
Extracting Certificates from Quantified Boolean Formulas∗

Marco Benedetti
Istituto per la Ricerca Scientifica e Tecnologica (IRST)

Via Sommarive 18, 38055 Povo, Trento, Italy
benedetti@itc.it

Abstract

A certificate of satisfiability for a quantified
boolean formula is a compact representation of
one of its models which is used to provide solver-
independent evidence of satisfiability. In addition,
it can be inspected to gather explicit information
about the semantics of the formula. Due to the
intrinsic nature of quantified formulas, such cer-
tificates demand much care to be efficiently ex-
tracted, compactly represented, and easily queried.
We show how to solve all these problems.

1 Introduction

The term “certificate” has a fairly general meaning, originat-
ing in language recognition and complexity theory. Oncever-
ified, a certificate proves that the string it refers to actually
belongs to a language of interest. Applied to logic, the term
denotes any means of providing evidence of (un)satisfiability
for a given statement, other than a refutationally-compete de-
ductive approach. In essence, we verify that a given logical
formula belongs to the language of (un)satisfiable statements.

The most naturalcertificate of satisfiability(sat-certificate)
for a formula is an explicit representation of some of itsmod-
els. A formula is indeed satisfiable if and only if some model
makes it evaluate to true. The validity of a certificate can be
verified by whoever is knowledgeable about theevaluation
apparatusof the logic (deductive capabilities are unneces-
sary), independently of how it was obtained.

In this paper, we focus onsat-certificates forQuantified
Boolean Formulas(QBFs). Such certificates have never been
proposed or used so far for a number of reasons. First, the
intrinsic nature of a QBF confers a tree-shaped structure to
its models, whose explicit representation may become unaf-
fordable. Second, theoretical arguments exist that make it un-
likely to find polynomial-time verification procedures (QBF
satisfiability is PSPACE-complete[Stockmeyer and Meyer,
1973]). Finally, present QBF solvers find it either impractical
or not straightforward to collect all the information needed to
construct a model. As a consequence, QBF models feature no

∗This work is supported by PAT (Provincia Autonoma di Trento,
Italy), under grant n. 3248/2003.

commonly accepted representation (if any at all), and all the
current solvers return a little more than asat/unsat answer.

Despite these issues,sat-certificates for QBFs are ex-
tremely desirable thank to their potential benefits on appli-
cations and solvers. For example, a certificate is a conclu-
sive means to judge conflicting answers given by different
solvers on the very same instance. Clearly, this event reveals
no finer problem than a bug in the implementation, which we
might think is not worth considering. This happens fairly of-
ten though, and as long as we treat solvers as black boxes,
a proof-of-satisfiability approach is the only realistic way to
tell the truth. We quote[Le Berreet al., 2004]:

The question of how to check the answer of the QBF
solvers in an effective way is still unanswered[...]
the question of what is a good certificate of satisfia-
bility/unsatisfiability[...] remains open. This point
is not only an issue for the QBF evaluation, but
also for the implementation:[...] we had sound-
ness problems with 4 QBF solvers.[...]

Yet, a certificate is much more than a way to ensure satisfi-
ability: It can beinspectedto gather semantics from the un-
derlying formula. This is of paramount importance in appli-
cations, where certificates add valuable information to a mere
sat/unsat answer. For example, asat answer to the proposi-
tional (PROP) encoding of (the negation of) a desired prop-
erty over a logic circuit means that the circuit is faulty w.r.t.
that property. But, it takes a certificate to outline a definite
scenario in which the fault shows up. As opposed to QBF
certificates, such PROP certificates are easy to represent and
verify, hence they have had a wide application.

The relevance of certificates enlarges with the scope of ap-
plication of the underlying logic. In this respect, QBF is a
notable case with plenty of applications. Every problem that
can be stated as a two-player finite game can be modeled in
QBF. An insightful example is obtained by considering the
famous game “Connect-4”. It is known that the player who
moves first can always win. The rules of the game and the
existence of a winning strategy can be encoded into a QBF
instance[Gent and Rowley, 2003], expected to besat. Which
is the winning strategy? A certificate would disclose such in-
formation: The first player would prevail by just inspecting
the certificate at each move, whatever the opponent does.

The interesting point here is that many real-world appli-
cations can be modeled as two-player games: Unbounded

model checking for finite-state systems[Rintanen, 2001] and
conformant planning[Rintanen, 1999]—just to name two rel-
evant examples—have handy QBF formulations.

In the rest of this paper, after a brief introduction to QBFs
and their models (Section 2), we present a solver-independent
representation for QBFsat-certificates (Section 3). As ex-
pected, we are able to describe how to verify them (Section 4)
beforethe more complex task of their extraction is addressed
(Section 5). We conclude by discussing the implementation
of our approach and the future work (Section 6).

2 QBFs and their models

With no loss of generality, we consider QBFs inprenex con-
junctive normal form(CNF). They consist in aprefixexhibit-
ing an arbitrary number of alternations of existentially and
universally quantified variables, followed by amatrix, i.e. a
conjunction of clauses. For example:

∀a∀b∃c∀d∃e∃f.(¬b∨e∨f) ∧ (a∨c∨f) ∧ (a∨d∨e)∧
(¬a∨¬b∨¬d∨e) ∧ (¬a∨b∨¬c) ∧ (¬a∨¬c∨¬f)∧
(a∨¬d∨¬e) ∧ (¬a∨d∨¬e) ∧ (a∨¬e∨¬f)

(1)

Given a QBFF , we denote byF̃ its matrix, byvar∃(F)
(var∀(F)) the set of existentially (universally) quantified
variables inF , and byvar∀(F, e) ⊆ var∀(F) the set of uni-
versal variables preceding (ordominating) e ∈ var∃(F) in
the prefix (we poseδ(e) .= |var∀(F, e)|). Given a CNF ma-
trix F̃ , the formulaF̃ ∗ l is the CNF obtained byassigning
the literall, i.e. by removing fromF each¬l literal and each
clause containingl. This notation is readily extended to sets
of literals. A matrixF̃ is satisfiedby a set of literalsM (writ-
tenM |= F̃) whenF̃ ∗M is the empty formula.

