()=¥|;=01 and ¥|s sy =V¥[3=010, hence
Prop(M)=Uyy e Prop([l] ;) satisfiesProp(F). [, fl{o10 =561 V5410 This property allows us to recover the
Definition 5.2 (Symbolic skolemization) The symbolic sko- ground meaning of a factored clause throughZhep func-

lemization SymbSk(F) of a QBF F with vars(F) =  tion. The factored representation becorsgmbolicas soon
{e1,...,en} is a symbolic formula with prefife]5.,) ---  @s we represent and manipulate sets of indexes via BDDs
[em]s(e..), having one symbolic claugh, . . ., 1]z for each overvary(F'), thus obtaining the (linear-size) representation
clauseA € F, where{ly,...,l;} are the existential literals SymbSk(F). i _ .
in A, {¢1®e;,, ..., pn®e;, } are the universal literals in\ For example, the propositional expansion of the formula in
and T — {WZ‘N ;/)k> c Bk ¥jbi % os} k= 6(A) ' Figure 2 yields a CNF instance equivalent to (1).

- (Z] g YRl - .
As an example, the symbolic skolemization of (1) is given5.2 From symbolic models to certificates
in Figure 2. In essence, a symbolic skolemizatiBn=  The connection between a symbolic model and a certificate is

SymbSk(F) is a compact representations for a purely exis-so close that the former is smoothly turned into the latter. Let
tential instance”rop(F) having the following key property. (M, 1)=Up, e mZ be the indexes on the literaimentioned

sat in a symbolic modeM.
Theorem 5.1 For any QBFF, Prop(SymbSk(F)) = F. »
Proof sketch.By applying outer skolemization as described Theorem 5.2 If M = SymbSk(F), then the certificate
in [Benedetti, 200bwe turn the QBF instancé’ into a CM) = [(CF,co), (ch.c), ..., o))
sat-equivalent purely universal formula: We substitute ev- e e e e
ery existential variable dominated by{uy, us,...,u,} €  withCr =i(M,e), andC; = i(M, —e) is valid for F.



[e. Al yAle] gal=cl yale, 1AL, Ay Al-e /1 g Alel yalel yalel I'7,,i.e. whenl” C I'andZ C 7'. Under this condition,
; ; ; R I'z can be removed. Ipartial subsumptionI C T" but
' ' ' ' T ¢ 7') the subsumed clause is replacediy.> .
e Substitution We write [I/a] 7, 6(1) < d(a), to denote
the substitution of\mw) for ay for each¥ € 7:

Iz(l/a]7 = (Tll/a])zng AT 7n7 4)
The rules above establish primitive manipulation capabilities

for the solver. It arranges these components into the following
higher-level, satisfiability-preserving transformations.

Assignment. When[l] 7 is realized to be a consequence of

Figure 2: Symbolic propositional skolemization for (1). F(i.e:forall¥ € J,itis Prop(F) I ly), the formula
is simplified toF « [I] 7 by assigning] 7, i.e. resolving

Proof. The propositional variabley, in Prop(F), F = against~I]; and subsuming againg ;.
SymbSk(F) represents, for eache [1,m] and eachl = Equivalence reasoning.If the solver discovers a proof that
<1/)_1, k) € BF, k=6(e;), the value the Skolem function [a] Z (1] (i.e..V¥eT, Prop(F) a\p\5<a)<—>lq/), itis en-
s@(u1, ..., u;) (introduced to skolemize; € vars(F)) as- titled to simplify 7 by applying the substitutiofi/a] 7.
sumes under the universal hypothelsis=11, ..., ux=v%].  Redundancy removal. Subsumption is applied to eliminate
By construction, 7 embodies the definability of the skolem subsumed clauses. This may heavily reduce the burden

terms, i.e. all the mutual constraints among (interpretation  on the solver, while logical equivalence is preserved.
of) terms that have to be obeyed to always satisfy the Mayyyiaple elimination. The clauses containing a variable

trix. A model M for({-‘ is a way to comply with all these are replaced by the set of resolvents of every clause con-
constraints at onces'” (¢1, ..., ¢y) has to evaluate ta if taining d against each clause containing (Figure 3).
sfﬁ) € Prop(M), to0 if —\sgﬁ) € Prop(M), and is uncon- Symbolic elimination rules out one symbolic variable,
strained otherwise. By comparing the resulting functions hence all the related ground variables at once.

