
A Greedy Approach to Establish Singleton Arc Consistency

Christophe Lecoutre and Stéphane Cardon
CRIL-CNRS FRE 2499,

Université d’Artois
Lens, France

{lecoutre, cardon}@cril.univ-artois.fr

Abstract
In this paper, we propose a new approach to estab-
lish Singleton Arc Consistency (SAC) on constraint
networks. While the principle of existing SAC al-
gorithms involves performing a breadth-first search
up to a depth equal to 1, the principle of the two
algorithms introduced in this paper involves per-
forming several runs of a greedy search (where at
each step, arc consistency is maintained). It is then
an original illustration of applying inference (i.e.
establishing singleton arc consistency) by search.
Using a greedy search allows benefiting from the
incrementality of arc consistency, learning relevant
information from conflicts and, potentially finding
solution(s) during the inference process. Further-
more, both space and time complexities are quite
competitive.

1 Introduction
Inference and search are two categories of techniques for pro-
cessing constraints [Dechter, 2003]. On the one hand, infer-
ence is used to transform a problem into an equivalent form
which is either directly used to show the satisfiability or un-
satisfiability of the problem, or simpler to be handled by a
search algorithm. Inference aims at modifying a constraint
network by employing structural methods such as variable
elimination and tree clustering, or filtering methods based on
properties such as arc consistency and path consistency. On
the other hand, search is used to traverse the space delim-
ited by the domains of all variables of the problem. Search
can be systematic and complete by relying on breadth-first or
depth-first exploration with backtracking, or stochastic and
incomplete by relying on greedy exploration and randomized
heuristics.

One of the most popular systematic search algorithms to
solve instances of the Constraint Satisfaction Problem (CSP)
is called MAC [Sabin and Freuder, 1994]. MAC interleaves
inference and search since at each step of a depth-first ex-
ploration with backtracking, a local consistency called arc
consistency is maintained. However, since the introduction
of stronger consistencies such as max-restricted path consis-
tency [Debruyne and Bessière, 1997a] and singleton arc con-
sistency [Debruyne and Bessière, 1997b], one issue has been

the practical interest of utilizing such consistencies, instead
of arc consistency, before or during search.

There is a recent focus about singleton consistencies, and
more particularly about SAC (Singleton Arc Consistency), as
illustrated by recent works of [Debruyne and Bessière, 1997b;
Prosser et al., 2000; Bartak, 2004; Bessière and Debruyne,
2004; 2005]. A constraint network is singleton arc consistent
iff any singleton check does not show unsatisfiability, i.e., iff
after performing any variable assignment, enforcing arc con-
sistency on the resulting network does not entail a domain
wipe-out.

In this paper, we propose two new algorithms, denoted
SAC-3 and SAC-3+, to establish singleton arc consistency.
While SAC algorithms introduced so far perform a breadth-
first search up to a depth equal to 1, these two new algorithms
perform several runs of a greedy search (where at each step,
arc consistency is maintained). However, unlike SAC-3+,
SAC-3 does not record the context of performed runs.

We have identified several advantages to adopt this ap-
proach:

• extra space requirement is limited,

• both algorithms benefit from the incrementality of arc
consistency,

• using a greedy search enables learning relevant informa-
tion from conflicts,

• it is possible to find solution(s) while establishing the
consistency,

• time complexity of both algorithms is quite competitive.

More precisely, the good space complexity of both algo-
rithms allows to use them on large constraint networks. In
particular, SAC-3 admits the space complexity of the under-
lying arc consistency algorithm. Next, when a greedy search
maintaining arc consistency is used, we naturally benefit from
the incrementality of arc consistency, i.e., the fact that itera-
tively establishing arc consistency on a more and more re-
duced search space is less penalizing than repeatedly estab-
lishing it on the original search space. Besides, when a dead-
end is encountered during a greedy search, a no-good can be
recorded and/or the origin of the failure taken into account.
Also, some solutions may be found by the algorithm. Finally,
if the instance contains a large under-constrained part, a very
efficient time complexity can be expected.