The alternations of quantifiers in the prefix guide us to ex-
tending this notion of satisfiability from matrixes to QBFs.
For example, the satisfiability problem on (1) asks whether
for each possible (consistent) combination of literals ona and
b there exists a way to choose a literal onc such that for both
possible literals overd, two literals one andf exist such that
the resulting set satisfies the matrix. Hence, a QBF model is
a set of|var∃(F)| functions, each one specifying the literal

a

¬a

b

¬b

b

¬b

e
¬c

d

¬d ¬e f
¬e

¬c
d

¬d ¬e

¬e f
c

d

¬d e ¬f
¬e

c
d

¬d e ¬f

M

to be chosen (if any) on the ex-
istential variablee as a function
of the choices on all the univer-
sal variables dominatinge. To
represent all these functions at
once we can use a labeled tree,
such as the one aside, depicting
a model for (1). If we calluni-
versal hypothesisevery consis-
tent set of universal literals (or,
equivalently, every assignment

[u1 = ψ1, . . . , un = ψn] to the universal variables, with
ψi ∈ B = {0, 1}), we may say, informally, that a tree
structure like the one above is a model for a QBF with matrix
F̃ iff for every universal hypothesisU the set of existential
literals collected along the branch individuated byU satisfies
F̃ ∗ U (see[Büning and Zhao, 2004] for details).

3 Certificate representation

A QBF model can be representedexplicitly by employing
data structures such as trees or truth tables. Or, we may pur-
suecompactnessat the expense of managing animplicit rep-
resentation1 requiring computation to yield values.

An ideal certificate should be compact (easy to manage)
andexplicit (easy to verify and query). A successful tradeoff
is obtained by employingBinary Decision Diagrams[Bryant,
1986]. We consider theirreduced orderedversion (ROBDDs,
or just BDDs henceforth) withcomplemented arcs. A BDD
E representing a total functionF (u1, u2, . . . , un) from Bn

to B is a directed acyclic graph with one root (labeled byF)
and one sink node (labeled by “1”). Each internal node is la-
beled by one variable inU = {u1, u2, . . . un}, and always
has two children, one attached to the outcomingthen-arc, the
other to theelse-arc. Theelse-arcmay or may not becomple-
mented. A unique path from the root to the sink is identified
by assigning a value to each variable inU : The then-arcis
chosen for variables assigned to1, the else-arcis followed
otherwise. The functionF represented byE evaluates to1 on
〈ψ1, ψ2, . . . , ψn〉 ∈ Bn iff an even number of complemented
arcs is encountered along the path defined byψ1, ψ2, . . . , ψn.

a

b

1

F(a,b,c)

c

b

As an example, let us consider the BDD aside,
where solid arrows denote then-arcs, while
dashed (dotted) arcs are used for regular (com-
plemented) else-arcs. It represents a binary func-
tion F (a, b, c) of three binary variablesa, b
and c. It is, for example,F (0, 1, 1) = 1 and
F (1, 1, 1) = 0. The represented function may
be written asF = b ∧ (a ∨ c) ∧ (¬a ∨ ¬c). In a
set-oriented interpretation, this BDD represents
theone-setof F , i.e. the set havingF as charac-
teristic function. In our case, it stands for the set
{〈0, 1, 1〉, 〈1, 1, 0〉} whereF evaluates to1.

The BDDs we utilize areorderedandreduced: The same
variable ordering is followed along each path, and no two
nodes representing the same set exist, so that each function
has only onecanonicrepresentation. Furthermore, the ver-
sion with complemented arcs is such that the setS is denoted
by the same node asS (referred to with a complemented arc).

The BDD way of representing sets is regarded assymbolic
in that it avoids the explicit enumeration of sets’ elements
in favor of a more abstract, diagram-based way of comput-
ing characteristic functions. Such representations may be ex-
ponentially more succinct than explicit ones (see[Wegener,
2000]), and all the operations on the sets/functions they rep-
resent (union/disjunction, intersection/conjunction, etc.) can
be performed by manipulating the involved BDDs[Bryant,
1986]. With a small abuse of notation, we treat BDDs as if
they were the sets they represent. For example,x ∈ E is an
element in the subset ofBn individuated byE .

When we manage collections of BDDs, canonicity spans
over their set of nodes as a whole. This allows the sharing of
structural information among diagrams. A BDD in such a set

1In [Büning and Zhao, 2004] propositional formulas and QBFs
with free variables are used.Implicitnessis not an issue for the au-
thors as they focus on characterizing classes of models/formulas.

of interconnected diagrams—called aforest—is identified by
a (complemented) arc pointing to its root node.