1 if (¢1,..., %) € CF As far as we are concerned, a solution-based evaluation pro-

e : e cedure is an algorithm that produces a (memory and time af-
s, b)) =9 0 de Fined gtﬁé? . ve) €C fordable) sequgnce of instapntiations of(the abgve rules, and
unde fine Wi guarantees to end up with the empty formulaatinstances,
with Definition 3.1 (valid certificates) the thesis followsD) ~ and with a contradiction (an empty clause) umsat formu-
) ) las. Each step is a back-chaining reduction from a prob#ém
5.3 Evaluating symbolic formulas to a problemF. Hence, a model for the original instance is
We devote our attention olution-basegrocedure$Biere,  notdirectly extracted. Rather, satisfiability equivalence guar-
2004; Pan and Vardi, 2004; Benedetti, 2DGfs they may be  antees that at each step, sha#lthave a model, than a model
lifted to extract modelsymbolically We consider a solver for 7 could be (easily) derived.
that manipulates symbolic clauses through rules designed to This apparent drawback suddenly turns into an advantage.
achieve at once o'z the same result ground rules would It indeed allows todecoupleevaluation from model recon-
obtain if applied separately to each claus&irmp(I'z). struction, with almost no overhead for the former and a clear
¢ Resolution Given tworesolvingclauses containing the semantics for the latter. The two meshes of the chain are con-
same variable: in opposite polarities, we construct a nected through amference log produced by the solver, and
necessary consequence—caliesblventclause—made Subsequently read byraodel reconstructor

up by all the literals from both originating clauses apartpefinition 5.3 (Inference log and trace) Aninference logs
from e and—e. For the symbolic version to produce at j |ist of entries, each one describing an instantiation of one

most one symbolic resolvent per step, we only resolve oyt the abovesat-preserving transformations. It contains:
variables with the same universal depth as all the clauses ) .
e (assign,l,J), for an assignmert] ;.

in which they appear. The resolventlof andI',, one,
with e€T, ~e€I”, §(T)=5(I")=6(e), is?. e (subst,a,l, J,G), for a substitutior{l/a] 7, whereg is
the set of clauses containidqg, =/} or {—a,}.

/
(CA{e} UTA {med)znr 3) e (elim,d,G",G ™), for the elimination ofd, whereG*
If eitherZ N Z' = () or T" andI” share further couples andG~ are the sets of clauses containidgnd —d.
of complementary literals other tharand—e, the resol- et us denote WitlZ(F, op) the formula obtained by ap-
vent represents an empty set of clauses and is remove lying to F the transformation described by the entsp.
e Subsumption I'z is subsumed byl7, when all the  Ap inference logC = [op,, 0p,, ... ,op,] induces arinfer-
ground clauses i’z are subsumed by some clause in gpnce tracdFo, Fi,...,F; whereF; = Z(Fi_1,0p;), With

2To simplify the notation, we omit the projection of the index Fo = 7. Alog such thatr is empty is callesat-log for 7

sets of derived clauses onto the proper subspaces: Whehnever ~ Clearly, asat-log for 7 exists iff 7 is sat. For example, the
derived, the clause actually inserted into the formulgds; ., . reader may verify that Figure (4) depictsai-log for (1).



All the clauses Resolvent clauses #1 | (substitute, f, —e, {010,011}, {[e, ﬂ{010,011,110,111},
All the‘z c]auses containing "~d" I‘M: [—e, ~f11000,001,010,011} })
o Iy:(bv=d) Do(avh) | | #2](assign,—e {001,011,100,110})
Fl:—x resolve :7 E av-bv-d) 1"1_3; #3 <reS°1vevfa{[ﬂ{110}a [c, f]{000,001}7[6aﬂ{111}}a
. i g
N “b d ---|over"d ~ _ A =c, —-e,
I “L:(av-cv-d) Ly:(av-bvc) {[=¢, = fl1100,101,110,111}, [7€; = f ] 1000} })
#4 | (assign,e, {111})
Other clauses on Untouched clauses
" b and " 21:@ 22:@ ca Zk:@ 2020 #5 | (resolve,c, {[clf00,013 }> {[cl{10,111})

Figure 4: Asat-log that solves the QBF (1).

