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Germany
Abstract al., 200d. A second approach which has been pursued
_ . . . ) with algorithms for conditional planningMVeld et al., 1998;
F_’robab|llst|c pla_nnlng with observability restric- Bonet and Geffner, 2000; Bertadi al, 2001, ignores prob-
tions, as formalized for example as partially ob- — ghjjities and hence directly yields a finitary problem. Main
servable Markov decision processes (POMDP), has  gecision problems related to non-probabilistic planning with
a wide range of applications, but it is computation- partial observability are 2-EXP-compl€iRintanen, 2004a

ally extremely difficult. For POMDPs, the most
general decision problems about existence of poli-
cies satisfying certain properties are undecidable.

A main difference between POMDPs and corresponding
non-probabilistic problems is that the latter do not use proba-
bilistic notions like success probability or expected cost, and

We consider a computationally easier form of plan- require that a plan must reach the goals with certainty. An
ning that ignores exact probabilities, and give anal-  implication of success probability 1 is that uncertainty about
gorithm for a class of planning problems with par- observations and sensing can be ignored: if an observation is
tial observability. We show that the basic backup  correct with a probability strictly less than 1 then it is as good
step in the algorithm is NP-complete. Then we pro- as no observation at all.
ceed to give an algorithm for the backup step, and For this planning problem we present an iterative algorithm
demonstrate how it can be used as a basis of an ef-  that has some resemblance to iterative algorithms for solving
ficient algorithm for constructing plans. POMDPs. The algorithm maintains a data structure repre-
senting those belief states for which a conditional plan has
1 Introduction been shown to exist. Initially this data structure represents

) o ] those belief states consisting of goal states only. Then this
When the sequence of states that will be visited during plagyata structure is repeatedly extended by performing search
execution cannot be exactly predicted, for example because @fckwards from the goal belief states.
nondeterminism, it is necessary to produce plans that apply The structure of the paper is as follows. Section 2 defines
different actions depending on how the plan execution hage planning problem. Sections 3 and 4 respectively describe
proceeded so far. Such plans are called conditional plans. - e formal framework and analyze its properties. Section 5
Construction of conditional plans is particularly difficult proposes a planning algorithm and Section 6 presents exper-

when there is no full observability; that is, when during planjmenta] results obtained with an implementation of the algo-
execution it is not possible to uniquely determine what th&iinm. Section 7 concludes the paper.

current state of the world is. Planning problems having this
property are said to be partially observable, and their solutio .
requires that the sets of possible current world states — the bré The Planning Problem

lief states — are (implicitly) maintained during plan execution| this section we present a formalization of planning in

and (implicitly) represented by a plan. , _ which states are atomic objects without internal structure.
The earliest work on planning with partial observability

was in the framework of partially observable Markov decision__ ) _

processes (POMDP$Bmallwood and Sondik, 1973; Kael- Definition 1 A problem instancés (S, I, 0, G, P) where.S
bling et al, 1999. Planning with POMDPs is computation- IS the set of states] C S is the set of initial states()

ally difficult. For unbounded horizon lengths an unboundedS the set of actions C S x 5, G C S is the set of
number of probability distributions corresponding to belief90@l states and® = (Cy, ..., Cy,) is a partition of S into
states needs to be considered, and finding optimal plans is nB{ASSes of observationally indistinguishable states satisfying
in general solvabléMadaniet al, 1999. A natural approach Cy,...,Cp} = SandC; N C; = 0 for all 4, j such that

for easing the computational difficulty of POMDP planning 1 =% <J = 7.

is to consider horizons of a bounded lengiMundhenket . . .
g Making an observation tells which s€t the current state

*This research was partly supported by DFG grant RI 1177/2-1.belongs to. Distinguishing states in a giv@nis not possible.



An action is a relation between states and their successar block cannot be moved nothing happens. Initially we only

states. An actiom is applicablein a states if sos’ for some
s' € S. Define thamageof a setB of states with respect to an
actiono asimg,(B) = {s' € S|s € B, sos'}. Thepreimage
is preimg,(B) = {s € S|0 # img,({s}) C B}, consisting

of those states from whichis guaranteed to reach a state in

B. An actiono is deterministic if it is a partial function.

have the empty plan for the goal states.
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Plans are directed graphs with two kinds of nodes: action Then we compute the preimages of this set with actions

nodes and observation nodes.