2 Preliminaries
A constraint network consists of a finite set of variables such
that each variable X has an associated domain dom(X) de-
noting the set of values allowed for X , and a finite set of
constraints such that each constraint C has an associated rela-
tion rel(C) denoting the set of tuples allowed for the variables
vars(C) involved in C. A solution to a constraint network is
an assignment of values to all the variables such that all the
constraints are satisfied. A constraint network is said to be
satisfiable if it admits at least a solution.

The Constraint Satisfaction Problem (CSP), whose task is
to determine whether or not a given constraint network is sat-
isfiable, is NP-complete. A constraint network is also called
CSP instance. To solve a CSP instance, a depth-first search al-
gorithm with backtracking can be applied, where at each step
of the search, a variable assignment is performed followed
by a filtering process called constraint propagation. Usually,
constraint propagation algorithms, which are based on some
constraint network properties such as arc consistency, remove
some values which can not occur in any solution.

Definition 1 Let P = (X ,C) be a constraint network, C ∈
C , X ∈ vars(C) and a ∈ dom(X). (X, a) is said to be
arc consistent wrt C iff there exists a support of (X, a) in C,
i.e., a tuple t ∈ rel(C) such that t[X] = a. P is said to
be arc consistent iff ∀X ∈ X , dom(X) 6= ∅ and ∀C ∈ C ,
∀X ∈ vars(C), ∀a ∈ dom(X), (X, a) is arc consistent wrt
C.

AC(P) will denote the constraint network obtained after
enforcing Arc Consistency (AC) on a given constraint net-
work P . AC(P) is such that all values of P that are not arc
consistent have been removed. Note that a value will usu-
ally refer to a pair (X ,a) with X ∈ X and a ∈ dom(X).
If there is a variable with an empty domain in AC(P), de-
noted AC(P) = ⊥, then P is clearly unsatisfiable. P |S with
S ⊂ {X = a|X ∈ X ∧ a ∈ dom(X)} is the constraint
network1 obtained from P by restricting the domain of X to
the singleton {a} for any variable assignment X = a ∈ S.

Definition 2 Let P = (X ,C) be a constraint network, X ∈
X and a ∈ dom(X). (X, a) is said to be singleton arc
consistent iff AC(P |X=a) 6= ⊥. P is said to be singleton arc
consistent iff ∀X ∈ X , dom(X) 6= ∅ and ∀a ∈ dom(X),
(X, a) is singleton arc consistent.

X will be called the domain of P = (X ,C). We will
note (X, a) ∈ P (respectively, (X, a) /∈ P) iff X ∈ X and
a ∈ dom(X) (respectively, a 6∈ dom(X)).

3 Overview of SAC algorithms
The first algorithm that has been proposed to establish single-
ton arc consistency is called SAC-1 [Debruyne and Bessière,
1997b]. The principle of this algorithm is to check the sin-
gleton arc consistency of all variables whenever a value is
detected singleton arc inconsistent and then removed. Worst-
case space and time complexities of SAC-1 are respectively

1It will be assumed that X = a ∈ S ∧ Y = b ∈ S ⇒ X 6= Y
and, for convenience, P |{X=a} will be simply denoted by P |X=a.

O(md) and O(mn2d4) where n denotes the number of vari-
ables, d the size of the largest domain and m the number of
constraints.

A second algorithm, denoted SAC-2, has been proposed
by [Bartak, 2004]. The idea is to check (again) the singleton
arc consistency of a value (Y ,b) after the removal of a value
(X ,a) only if (X ,a) does not support (Y ,b), i.e., does not be-
long to AC(P |Y =b). Hence, this algorithm allows avoiding
usefulness singleton checks by recording, for each value, the
set of values supported by it. As expected and supported by
the experimentation of [Bartak, 2004], SAC-2 offers a signif-
icant improvement of practical time efficiency with respect
to SAC-1. Worst-case space and time complexities of SAC-2
are respectively O(n2d2) and O(mn2d4).