Figure 3: Moving fromF” to F' by eliminating the variabld.
clauses, we extent ™ by applying theext function: It adds

5.4 Inductive model reconstruction an arbitrary truth assignment to all (and only) the indexes for
e mentioned ing « M™, i.e. it addge];(gsar+)-

Variable elimination We focus on the insightful ground-
case proof (see Figure 3). The extension to the symbolic
case is a matter of notation. Suppose that the mddel
Base caseAt the end of the inference trace we find the for F satisfies at least one clause of eaf}jj‘j*) couple,

empty formulaF, satisfied by an empty modai;. i € [1,n],7 € [1,m]. This implies that it either satisfies the
Inductive case. Given a modelM; for F;, the reconstructor - whole setG} = A,I'j, or the wholeG; = A,I';, or both.

computes a modeM;_; = R(M;,op;) for F;_; by  Hence, we are free to choose a literaldbim such a way to

reasoning on howp, turnedF;_; into ;. satisfy F’: M U {a} satisfiesF” whenG} « M is non-empty,

This leads to a mode\, for F, hence to a certificate far, =~ MU{—a} whenG; «M is non-empty, whileV! itself suffices
once the functiorR has been properly defined. Let us denoteWhen both sets are empty. Now, we show that every maflel
by i(F)=Ur, ¢ #Z the set of indexes mentioned # for F either satisfies at least one clause in edch, I';") cou-

Theorem 5.3 When applied to angat-log for 7, the induc- ple, or can be extended to a modeit (/) that fulfills this

tive model reconstruction procedure defined by the foIIowing{jé%ﬁ)gguslhﬁagogrggg (s:?\fiifihea(ljpger(]:f)rﬁltlfrﬁzat\évrhelﬂer;glgeggrl:
functionR computes a mode\1,, for 7, = F. y P Y

ing variable elimination. In this casé,contains exactlynxn
op ‘ R(M, op) resolvents, one for each coupleG} x G . Every model of
MU{[l]} a resolvent is valid for at least one of its resolving clauses,
hence the thesis. Now, suppose that the co(pe I;)is
(subst,e,l,7,G) |exB(M U {[elzrimn, [F€lzniim-n})  not satisfied by\/. It follows thatM doesn’t model thé resol-
(elim,e,GT,G7) Me U {[e]igrsnte), [€lig-snte) } vent of I'j” andT';, hence such resolvent failed to passito
) ) , It was satisfied by complementary literals on some still unas-
where ext(M)=M U [e]i(g.m), and M°=ext (M), with signed variables # d. A literal onv can be arbitrarily added
ext(MU[v]z) if ATz, T%) € GTsMxG™+M to the_ model under construction to satisfy eitﬁérorf; (no. .
ext(M)= with e£v, v e TNTY, 7 N T'40 confllct_ansesm would have not appe’ared as un.aSS|gned ifin-
i volved in any past—w.r.t. the solver’'s standpoint—inference
M, otherwise step). Thisextensiorof M to ext(M) is repeated until no
unsatisfied couple is left. a

Once asat-log is known, the reconstructor comes into play.
It trusts the solver about the log beingait-log, and parses it
backward reasoning by induction on the number of entries:

(assign,l,T)

Proof. For eachop we show thaiR (M, op) = F’, working , . ,

under the inductive hypothesis of knowing a model for Examples:M” = {a, b, c} is a model fort” = (—aVe) A

F =TI(F,op) (i.e. F * M is the empty formula). (aVbv=c) A (maV=b) becausell = {a, ~b} is a model for
AssignmentF « M = (F' «[l]7)+ M = F'« ({{]zJum) F'= /F xc = (aVb) A (—maVv—b). M’ = {—a,b, c} is a model

is empty, hencé|[l]; UM satisfiesF”. for £ = (=ave) A (avbV—c) A (-av-b) becausé = {b, c}
Equivalencelet 7' be 7}, U F| U F, U Fy_, where no iSamodelfort”[~c/a] = ¢ A (bV—e) A (ev=b). In Figure 3,

clause inF, mentionse, all the clauses it mentione but ~ the assignmend/; = {a, b, ¢} satisfiest” and alsoF”: d is

notl, —{; all the clauses itF}, contain bothe and! (or—eand  left unassigned. The modéf,={a, ~b} satisfies; but not