Definition 3.1 (QBF sat -certificate, validity) A sat-certi-
ficate for a QBFF with var∃(F)={e1, . . . , em}, var∀(F)=
{u1, . . . , un}, andδi=δ(ei) is a forest of BDDs containing
two roots〈E+

i , E
−
i 〉 for eachi in [1,m]. BothE+

i andE−i are
defined overvar∀(F, ei)={u1, . . . , uδi}. The certificate

C(F) = [〈E+
1 , E

−
1 〉, 〈E

+
2 , E

−
2 〉, . . . , 〈E+

m, E−m〉]

is consistentwhen ∀i ∈ [1,m] it is E+
i ∩E

−
i = ∅. It is

valid for F when for any〈ψ1, . . . , ψn〉 ∈ Bn the formula
F̃[u1=ψ1,...,un=ψn] is satisfied by{ei=s(i)(ψ1, . . . , ψδi), i ∈
[1,m]}, where the functionss(i) : Bδi → B are defined as

s(i)(ψ1, . . . , ψδi) =

1 if 〈ψ1, . . . , ψδi
〉 ∈ E+

i

0 if 〈ψ1, . . . , ψδi〉 ∈ E−i
undef. otherwise

In essence, asat-certificate is a compact but explicit repre-
sentation of the dependencies that have to exist between ex-
istential (dependent) and universal (independent) variables in
order to satisfy the matrix whichever the universal hypothesis.

Lemma 3.1 If C(F) is valid for a QBFF , thenF is satisfi-
able. Every satisfiable QBF has at least one valid certificate.

Proof sketch. A QBF is satisfiable iff it has at least one
model, i.e. iff we find at least one tree-like structure (like
the one introduced in Section 2), such that for every assign-
mentU = [u1 =ψ1, . . . , un=ψn] to the universal variables
the set of existential literals collected along the branch in-
dividuated byU satisfiesF̃ ∗ U . Given a consistent certifi-
cateC for F , we insert the literalei into the label of the
node reached following theu1 = ψ1, . . . , uδi

= ψδi
path

iff 〈ψ1, . . . , ψδi
〉 ∈ E+

i (and, dually,¬ei appears in the label
iff 〈ψ1, . . . , ψδi

〉 ∈ E−i). By construction, if the certificate
is valid according to the notion of validity given in Defini-
tion 3.1, the tree-like structure obtained is a model. �

A valid sat-certificate for (1) is depicted in Figure 1.

4 Certificate verification
The first thing we wish to do with a consistent certificateC
for F is to verify its validity. We check that by choosing the
truth values of the existential variables according to what the
certificate suggests, we always satisfy the matrix.

Function checkValidity(QBFF , certificateC)

Let var∃(F) be{e1, . . . , em};
Let var∀(F) be{u1, . . . , un};
Let C be[〈E+

1 , E
−
1 〉, 〈E

+
2 , E

−
2 〉 . . . , 〈E+

m, E−m〉];
forall Γ ∈ F do

Let Γ beψ1⊗ui1 ∨ · · · ∨ ψh⊗uih∨
φ1⊗ej1 ∨ · · · ∨ φk⊗ejk ;

E ← (∪φi=0E+
ji

) ∪ (∪φi=1E−ji);

if E [ui1=ψ1,...,uih
=ψh] 6= ∅ then return FALSE;

return TRUE;

a a

1

c+(a)

d
b

a

c-(a) e+(a,b,d) e-(a,b,d) f+(a,b,d) f-(a,b,d)

a a

b

Figure 1: A BDD-basedsat-certificate for the QBF (1).

An easy but impractical way of checking a certificate
would be to check thatM produces a satisfying assignment
under all the possible universal hypotheses. Fortunately, the
symbolic nature of the certificate helps us to perform a much
more efficient, clause by clause, BDD-based verification. Let
us use the exclusive or “⊗” to construct literals out of vari-
ables (ϕ⊗v meansv whenϕ = 0, and¬v whenϕ = 1).

Lemma 4.1 The algorithmcheckValidity answersTRUE
on 〈F, C〉 if and only ifC is a valid certificate forF .

Let us consider, for example, the clause¬u1 ∨ e1 ∨ u2 ∨
¬e2 ∨ e3 under the prefix∀u1∃e1∀u2∃e2∃e3. The only rele-
vant universal hypotheses for this clause are those assigning
bothu1=1 andu2=0: All the others immediately satisfy the
clause via one of its universal literals. So, it remains to verify
that under the assignment[u1=1, u2=0] at least one of the
three remaining literals in the clause is true, i.e. that every
universal hypothesis containingu1 = 1, u2 = 0 falls within
the one-set of at least one out ofE+

1 (for e1), E−2 (for ¬e2),
andE+

3 (for e3). This is a two-step check: First, we collect
the universal hypothesesE = E+

1 ∪E
−
2 ∪E

+
3 under which the

clause is satisfied by some existential literal. Then, we check
that all the hypothesesE (in which no existential literal satis-
fies the clause) assign eitheru1 = 1, or u2 = 0, or both, so
that the clause is satisfied by a universal literal.

The meaning of a successful verification is twofold: We
are ensured that the formula issat, and that the certificate en-
codes a model. Conversely, the verification fails when either
the certificate is invalid or the formula isunsat (we cannot
tell right away which circumstance has occurred). Validity
check is a coNP-complete problem[Büning and Zhao, 2004].

5 Certificate Extraction
For certificate extraction to be symbolic in the same sense as
our certificate is, we want it to work on a BDD-based repre-
sentation of the problem. We describe one such representa-
tion (Section 5.1), and show how it relates to certificates (Sec-
tion 5.2). Then, a two-step procedure is discussed to (a) eval-
uate the instance (Section 5.3), and (b) construct a certificate
on the basis of the steps taken in the evaluation (Section 5.4).

5.1 Symbolic Formulas via Skolemization
The Skolem theorem shows how to transform any givenFirst
Order Logic (FOL) statementF into a skolemizedformula
Sk(F) that has two properties: (1)Sk(F) contains no exis-
tential quantifier, and (2)Sk(F) is satisfiable iffF is satis-
fiable. Existential quantifiers are eliminated by replacing the

variables they bind withSkolem functionswhose definition
domains are appositely chosen to preserve satisfiability. In
theouter form of skolemization, the function introduced for
e ∈ var∃(F) depends on the universal variablesvar∀(F, e)
that havee in their scope (for prenex formulas: all the univer-
sal variables to the left ofe in the prefix).