[Bessière and Debruyne, 2004] have remarked that SAC-2
does not present any improvement in terms of worst-case time
complexity because whenever the singleton arc consistency
of a value (X ,a) must be checked again, one has to perform
the arc consistency enforcement on P |X=a from scratch. In
other words, SAC-2 does not exploit the incrementality of arc
consistency. An arc consistency algorithm is said incremen-
tal if its worst-case time complexity is the same when it is ap-
plied one time on a given network P and when it is applied up
to nd times on P where, between two consecutive executions,
at least one value has been deleted. All current arc consis-
tency algorithms are incremental. To benefit from the incre-
mentality of arc consistency, [Bessière and Debruyne, 2004;
2005] have proposed a new algorithm, SAC-OPT, that dupli-
cates the original constraint network into nd dedicated con-
straint networks, one for each value (X ,a) of the instance.
Simply, whenever the singleton consistency of a value (X ,a)
must be checked, the dedicated constraint network is used.
Worst-case space and time complexities of SAC-OPT are re-
spectively O(mnd2) and O(mnd3) which is the best time
complexity that can be expected from an algorithm enforc-
ing singleton arc consistency [Bessière and Debruyne, 2004].

Finally, from the observation that a space complexity in
O(mnd2) prevents the use of SAC-OPT on large constraint
networks, [Bessière and Debruyne, 2005] have proposed an-
other algorithm called SAC-SDS which represents a trade-off
between time and space. With respect to each value, only
the domain (called SAC-support) is recorded as well as a
propagation list used for arc consistency. In return, the data
structures required to establish arc consistency are no more
dedicated but shared. An experimental study on random in-
stances have highlighted the good performance of this algo-
rithm. Worst-case space and time complexities of SAC-SDS
are respectively O(n2d2) and O(mnd4).

4 SAC-3
All algorithms previously mentioned involve performing a
breadth-first search up to a depth equal to 1. Each branch
(of size 1) of this search corresponds to check the singleton
arc consistency of a value, and allows removing this value if
an inconsistency is found (after establishing arc consistency).
One alternative is to check the singleton arc consistency of a
value in the continuity of previous checks. In other words, we
can try to build less branches of greater sizes using a greedy

search (where at each step, arc consistency is maintained).
As long as, for a current branch, no inconsistency is found,
we try to extend it. When an inconsistency if found, either
the branch is of size 0 and a value is detected inconsistent, or
all but last variable assignments correspond to singleton arc
consistent values. This last statement relies on Proposition 1.

Proposition 1 Let P = (X ,C) be a constraint network and
let S ⊂ {X = a|X ∈ X ∧ a ∈ dom(X)}. If AC(P |S) 6= ⊥
then any pair (X ,a) such that X ∈X and dom(X) = {a} in
AC(P |S) is singleton arc consistent.

Proof. If AC(P |S) 6= ⊥ then, clearly any element X =
a ∈ S is singleton arc consistent. It is a consequence of the
monotony of arc consistency. One should observe that we can
also find some values (Y ,b) such that Y ∈ X and dom(Y)
= {b} in AC(P |S) with Y = b 6∈ S. These values are also
clearly singleton arc consistent. �

As mentioned in the proof above, some values can be de-
tected singleton arc consistent while checking the singleton
arc consistency of another one(s). Proposition 1 can then be
seen as a generalization of Property 2 in [Chmeiss and Sais,
2000], and is also related to the exploitation of singleton-
valued variables in [Sabin and Freuder, 1997].

Although the primary goal of our approach was to exploit
incrementality of arc consistency, other nice features have
been observed. Indeed, using a greedy search, one may find
solutions and one can learn from conflicts by recording no-
goods or weighting failure culprits.