—l), and the clauses ifi;_ containe and—{ (or —e andl). M G, henceM’=M, U {—~d} is constructed to satisfff’. The

satisfiesF=7"[l/e]z=Fo U (F] UF;, )[l/e]z, hence it satis-  couple(I'J, T ) is untouched by\3={a}, so no truth value

fies 7 = Fo with no modification. It also satisfie’] U73,  for 4 helps. But the resolvent df; andI'[ was satisfied

provided we mirror ore the assignments collected so far over py complementary literals oh so we construcexe (Ms) =

I, by addinge]7ni 1,1y @nd[=e]zrica, - INgeneral, there- - 7. (b}, then satisfyF’ with M’ = ext(Ms) U {~d} =

sulting modelM™ = M U {[e]zrir)s [m€lznim, -} Sat- {a,b,~d}. As a complete example, the reader may verify

isfies all the clauses i’ but some inF}_: By construction, that by performing inductive model reconstruction according

such clauses failed to passfkbecauser;,_[l/e]r = G[l/e]r  tothe rules given in Theorem 5.3 over thet-log in Figure 4

is empty (clauses satisfied by complementgfy literals).  for the SymbSk(F) in Figure 2, a model is extracted which

To satisfy the (possibly) nonempty remaining §et M of  through Theorem 5.2 produces thet-certificate in Figure 1.



6 Discussion and Conclusions instance v 34 T, T, Tv |£] Cl
. . adder-2 | 27 37| 0.1 01 01 38 3.7-107
We presented a solution to an open question on QBFs, namelyqyder-4 | 106 174| 02 01 01| 165 7.1-10%

the problem of representing, verifying and extracting their gqger-6 | 237 411| 06 23 01| 384 5.6-10%

sat-certificates. The importance of such solution is twofold: gqder-8 | 420 748| 46 356 04| 695 1.1-10°

It gives means of conveying solver-independent evidence ofyqder-10| 755 1185| 40.2 537.2 4.6/ 1098 4.1-10°

satisfiability, and enables the extraction of precious informa-

tion from certified formulas. The former feature can be usedTable 1: A family of QBF encodings with73v3 alternation. We

for example, to effectively test the decisions of QBF solversreport: the number of existentia) and universalY) variables, the

The latter contribution is valuable to applications, in that atime taken to solve/reconstruct/iverify{, T, T.,), the size of the log

certificate is needed to exemplify a definite scenario in which(| 2|, number of steps) and of the certifical€|( number of nodes).

QBF-encoded problems reveal their satisfiability. For exam-

ple, asat-answer suffices to know that at least one winningkey ingredient stays the same: Inductive model reconstruc-

strategy exists in a QBF-encoded two-player game, but ition detached from instance evaluation, with an inference log

takes a certificate to exhibit an actual strategy. in between. What changes is the kind of information recorded
Stand-alone certificates convey no self-contained semarin the log (and the way it is to be interpreted).

tics, as the meaning of each variable is a piece of informa- We are extending our technique towards solvers based on

tion held by the “encoders”. To allow semantics’ owners(1) non-symbolic g-resolution, (2) SAT reasoning, and (3)

to interrogate their own QBF models, we have implementedsymbolic/non-symbolic DPLL-like branching reasoning. The

a solver/verifier suit¢Benedetti, 2004b; 200440 produce, ultimate goal is to build a QBF model reconstructor able

verify, dump to file (in open formats), and query certificates. to extract certificates by interpretigenericQBF inference
This implementation is helping to shed light on further logs*, whichever the evaluation strategy adopted to solve the

open questions on QBFs. For exampdeQBF certification  instance (including hybrid strategies such as the one lever-

impractica? Let us define the certification df “impracti-  aged by the QBF solvesKizzo [Benedetti, 2004F).

cal” when it is affordable to solvé& while it is not feasible to

memorize and/or verify any certificat F). Our approach Acknowledgments

suggests that impracticality is not an issue. For instance, thje thank Amedeo Cesta and Gigina Aiello for their com-
certificates in Table 1 are well within the manipulation capa-ments on how to improve the organization of the paper, Marco

bilities of current machines, while the formulas they certify cadoli for helpful discussions on technical issues, and the
are hard for present so!vérsAnother crucial question we  anonymous referees for their precious remarks.
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