Skolemization-based solvers replace the original formula
F with the satisfiability-equivalent instanceSk(F). Such in-
stance is no longer propositional. Nevertheless, we are able to
capture its semantics without exceeding the expressive power
of propositional logic, by explicitly managing the truth values
of the (interpretation of) skolem terms in each point of their
definition domains, as shown in[Benedetti, 2005].

The duty we pay is a (possibly) exponential blowup in the
size of the problem. BDDs come out to be precious in keeping
this space explosion problem under control: What we actu-
ally manage is asymbolic formula, i.e. a compact BDD-based
representation of a propositional instance representing thede-
finability of the set of skolem terms introduced inSk(F).

Let as denote byΨ|k thek-bit long prefix ofΨ ∈ Bn, n ≥
k. The notion is extended to sets:I|k = {Ψ|k.Ψ ∈ I}.
Definition 5.1 (Symbolic formula) A symbolic formulaF is
a BDD-based representation of a CNF instance. It con-
sists of asymbolic prefix[e1]δ1 . . . [em]δm

on the variables
var(F) = {e1, . . . , em}, with 0 ≤ δ1 ≤ · · · ≤ δm, fol-
lowed by asymbolic matrixF̃ , i.e. a conjunction ofsymbolic
clauses. A symbolic clauseΓI is made up by a consistent set
Γ = [ϕ1 ⊗ ei1 , . . . , ϕh ⊗ eih] of literals onvar(F), and a
(BDD represented) subsetI of Bδ(Γ), δ(Γ) .= maxl∈Γ δ(l).
The CNF represented byF is calledpropositional expansion
of F . It has variables{s(i)Φ , i ∈ [1,m],Φ ∈Bδ(ei)}, and is
defined asProp(F) .= ∧ΓI∈FProp(ΓI), where

Prop(ΓI) .=
∧

Ψ∈I
ϕ1⊗s(1)Ψ|δ1

∨ . . . ∨ ϕm⊗s(m)
Ψ|δm

Symbolic formulas inherit the semantics of their proposi-
tional expansions (which we also callgroundcounterparts).
Noticeably, a consistent setM = {[l1]I1 , . . . , [lm]Im} of
symbolic literals satisfiesF (M |= F) iff its expansion
Prop(M)=∪[l]J∈MProp([l]J) satisfiesProp(F).

Definition 5.2 (Symbolic skolemization)The symbolic sko-
lemization SymbSk(F) of a QBF F with var∃(F) =
{e1, . . . , em} is a symbolic formula with prefix[e1]δ(ei) · · ·
[em]δ(em), having one symbolic clause[l1, . . . , lh]I for each
clauseΛ ∈ F , where{l1, . . . , lh} are the existential literals
in Λ, {ϕ1⊗ei1 , . . . , ϕh⊗eih} are the universal literals inΛ,
andI = {〈ψi, . . . , ψk〉 ∈ Bk | ∀j.ψij 6= ϕj}, k = δ(Λ).

As an example, the symbolic skolemization of (1) is given
in Figure 2. In essence, a symbolic skolemizationF =
SymbSk(F) is a compact representations for a purely exis-
tential instanceProp(F) having the following key property.

Theorem 5.1 For any QBFF , Prop(SymbSk(F))
sat≡ F .

Proof sketch.By applying outer skolemization as described
in [Benedetti, 2005] we turn the QBF instanceF into a
sat-equivalent purely universal formula: We substitute ev-
ery existential variablev dominated by{u1, u2, . . . , un} ⊆

var∀(F) with a Skolem functionsv(u1, u2, . . . , un). For ex-
ample, the instance (1) with matrix̃N , is sat-equivalent to

∀a∀b∀d. Ñ [sc(a, b)/c, se(a, b, d)/e, sf (a, b, d)/f] (2)

Then, we propositionally encode thedefinability of the
Skolem terms introduced, leveraging a noteworthy feature:
They all mapBn onto B (for somen ≥ 0), hence they
are fully specified by2n boolean parameters, and have a
direct CNF representation. For example, if we denote by
{scαβ , 〈α, β〉 ∈ B2} the four boolean parameters represent-
ing the truth value ofsc over〈x, y〉, we obtain forsc(a, b) the
following propositional skolemizationSk(sc) ≡ sc(a, b):
(a∨b∨sc00) ∧ (a∨¬b∨sc01) ∧ (¬a∨b∨sc10) ∧ (¬a∨¬b∨sc11)

By replacing eachv∈var∃(F) with Sk(sv) we obtainSk(F)

∃sc∃se∃sf∀a∀b∀d. Ñ [Sk(sc)/c, Sk(sd), Sk(se)/e]

where∃sc stands for∃sc00∃sc01∃sc10∃sc11, and similarly for
the other functions. This formula is easily turned—clause
by clause—into a CNF. By distributing the connectives, re-
moving clauses with complementary literals, and eliminating
literals over universal quantifiers, we obtain2δ(Γ)−m clauses
out of a QBF clauseΓ withm universal literals. For example,
we obtain23−1=4 clauses from the clausea∨c∨f in (1):

(sc00 ∨ s
f
000) ∧ (sc00 ∨ s

f
001) ∧ (sc01 ∨ s

f
010) ∧ (sc01 ∨ s

f
011)