Below, we give the description of a first algorithm that uses
a greedy search in order to establish singleton arc consistency.
The description is given in the context of using an underlying
coarse-grained arc consistency algorithm (e.g. AC3 [Mack-
worth, 1977] or AC3.2/3.3 [Lecoutre et al., 2003]) with a
variable-oriented propagation scheme.

First, let us introduce some notations. If P = (X ,C), then
AC(P ,Q) with Q ⊆ X means enforcing arc consistency on
P from the given propagation set Q. For a description of
AC, see, for instance, the function propagateAC in [Bessière
and Debruyne, 2005]. Qsac is the set of values whose sin-
gleton arc consistency must be checked. A branch corre-
sponds to a set of values that have been assigned. For any
set of values S ⊆ {(X, a) | X ∈ X ∧ a ∈ dom(X)},
vars(S) = {X|(X, a) ∈ S}. Finally, an instruction of the
form Pbefore ← P should not be systematically considered
as a duplication of the problem. Most of the time, it corre-
spond to store or restore the domain of a network (and the
structures of the underlying arc consistency algorithm).

Algorithm 2 starts by enforcing arc consistency on the
given network. Then, all values are put in the structure Qsac

and in order to check their singleton arc consistency, succes-
sive branches are built. The process continues until a fix-point
is reached. Algorithm 1 allows building a branch by per-
forming successive variable assignments while maintaining
arc consistency (line 6). When an inconsistency is detected
for a non empty branch, one has to put back the last value in
Qsac (line 12) since we have no information about the sin-
gleton arc consistency or inconsistency of this value. If the
branch is empty, we have to manage the removal of a value
and to reestablish arc consistency (lines 16 to 19). Note that

Algorithm 1 buildBranch()
1: br← ∅
2: Pbefore ← P
3: consistent← true
4: repeat
5: pick and delete (X ,a) ∈ Qsac s.t. X 6∈ vars(br)
6: P ← AC(P |X=a,{X})
7: if P 6= ⊥ then
8: add (X ,a) to br
9: else

10: consistent← false
11: if br 6= ∅ then
12: add (X ,a) to Qsac

13: end if
14: until not consistent ∨ vars(Qsac)− vars(br) = ∅
15: P ← Pbefore

16: if br = ∅ then
17: remove a from dom(X)
18: P ← AC(P,{X})
19: Qsac ← Qsac−{(Y, b)|(Y, b) ∈ dom(Pbefore)−dom(P)}
20: end if

Algorithm 2 SAC-3(P = (X ,C) : CSP)
1: P ← AC(P ,X)
2: repeat
3: Pbefore ← P
4: Qsac ← {(X, a) | X ∈ X ∧ a ∈ dom(X)}
5: while Qsac 6= ∅ do
6: buildBranch()
7: until P = Pbefore

no inconsistency is detected when a solution is found or when
there is no way of extending the current branch. Finally, in or-
der to maximally benefit from the incrementality of arc con-
sistency, we have to build branches as long as possible. Hence
(although not indicated in the algorithm), it is important to se-
lect first values (X ,a) ∈ Qsac such that a ∈ dom(X).

Proposition 2 SAC-3 is a correct algorithm with a worst-
case space complexity in O(md) and a time complexity in
O(bmd2) where b denotes the number of branches built by
SAC-3.

Proof. Correctness results from Proposition 1. If SAC-
3 uses an optimal coarse-grained arc consistency algorithm
such as AC3.2, then the overall space complexity is O(md)
since space complexity of AC3.2 is O(md), the data struc-
ture Qsac is O(nd) and each branch built is O(n). The over-
all time complexity is O(bmd2) since, due to incrementality,
each branch built by the algorithm is O(md2). �

Remark that b must include the “empty” branches that cor-
respond to the detection of inconsistent SAC values. With
respect to already singleton arc consistent constraint net-
works, Corollary 1 indicates that SAC-3 can outperform
SAC-OPT and SAC-SDS (admitting then a time complexity
in O(mnd3)). More interestingly, it suggests that SAC-3 can
outperform SAC-OPT and SAC-SDS on structured (not nec-
essarily singleton arc consistent) instances that contain large
under-constrained parts as can be expected in real-world ap-
plications.