Definition 2 Let(S,I,0,G,(C4,...,C,)) be a problemin-
stance. A plan is a tripléN, b, l) where

e N is afinite set of nodes,
e b € N isthe initial node,

e [:N— (OxN)UQQSXN is a function that assigns each

that respectively put the blocks A, B and C onto the table, and
split the resulting sets to the different observational classes.
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preimage of A—onto—tabl
preimage of B—onto—table,
preimage of C—onto—table

node an action and a successor nogen) € O x N

or a set of states and successor no¢€sn) € 92°xN
whereC = | J{C1,...,C,, } forsome{C],...,C] } C
{C1,...,C,}. In the first case the node is an action
node and in the second an observation node.

Forall n € N and{(C,m),(C’,m’)} C I(n) the ob-
servationg” andC’ may not intersectC N C’ = ().
Nodes with(n) = () are terminal.

Now for these 7 belief states we have a plan consisting of
one or zero actions. But we also have plans for sets of states
that are only represented implicitly. These involve branching.
For example, we have a plan for the state set consisting of the
four states in which respectively all blocks are on the table,
Aison C, Ais on B, and B is on A. This plan first makes

We restrict to acyclic plans. Acyclicity means that the observations and branches, and then executes the plan asso-
graph(N, E), where(n,n') € Eiff I(n) = (o,n’) for some ciated with the belief state obtained in each case. Because 3
oor(C,n') € l(n) for someC, is acyclict observational classes each have 2 belief states, ther®® are

Plan execution starts from the initial notland any of the maximal state sets with a branching plan. From each class
initial states. For an action node with label ») in states  only one belief state can be chosen because observations can-
executer and continue fromm and a state in img(s). Foran  not distinguish between belief states in the same class.
observation node identifyC, n) in the node label so thate We can find more belief states that have plans by comput-
C, and then continue from ands. A plan solves a problem ing preimages of existing belief states. Let us choose the be-
instance if all of its executions terminate in a terminal nodelief states in which respectively all blocks are on the table, B
and a goal state. Execution of an acyclic plan can have d@s on C, Cis on B, and C is on A, and compute their union’s
most as many steps as there are nodes in the plan. preimage with A-onto-table. The preimage intersected with
the observational classes yields new belief states: for the class
with A and B clear there is a new 2-state belief state covering

3 Problem Representation : , _ _
. . both previous belief states in the class, and for the class with
Now we introduce the representation for sets of state sets fof .|ear there is a new 2-state belief state.

which a plan for reaching goal states exists.

. N A : | | N E |
In the following example states are viewed as valuations | | | BN |
of state variables, and the observational classes correspond to [as]c] | | | L ‘

valuations of those state variables that are observable.

Example 3 Consider the blocks world with the state vari-
ables clear(X) observable, allowing to observe the top-
most block of each stack. With three blocks there are
7 observational classes because there are 7 valuations of
{clear(A), clear(B) clear(C} with at least one block clear.

Consider the problem of trying to reach the state in which
all blocks are on the table. For each block there is an action Computation of further preimages yields for each observa-
for moving it onto the table from wherever it was before. If tional class a belief state covering all the states in that class,
and hence a plan for every belief state. ]

[=[o]>] [o[=]>]

Construction of cyclic plans requires looking at more global .
properties of transition graphs than what is needed for acyclic plans. 1h€ above example shows how the exponential number of
The difficulties of cyclic plans in our framework are similar to those State sets (corresponding to the Cartesian product of the ob-
in the MDP/POMDP framework when using average rewards in-Servational classes) considered by Rintaf2807 is repre-
stead of finite horizons or discounted rewai@sterman, 1994 sented only implicitly. The algorithm by Rintan¢2007 ex-



plicitly generates the state sets, the number of which in manifrheorem 7 Testing if for belief spacé&' there isR € flat(G)
cases is very high. With the new representation the computasuch that preimg(R) ¢ R’ for all R' € flat(G) is NP-
tional complexity is shifted from the size of the representationcomplete. This holds even for deterministic actions