All the clauses coming out of a given QBF clause mention
the same skolem functions. What makes one differ from an-
other are the subscripted indexes. This allows us to write
them compactly by representing function names apart from
indexes. For example, the four clauses above may be suc-
cinctly represented asΓI = [c, f]{000,001,010,011}, where
I ⊆ Bδ(Γ) contains one element per clause, and thei-th
component of eachΨ ∈ I refers to the universal variable
ui: OnceΨ ∈ I is selected, each literall obtains its own
subscript byprojecting Ψ onto the subspace related to the
first δ(l) components, writtenΨ|δ(l) . For example, given
Ψ=010 it is Ψ|δ(c)=Ψ|2=01 andΨ|δ(f)=Ψ|3=010, hence

[c, f]{010}=sc01∨s
f
010. This property allows us to recover the

ground meaning of a factored clause through theProp func-
tion. The factored representation becomessymbolicas soon
as we represent and manipulate sets of indexes via BDDs
overvar∀(F), thus obtaining the (linear-size) representation
SymbSk(F). �

For example, the propositional expansion of the formula in
Figure 2 yields a CNF instance equivalent to (1).

5.2 From symbolic models to certificates
The connection between a symbolic model and a certificate is
so close that the former is smoothly turned into the latter. Let
i(M, l) .=∪[l]I∈MI be the indexes on the literall mentioned
in a symbolic modelM.

Theorem 5.2 IfM |= SymbSk(F), then the certificate

C(M) .= [〈C+e1 , C
−
e1〉, 〈C

+
e2 , C

−
e2〉, . . . , 〈C

+
em
, C−em

〉]

with C+e = i(M, e), andC−e = i(M,¬e) is valid forF .

[c, f]{} [¬c,¬f]{}[e, f]{} [¬e,¬f]{}[e]{} [¬e]{} [¬e]{} [e]{}[¬c]{}∧ ∧ ∧ ∧ ∧ ∧ ∧∧

d

b

1

a

b

d

d

d

b

Figure 2: Symbolic propositional skolemization for (1).

Proof. The propositional variablesiΨ in Prop(F), F =
SymbSk(F) represents, for eachi ∈ [1,m] and eachΨ =
〈ψ1, . . . , ψk〉 ∈ Bk, k=δ(ei), the value the Skolem function
s(i)(u1, . . . , uk) (introduced to skolemizeei ∈ var∃(F)) as-
sumes under the universal hypothesis[u1=ψ1, . . . , uk=ψk].
By construction,F embodies the definability of the skolem
terms, i.e. all the mutual constraints among (interpretation
of) terms that have to be obeyed to always satisfy the ma-
trix. A modelM for F is a way to comply with all these
constraints at once:s(i)(ψ1, . . . , ψk) has to evaluate to1 if
s
(i)
Ψ ∈ Prop(M), to 0 if ¬s(i)Ψ ∈ Prop(M), and is uncon-

strained otherwise. By comparing the resulting functions

se(ψ1, . . . , ψk) =

 1 if 〈ψ1, . . . , ψk〉 ∈ C+e
0 if 〈ψ1, . . . , ψk〉 ∈ C−e
undefined otherwise

with Definition 3.1 (valid certificates) the thesis follows.�

5.3 Evaluating symbolic formulas
We devote our attention tosolution-basedprocedures[Biere,
2004; Pan and Vardi, 2004; Benedetti, 2005], as they may be
lifted to extract modelssymbolically. We consider a solver
that manipulates symbolic clauses through rules designed to
achieve at once onΓI the same result ground rules would
obtain if applied separately to each clause inProp(ΓI).
• Resolution: Given tworesolvingclauses containing the

same variablee in opposite polarities, we construct a
necessary consequence—calledresolventclause—made
up by all the literals from both originating clauses apart
from e and¬e. For the symbolic version to produce at
most one symbolic resolvent per step, we only resolve on
variables with the same universal depth as all the clauses
in which they appear. The resolvent ofΓI andΓ′I′ one,
with e∈Γ, ¬e∈Γ′, δ(Γ)=δ(Γ′)=δ(e), is2.

(Γ \ {e} ∪ Γ′ \ {¬e})I∩I′ (3)

If either I ∩ I ′ = ∅ or Γ andΓ′ share further couples
of complementary literals other thane and¬e, the resol-
vent represents an empty set of clauses and is removed.
• Subsumption: ΓI is subsumed byΓ′I′ when all the

ground clauses inΓI are subsumed by some clause in

2To simplify the notation, we omit the projection of the index
sets of derived clauses onto the proper subspaces: WheneverΓI is
derived, the clause actually inserted into the formula isΓI|δ(Γ)

.

Γ′I′ , i.e. whenΓ′ ⊆ Γ andI ⊆ I ′. Under this condition,
ΓI can be removed. Inpartial subsumption (Γ′ ⊆ Γ but
I 6⊆ I ′) the subsumed clause is replaced byΓI∩I′ .
• Substitution: We write [l/a]J , δ(l) ≤ δ(a), to denote

the substitution oflΨ|δ(φ)
for aΨ for eachΨ ∈ J :

ΓI [l/a]J = (Γ[l/a])I∩J ∧ ΓI∩J (4)

The rules above establish primitive manipulation capabilities
for the solver. It arranges these components into the following
higher-level, satisfiability-preserving transformations.

Assignment. When [l]J is realized to be a consequence of
F (i.e.: for allΨ ∈ J , it is Prop(F) ` lΨ), the formula
is simplified toF ∗ [l]J by assigning[l]J , i.e. resolving
against[¬l]J and subsuming against[l]J .