Corollary 1 SAC-3 admits a worst-case time complexity in
O(mn2d4) but, when applied to an already singleton arc con-
sistent constraint network, SAC-3 admits a best-case2 time
complexity in O(md3) and a worst-case time complexity in
O(mnd3).

Proof. In the worst-case, b = n2d2
+nd

2
, hence, we obtain

O(mn2d4). When applied to an already singleton arc consis-
tent constraint network, the best and worst cases correspond
to branches of maximum size and of size 1 (1 consistent as-
signment followed by an inconsistent one), respectively. We
have then respectively b = d (all branches delivering a solu-
tion) and b = nd branches. �

5 SAC-3+
It is possible to improve the behaviour of the algorithm

SAC-3 by recording the domain of the constraint networks
obtained after each greedy run, that is to say, for each branch.
When a value is removed, it is then possible to determine
which previously built branches must be reconsidered. In-
deed, if a removed value does not support a branch, i.e. does
not belong to the domain associated with the branch, all val-
ues of the branch remain singleton arc consistent. On the
other hand, if it supports a branch, we have to verify that the
branch still remains valid by re-establishing arc consistency
from the recorded domain. When a branch is no more valid,
we have to delete it. In summary, SAC-3+ exploits incremen-
tality as SAC-SDS does.

In order to manage domain and propagation of constraint
networks corresponding to branches, we consider two arrays
denoted P [] and Q[]. For a given branch br, P [br] corre-
sponds to the constraint network associated with the branch
br (in fact, we only need to record the domain of the con-
straint network) whereas Q[br] contains the variables that
have lost some value(s) and that should be considered when
re-establishing arc consistency.

After enforcing arc consistency on the given network, Al-
gorithm 6 builds successive branches by calling the function
buildBranch+. Once the singleton arc consistency of all
values of Qsac have been tested, we have to check the valid-
ity of the branches that have been built and recorded in brs
by a call to the function checkBranches since some values
may have been deleted after a branch has been built. For each
branch br, we re-establish arc consistency on P [br] (line 2 of
Algorithm 5) and in case of a domain wipe-out, we delete this
branch and update Qsac (lines 4 and 5).

Algorithm 4 differs from Algorithm 1 on two aspects. First,
we need to record the domain of the constraint network cor-
responding to the branch that is built (line 22) and add this
branch to brs (line 23). Note that if the last variable assign-
ment entails a domain wipe-out, Pstore is not updated (line
9). For the implementation, P [br] can be directly set (back-
tracking one step if necessary) without any duplication of do-
main. Second, after re-establishing arc consistency (line 19),
all values that have been removed including the singleton arc
inconsistent one (line 18) must be taken into account in order

2Even if the worst-case time complexity of the underlying arc
consistency algorithm is considered.

Algorithm 3 update(set : Set of Values)
1: Qsac ← Qsac − set
2: for each br ∈ brs do
3: for each (X ,a) ∈ set do
4: if (X ,a) ∈ P [br] then
5: remove (X ,a) from P [br]
6: add X to Q[br]
7: endif

Algorithm 4 buildBranch+()
1: br← ∅
2: Pbefore ← P
3: consistent← true
4: repeat
5: pick and delete (X ,a) ∈ Qsac s.t. X 6∈ vars(br)
6: P ← AC(P |X=a,{X})
7: if P 6= ⊥ then
8: add (X ,a) to br
9: Pstore ← P

10: else
11: consistent← false
12: if br 6= ∅ then
13: add (X ,a) to Qsac

14: end if
15: until not consistent ∨ vars(Qsac)− vars(br) = ∅
16: P ← Pbefore

17: if br = ∅ then
18: remove a from dom(X)
19: P ← AC(P,{X})
20: update({(Y, b)|(Y, b) ∈ dom(Pbefore)− dom(P)})
21: else
22: P [br]← Pstore

23: add br to brs
24: end if

Algorithm 5 checkBranches()
1: for each branch br ∈ brs do
2: P [br]← AC(P [br], Q[br])
3: if P [br] = ⊥ then
4: Qsac ← Qsac∪ br
5: remove br from brs
6: end if
7: end for

Algorithm 6 SAC-3+(P = (X ,C) : CSP)
1: P ← AC(P ,X)
2: brs← ∅
3: Qsac ← {(X, a) | X ∈ X ∧ a ∈ dom(X)}
4: while Qsac 6= ∅ do
5: while Qsac 6= ∅ do
6: buildBranch+()
7: checkBranches()
8: end while

to update the state of all branches (line 20). For each branch
(line 2 of Algorithm 3), we have to remove these values (line
5) and update the propagation list (line 6).

Proposition 3 SAC-3+ is a correct algorithm with a space
complexity in O(bmaxnd + md) and a time complexity
in O(bmd2) where bmax denotes the maximum number of
branches recorded by SAC-3+ and b denotes the number of
times a branch is built or checked by SAC-3+.

Proof. Correctness comes from Proposition 1 and the fact
that once, the singleton arc consistency of all values have
been checked and some branches recorded, one verify that the
property still holds by calling checkBranches. In addition
to the space requirement in O(md) of the underlying optimal
coarse-grained arc consistency algorithm, it is necessary to
record the domain of the constraint networks corresponding
to the valid branches that have been built. As recording a
domain is in O(nd), we obtain O(bmaxnd + md). �

Remark that Corollary 1 also holds for SAC-3+. However,
one should be optimistic about the average time complexity
of this algorithm since it avoids building new branches when
unnecessary.

6 Experiments
To prove the practical interest of the algorithms introduced
in this paper, we have implemented them as well as the al-
gorithms SAC-1 and SAC-SDS, the latter being considered
as the most current efficient SAC algorithm [Bessière and
Debruyne, 2005]. We have used AC3.2 [Lecoutre et al.,
2003] as an underlying arc consistency algorithms. We have
conducted an experimentation on a PC Pentium IV 2,4GHz
512Mo under Linux with respect to different classes of ran-
dom, academic and real-world instances. Performances have
been measured in terms of the number of singleton arc con-
sistency checks (#scks) and the cpu time in seconds (cpu).
For information, is also given, for each instance, the number
(#×) of values removed by any SAC algorithm (when #×=0,
it means that the instance is initially singleton arc consistent).

First, we have experimented the two classes of random bi-
nary CSP instances introduced in [Bessière and Debruyne,
2005]. However, due to lack of space, we only present the
figure depicting results about the class (100,20,0.05,t) corre-
sponding to sparse constraint networks with 100 variables, 20
values per domain and a density of 0.05 (i.e., 248 constraints).
t denotes the constraint tightness, i.e., the proportion of unal-
lowed tuples in the relations associated with the constraints.

In Figure 1, we can observe that when t < 0.6 (the be-
ginning of a phase transition), SAC-3 and SAC-3+ have the
same behaviour and outperform SAC-1 and SAC-SDS. In the
phase transition, SAC-3 and SAC-SDS respectively become
the worst and the best approaches. For complete networks
of the class (100,20,1,t), similar results (not depicted here)
are obtained, and at the pic of difficulty, SAC-SDS (181 s) is
about three times more efficient than SAC-1 (478 s) and SAC-
3 (553 s) and two times more efficient than SAC-3+ (307 s).
It is not really a surprise since the generated instances have
no structure, which corresponds to the worst-case for SAC-3
and SAC-3+ as the average size of the branches that are built
(at the critical point) is quite small (≈ 3).