Equivalence reasoning.If the solver discovers a proof that

[a] J↔ [l] (i.e.: ∀Ψ∈J ,Prop(F) ` aΨ|δ(a)
↔lΨ), it is en-

titled to simplifyF by applying the substitution[l/a]J .
Redundancy removal. Subsumption is applied to eliminate

subsumed clauses. This may heavily reduce the burden
on the solver, while logical equivalence is preserved.

Variable elimination. The clauses containing a variabled
are replaced by the set of resolvents of every clause con-
tainingd against each clause containing¬d (Figure 3).
Symbolic elimination rules out one symbolic variable,
hence all the related ground variables at once.

As far as we are concerned, a solution-based evaluation pro-
cedure is an algorithm that produces a (memory and time af-
fordable) sequence of instantiations of the above rules, and
guarantees to end up with the empty formula onsat instances,
and with a contradiction (an empty clause) onunsat formu-
las. Each step is a back-chaining reduction from a problemF ′
to a problemF . Hence, a model for the original instance is
not directly extracted. Rather, satisfiability equivalence guar-
antees that at each step, shouldF have a model, than a model
for F ′ could be (easily) derived.

This apparent drawback suddenly turns into an advantage.
It indeed allows todecoupleevaluation from model recon-
struction, with almost no overhead for the former and a clear
semantics for the latter. The two meshes of the chain are con-
nected through aninference log, produced by the solver, and
subsequently read by amodel reconstructor.

Definition 5.3 (Inference log and trace)An inference logis
a list of entries, each one describing an instantiation of one
of the abovesat-preserving transformations. It contains:

• 〈assign, l,J 〉, for an assignment[l]J .

• 〈subst, a, l,J ,G〉, for a substitution[l/a]J , whereG is
the set of clauses containing{a,¬l} or {¬a, l}.
• 〈elim, d,G+,G−〉, for the elimination ofd, whereG+

andG− are the sets of clauses containingd and¬d.

Let us denote withI(F ,op) the formula obtained by ap-
plying to F the transformation described by the entryop.
An inference logL = [op1,op2, . . . ,opt] induces aninfer-
ence trace[F0,F1, . . . ,Ft] whereFi = I(Fi−1,opi), with
F0 = F . A log such thatFt is empty is calledsat-log for F .

Clearly, asat-log for F exists iffF is sat. For example, the
reader may verify that Figure (4) depicts asat-log for (1).

a∨d
¬b∨c∨d

b∨¬d
a∨¬b∨¬d
a∨¬c∨¬d

Γ

+:1

Γ

+:2

Γ

-:1

Γ

-:2

Γ

-:3

resolve
over ''d''

All the clauses
containing "d"

All the clauses
containing "¬d"

Other clauses on
"a", "b", and "c"

a∨b
a∨¬b
a∨¬c
a∨¬b∨c

Γ

 :1-1

Γ

 :1-2

Γ

 :1-3

Γ

 :2-2

...Σ

 :1 ...Σ

 :2 ...Σ

 :k
. . .

Resolvent clauses

Untouched clauses
Σ

 :1 Σ

 :k
...

Figure 3: Moving fromF ′ toF by eliminating the variabled.

5.4 Inductive model reconstruction
Once asat-log is known, the reconstructor comes into play.
It trusts the solver about the log being asat-log, and parses it
backward, reasoning by induction on the number of entries:

Base case.At the end of the inference trace we find the
empty formulaFt, satisfied by an empty modelMt.

Inductive case. Given a modelMi for Fi, the reconstructor
computes a modelMi−1 =R(Mi,opi) for Fi−1 by
reasoning on howopi turnedFi−1 intoFi.

This leads to a modelM0 for F , hence to a certificate forF ,
once the functionR has been properly defined. Let us denote
by i(F) .=∪ΓI∈FI the set of indexes mentioned inF .

Theorem 5.3 When applied to anysat-log forF , the induc-
tive model reconstruction procedure defined by the following
functionR computes a modelM0 for F0 = F .

op R(M,op)
〈assign, l, I〉 M∪ {[l]I}
〈subst, e, l, I,G〉 exts(M∪ {[e]I∩i(M,l), [¬e]I∩i(M,¬l)})
〈elim, e,G+,G−〉 Me ∪ {[e]i(G+∗Me), [¬e]i(G−∗Me)}

where exts(M) .=M∪ [e]i(G∗M), andMe .=exte(M), with

exte(M)=


ext(M∪[v]I) if ∃〈ΓI ,Γ′I′〉 ∈ G+∗M×G−∗M

with e6=v, v∈Γ∩Γ′, I ∩ I ′ 6=∅
M, otherwise

Proof. For eachop we show thatR(M,op) |= F ′, working
under the inductive hypothesis of knowing a modelM for
F = I(F ′,op) (i.e.F ∗M is the empty formula).

Assignment.F ∗M = (F ′ ∗ [l]I)∗M = F ′ ∗ ({[l]I}∪M)
is empty, hence{[l]I}∪M satisfiesF ′.