 0.0

 0.0

 0.1

 1.0

 10.0

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
PU

 ti
m

e
(i

n
se

co
nd

s)

tightness (t)

 0.0

 1.0

 2.0

 3.0

 4.0

 5.0

 6.0

 7.0

 8.0

 0.66 0.68 0.7 0.72 0.74

Figure 1: mean cpu time on 50 random instances of class
(100,20,0.05,t) at each value of t

Next, we have dealt with the following academic instances:

• two chessboard coloration instances, denoted cc-20-2
and cc-20-3, involving quaternary constraints,

• two Golomb ruler instances, denoted gr-34-8 and gr-34-
9, involving binary and ternary instances,

• two prime queen attacking instances, denoted qa-5 and
qa-6, involving only binary constraints.

Table 1 shows that SAC-3, and especially SAC-3+, have
on some instances a much better behaviour than SAC-1 and
SAC-SDS. Roughly speaking, it can explained by the fact that
such instances have some regular structure.

Next, we have tested real-world instances, taken from the
FullRLFAP archive, which contains instances of radio link
frequency assignment problems. Table 2 shows the results
obtained on some representative instances. As expected, on
already singleton arc consistent instances (scen02, graph14),
a significant improvement is obtained. But it is also true for
the other instances as they contain large under-constrained
parts. It clearly appears that, on such structured instances,
using SAC-3 and SAC-3+ is the best approach, especially as
SAC-SDS has been out of memory on some instances.

It is interesting to note that SAC-3 and SAC-3+ can be
much faster than SAC-1 and SAC-SDS even if the number
of singleton checks (see for example, cc-20-2 and scen02) is
similar. It results from the exploitation of the incrementality
of arc consistency (when building branches). Another point

SAC-1 SAC-SDS SAC-3 SAC-3+
cc-20-2 cpu 14.44 14.43 3.46 3.48
(#×=0) #scks 800 800 819 819

cc-20-3 cpu 22.61 22.71 7.01 7.02
(#×=0) #scks 1200 1200 1200 1200

gr-34-8 cpu 66.08 17.43 38.28 18.62
(#×=351) #scks 6335 3340 5299 1558
gr-34-9 cpu 111.44 31.29 91.50 32.03
(#×=513) #scks 8474 4720 11017 2013
qa-5 cpu 2.47 2.50 .93 .96

(#×=9) #scks 622 622 732 732
qa-6 cpu 27.55 14.34 8.23 4.38

(#×=48) #scks 2523 1702 2855 1448

Table 1: Academic instances

SAC-1 SAC-SDS SAC-3 SAC-3+
scen02 cpu 20.97 20.73 4.09 (16) 4.08 (16)
(#×=0) #scks 8004 8004 8005 8005

scen05 cpu 11.79 20.03 1.55 (1) 1.87
(#×=13814) #scks 6513 4865 4241 2389
graph03 cpu 215.88 136.93 74.97 39.10
(#×=1274) #scks 20075 17069 22279 8406
graph10 cpu 1389.59 - 675.64 349.53
(#×=2572) #scks 74321 - 82503 29398
graph14 cpu 154.16 - 31.17 (10) 32.72 (10)

(#×=0) #scks 36716 - 36719 36719

Table 2: RLFAP instances

to be mentioned is that some solutions (enclosed in brack-
ets near cpu time) have been found during the inference pro-
cess on some instances. For example, 16 solutions have been
found on scen02 by SAC-3 and SAC-3+.

Finally, we have experimented some realistic scheduling
problems. We have selected 2 representative instances from
the set of 60 job shop instances proposed by [Sadeh and Fox,
1996]. It is quite interesting to note (see Table 3) that SAC-
3 and SAC-3+ have found solution(s) to these two instances
quite more efficiently than MAC (when run to find one solu-
tion). It can be explained by the restart aspect of both algo-
rithms.

SAC-1 SAC-SDS SAC-3 SAC-3+ MAC
js-1 cpu 29.61 29.58 18.17 (4) 19.04 (4) 181.68

(#×=0) #scks 5760 5760 6029 6029 -
js-2 cpu 40.40 38.58 31.13 (1) 31.07 (1) 211.52

(#×=0) #scks 6315 6315 6718 6718 -

Table 3: Job-shop instances

7 Conclusion
Establishing singleton arc consistency can be justified if it is
effective (allows some filtering). On the contrary, applying a
SAC algorithm on a constraint network that is already single-
ton arc consistent is a problem as it may involve a large waste
of time. The two algorithms, SAC-3 and SAC-3+, introduced
in this paper combine inference and search and can be under-
stood as an answer to this problem. Indeed, when an instance
is under-constrained or, more generally, contains easy large
parts, as can be expected in real-world applications, exploit-
ing search during inference can pay off. It has been confirmed

by our experimentation. Besides, one should have noted the
limited space requirement of both algorithms which makes
them applicable on large constraint networks.

We believe that this approach deserves further investiga-
tion in order to determine if it could be applied to other local
consistencies and, to what extent, maintaining SAC during
search could be a viable alternative to MAC.

Acknowledgments
This paper has been supported by the CNRS, the “programme
COCOA de la Région Nord/Pas-de-Calais” and by the “IUT
de Lens”.

References
[Bartak, 2004] R. Bartak. A new algorithm for singleton arc

consistency. In Proceedings of FLAIRS’04, 2004.
[Bessière and Debruyne, 2004] C. Bessière and R. Debru-

yne. Theoretical analysis of singleton arc consistency. In
Proceedings of ECAI’04 workshop on modeling and solv-
ing problems with constraints, pages 20–29, 2004.

[Bessière and Debruyne, 2005] C. Bessière and R. Debru-
yne. Optimal and suboptimal singleton arc consistency
algorithms. In Proceedings of IJCAI’05, 2005.

[Chmeiss and Sais, 2000] A. Chmeiss and L. Sais. About the
use of local consistency in solving CSPs. In Proceedings
of ICTAI’00, pages 104–107, 2000.

[Debruyne and Bessière, 1997a] R. Debruyne and C. Bes-
sière. From restricted path consistency to max-restricted
path consistency. In Proc. of CP’97, pages 312–326, 1997.

[Debruyne and Bessière, 1997b] R. Debruyne and C. Bes-
sière. Some practical filtering techniques for the constraint
satisfaction problem. In Proceedings of IJCAI’97, pages
412–417, 1997.

[Dechter, 2003] R. Dechter. Constraint processing. Morgan
Kaufmann, 2003.

[Lecoutre et al., 2003] C. Lecoutre, F. Boussemart, and
F. Hemery. Exploiting multidirectionality in coarse-
grained arc consistency algorithms. In Proceedings of
CP’03, pages 480–494, 2003.

[Mackworth, 1977] A.K. Mackworth. Consistency in net-
works of relations. Artificial Intelligence, 8:118–126,
1977.

[Prosser et al., 2000] P. Prosser, K. Stergiou, and T. Walsh.
Singleton consistencies. In Proceedings of CP’00, pages
353–368, 2000.

[Sabin and Freuder, 1994] D. Sabin and E. Freuder. Contra-
dicting conventional wisdom in constraint satisfaction. In
Proceedings of the PPCPA’94, 1994.

[Sabin and Freuder, 1997] D. Sabin and E. Freuder. Under-
standing and improving the MAC algorithm. In Proceed-
ings of CP’97, 1997.

[Sadeh and Fox, 1996] N. Sadeh and M.S. Fox. Variable and
value ordering heuristics for the job shop scheduling con-
straint satisfaction problem. Artificial Intelligence, 86:1–
41, 1996.