Equivalence.Let F ′ beF ′0 ∪ F ′1 ∪ F ′2+ ∪ F ′2−, where no
clause inF ′0 mentionse, all the clauses inF ′1 mentione but
notl,¬l; all the clauses inF ′2+ contain bothe andl (or¬e and
¬l), and the clauses inF ′2− containe and¬l (or¬e andl).M
satisfiesF=F ′[l/e]I=F0 ∪ (F ′1 ∪F ′2+)[l/e]I , hence it satis-
fiesF ′0 = F0 with no modification. It also satisfiesF ′1 ∪F ′2+
provided we mirror one the assignments collected so far over
l, by adding[e]I∩i(M,l) and[¬e]I∩i(M,¬l). In general, the re-
sulting modelM+ =M∪{[e]I∩i(M,l), [¬e]I∩i(M,¬l)} sat-
isfies all the clauses inF ′ but some inF ′2−: By construction,
such clauses failed to pass toF becauseF ′2−[l/e]I = G[l/e]I
is empty (clauses satisfied by complementarye/¬l literals).
To satisfy the (possibly) nonempty remaining setG ∗M+ of

#1 〈substitute, f,¬e, {010, 011}, {[e, f]{010,011,110,111},

[¬e,¬f]{000,001,010,011}}〉
#2 〈assign,¬e, {001, 011, 100, 110}〉
#3 〈resolve, f, {[f]{110}, [c, f]{000,001}, [e, f]{111}},

{[¬c,¬f]{100,101,110,111}, [¬e,¬f]{000}}〉
#4 〈assign, e, {111}〉
#5 〈resolve, c, {[c]{00,01}}, {[¬c]{10,11}}〉

Figure 4: Asat-log that solves the QBF (1).

clauses, we extendM+ by applying theexts function: It adds
an arbitrary truth assignment to all (and only) the indexes for
e mentioned inG ∗M+, i.e. it adds[e]i(G∗M+).

Variable elimination. We focus on the insightful ground-
case proof (see Figure 3). The extension to the symbolic
case is a matter of notation. Suppose that the modelM
for F satisfies at least one clause of each〈Γ+

i ,Γ
−
j 〉 couple,

i ∈ [1, n], j ∈ [1,m]. This implies that it either satisfies the
whole setG+

d = ∧iΓ+
i , or the wholeG−

d = ∧iΓ−i , or both.
Hence, we are free to choose a literal ond in such a way to
satisfyF ′: M ∪{a} satisfiesF ′ whenG+

d ∗M is non-empty,
M∪{¬a}whenG−

d ∗M is non-empty, whileM itself suffices
when both sets are empty. Now, we show that every modelM
for F either satisfies at least one clause in each〈Γ+

i ,Γ
−
j 〉 cou-

ple, or can be extended to a modelexte(M) that fulfills this
property. The former case happens (at least) when no resol-
vent clause has been satisfied by complementary literals dur-
ing variable elimination. In this case,F contains exactlym∗n
resolvents, one for each couple inG+

d ×G
−
d . Every model of

a resolvent is valid for at least one of its resolving clauses,
hence the thesis. Now, suppose that the couple〈Γ+

i ,Γ
−
j 〉 is

not satisfied byM . It follows thatM doesn’t model the resol-
vent ofΓ+

i andΓ−j , hence such resolvent failed to pass toF :
It was satisfied by complementary literals on some still unas-
signed variablev 6= d. A literal onv can be arbitrarily added
to the model under construction to satisfy eitherΓ+

i orΓ−j (no
conflict arises:v would have not appeared as unassigned if in-
volved in any past—w.r.t. the solver’s standpoint—inference
step). Thisextensionof M to exte(M) is repeated until no
unsatisfied couple is left. �

Examples:M ′ = {a,¬b, c} is a model forF ′ = (¬a∨c)∧
(a∨b∨¬c) ∧ (¬a∨¬b) becauseM = {a,¬b} is a model for
F = F ′ ∗ c = (a∨b)∧ (¬a∨¬b). M ′ = {¬a, b, c} is a model
for F ′ = (¬a∨c)∧ (a∨b∨¬c)∧ (¬a∨¬b) becauseM = {b, c}
is a model forF ′[¬c/a] = c∧ (b∨¬c)∧ (c∨¬b). In Figure 3,
the assignmentM1 = {a, b, c} satisfiesF and alsoF ′: d is
left unassigned. The modelM2={a,¬b} satisfiesG+

d but not
G−
d , henceM ′=M2 ∪ {¬d} is constructed to satisfyF ′. The

couple〈Γ+
2 ,Γ

−
1 〉 is untouched byM3={a}, so no truth value

for d helps. But the resolvent ofΓ+
2 andΓ−1 was satisfied

by complementary literals onb, so we constructexte(M3)=
M3 ∪ {b}, then satisfyF ′ with M ′ = exte(M3) ∪ {¬d}=
{a, b,¬d}. As a complete example, the reader may verify
that by performing inductive model reconstruction according
to the rules given in Theorem 5.3 over thesat-log in Figure 4
for theSymbSk(F) in Figure 2, a model is extracted which
through Theorem 5.2 produces thesat-certificate in Figure 1.

6 Discussion and Conclusions
We presented a solution to an open question on QBFs, namely
the problem of representing, verifying and extracting their
sat-certificates. The importance of such solution is twofold:
It gives means of conveying solver-independent evidence of
satisfiability, and enables the extraction of precious informa-
tion from certified formulas. The former feature can be used,
for example, to effectively test the decisions of QBF solvers.
The latter contribution is valuable to applications, in that a
certificate is needed to exemplify a definite scenario in which
QBF-encoded problems reveal their satisfiability. For exam-
ple, asat-answer suffices to know that at least one winning
strategy exists in a QBF-encoded two-player game, but it
takes a certificate to exhibit an actual strategy.

Stand-alone certificates convey no self-contained seman-
tics, as the meaning of each variable is a piece of informa-
tion held by the “encoders”. To allow semantics’ owners
to interrogate their own QBF models, we have implemented
a solver/verifier suite[Benedetti, 2004b; 2004a] to produce,
verify, dump to file (in open formats), and query certificates.

This implementation is helping to shed light on further
open questions on QBFs. For example:Is QBF certification
impractical? Let us define the certification ofF “impracti-
cal” when it is affordable to solveF while it is not feasible to
memorize and/or verify any certificateC(F). Our approach
suggests that impracticality is not an issue. For instance, the
certificates in Table 1 are well within the manipulation capa-
bilities of current machines, while the formulas they certify
are hard for present solvers3. Another crucial question we
are enabled to address is the following:Given a certificateC
for F , how much in practice the trio〈F, C, verify〉 improves
on the couple〈F,decide〉 as a means to prove thatF is sat?
Metrics such as thetime · space product will be used to pre-
cisely compare the two strategies. Our results already suggest
that the improvement is quite large, as exemplified in Table 1.

We observed a surprising phenomenon: The time taken
to reconstruct a model may overcome the time needed to
solve the instance. This is rather unusual when compared,
for example, with search-based SAT reasoning, where a
model is extracted with no overhead on the satisfiability deci-
sion. Conversely, we have not yet observed an expected phe-
nomenon:checkValidity would operate in polynomial
time should we employ a constant-time BDD oracle. The
non-polynomiality of verification stems from the size of the
forest of BDDs, which should grow exponentially for some
parametrically scalable family of instances. This unfavorable
phenomenondoesn’tshow up in Table 1: Certificates scale
up polynomially with instance size. These effects and upper
bounds on the certificate size will be further investigated.

We showed how to extract certificates using a particular
class of QBF solvers (the skolemization-based ones). How-
ever, the BDD-based representation we employ is solver-
independent. It comes out that not only the mere represen-
tation but also the technique for constructing certificates can
be lifted to work with other families of QBF-solvers. The

3The “adder” family belongs to a set of benchmarks related to
equivalence checking of partial implementations of circuits, and is
regarded as extremely challenging[Le Berreet al., 2004]

instance ∀ ∃ Ts Tr Tv |L| |C|
adder-2 27 37 0.1 0.1 0.1 38 3.7 · 102

adder-4 106 174 0.2 0.1 0.1 165 7.1 · 103

adder-6 237 411 0.6 2.3 0.1 384 5.6 · 104

adder-8 420 748 4.6 35.6 0.4 695 1.1 · 105

adder-10 755 1185 40.2 537.2 4.6 1098 4.1 · 106

Table 1: A family of QBF encodings with∀∃∀∃ alternation. We
report: the number of existential (∃) and universal (∀) variables, the
time taken to solve/reconstruct/verify (Ts,Tr,Tv), the size of the log
(|L|, number of steps) and of the certificate (|C|, number of nodes).

key ingredient stays the same: Inductive model reconstruc-
tion detached from instance evaluation, with an inference log
in between. What changes is the kind of information recorded
in the log (and the way it is to be interpreted).

We are extending our technique towards solvers based on
(1) non-symbolic q-resolution, (2) SAT reasoning, and (3)
symbolic/non-symbolic DPLL-like branching reasoning. The
ultimate goal is to build a QBF model reconstructor able
to extract certificates by interpretinggenericQBF inference
logs4, whichever the evaluation strategy adopted to solve the
instance (including hybrid strategies such as the one lever-
aged by the QBF solversKizzo [Benedetti, 2004b]).

Acknowledgments
We thank Amedeo Cesta and Gigina Aiello for their com-
ments on how to improve the organization of the paper, Marco
Cadoli for helpful discussions on technical issues, and the
anonymous referees for their precious remarks.

References
[Benedetti, 2004a] M. Benedetti. sKizzo: a QBF Decision Procedure based on Propo-

sitional Skolemization and Symbolic Reasoning. Technical Report 04-11-03, ITC-
irst, 2004.

[Benedetti, 2004b] M. Benedetti. sKizzo ’s web site, sra.itc.it/people/
benedetti/sKizzo . 2004.

[Benedetti, 2005] M. Benedetti. Evaluating QBFs via Symbolic Skolemization. In
Proc. of the 11th International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR04), number 3452 in LNCS. Springer, 2005.

[Biere, 2004] A. Biere. Resolve and Expand. InProc. of SAT’04, 2004.

[Bryant, 1986] R. E. Bryant. Graph-based algorithms for Boolean function manipula-
tion. IEEE Transaction on Computing, C-35(8):677–691, 1986.

[Büning and Zhao, 2004] H. K. Büning and X. Zhao. On Models for Quantified
Boolean Formulas. InProc. of SAT’04, 2004.

[Gent and Rowley, 2003] I. Gent and A. Rowley. Encoding Connect-4 using Quanti-
fied Boolean Formulae. Technical Report 68-2003, APES Research Group, 2003.

[Le Berreet al., 2004] D. Le Berre, M. Narizzano, L. Simon, and A. Tacchella. Second
QBF solvers evaluation, avaliable on-line atwww.qbflib.org . 2004.

[Pan and Vardi, 2004] G. Pan and M.Y. Vardi. Symbolic Decision Procedures for QBF.
In Proc. of the10th Conf. on Princip. and Practice of Constraint Programming,
2004.

[Rintanen, 1999] J. Rintanen. Construction Conditional Plans by a Theorem-prover.
Journal of A. I. Research, pages 323–352, 1999.

[Rintanen, 2001] J. Rintanen. Partial implicit unfolding in the davis-putnam procedure
for quantified boolean formulae. InProceedings of the International Conference on
Logic for Programming, Artificial Intelligence and Reasoning (LPAR’01), 2001.

[Stockmeyer and Meyer, 1973] L. J. Stockmeyer and A. R. Meyer. Word Problems
Requiring Exponential Time. InIn 5th Annual ACM Symposium on the Theory of
Computing, 1973.

[Wegener, 2000] Ingo Wegener.Branching Programs and Binary Decision Diagrams.
Monographs on Discrete Mathematics and Applications. SIAM, 2000.

4A standard log format for each inference rule is required.