to the time it takes to find a combination of belief states hav- o

ing a useful preimage. This shift is useful for two reasonsProof: Membership is easy: Fa# = (G, ..., Gn) choose
First, much of the space complexity (and the time complexityondeterministicallyz; € G; for everyi € {1,...,n}, com-
itimplies) is traded to time complexity only: the state sets are?uteR = preimg, (R, U- - -UR,,), and verify thatRNC; Z B

not represented explicitly (except in the unobservable specidP’ somei € {1,...,n} and allB € G;. Each of these steps
case.) Second, the succinct representation allows much bett&kes only polynomial time. N
control on which belief states to produce, and although find- L€t = {c1,..., ¢} be asetof clauses over propositions
ing one new belief state and plan still takes worst-case expod = {a1,-.,ar}. We define a belief space based on states
nential time, this may be performed by clever algorithms andi @1, - - - > @k, Q15 - - s Qks 215+ -5 2y 215 -+ - 5 Zi}. The states

be further sped up by heuristics. represent negative literals. Define

Next we formalize the framework in detail. c (A\c;)U{ala € A,—a g c;}forie {1,...,m},

Definition 4 (Belief space)Let P = (CY4,...,C,) be a par- C; — gf&’ :z;>'|716”<1}¢’ {<{21}}L’J{f<1i}7zl>|l’ {<{szi’ l{c?c}}> ,
tition of the set of all states. Thenbelief spacés ann-tuple ’ - ’ -
(Gy,...,G,) whereG; C 2% foralli € {1,...,n} and We claim thatT is satisfiable if and only if there iB €
B¢ B'forallie{1,...,n} and{B,B’} C G,. flat(@) such that preimgB) ¢ B’ for all B’ € flat(G).

) ) ) AssumeT is satisfiable, that is, there 8/ such that
Notice that in each component of a belief space we onlyy; = 7. Define M’ = {z]a; € A, M E a;} U {%]a; €
have set-inclusion maximal belief states. The simplest beliefy 5/ K a;}. Now M’ C B for someB € flat(G) because

spaces are obtained from sétof states af(B) = ({C1 N from each class only one ét;} or {2;} is taken. Let\"” =
B}, ..., {C, N B}). A belief space is extended as follows. preimg, (M) = {a; € A|M = a;} U {a|a; € A, M [~ a;}.
o ] We show thatM” ¢ B for all B € flat(G). Take any
Definition 5 (Extension) LetP = (Cy,...,Cy) bethepar- ;¢ {1, ... m}. BecauseV = ¢;, there isa; € ¢; N A such
tition of all statesG = <G1, ey Gn> a belief space, and a that M ': a; (or -a; € ¢, for which the proof goes simi-

set of states. Defin@ © T'as(G1 U (T'NCY), ..., G U(T'N Jarly) Nowz; € M’, and thereforey; € M". Also,a; ¢ c.
Cy,)) where the operatiot adds the latter set of states to the aq ‘there is such an. (or —a;) for everyi € {1 ' m}
; ; yeeesm}

former set of sets of states and eliminates sets that are not Set7 is not a subset of any,, and hence\l” ¢ B for all
inclusion maximal, definedduV = {Rc UU{V}RZ p. flat(Q). v

Kforall K € UU{V}}. Assume there i € flat(G) such thatD = preimg,(B)

A belief spaceG = (G1,...,G,) represents the set of B’ forall B’ € flat(G). Now D is a subset ofi U {a|a € A}

sets of states fla6) = {B, U--- U B,|B; € G, foralli with at most one ofi; anda; for anyi € {1,...,k}. Define

1. dits cardinality i$G4 | - |Gs| - ... - |G, a modelM such that for allk € A, M = «a if and only if
{L,..,nj} andits cardinality iC/ | - |G| Gl a € D. We show thatM | T. Take anyi € {1,...,m}
: ; ; (corresponding to a clause.) A3 ¢ B for all B € flat(G),
4 Complexity of Basic Operations D ¢ c;. Hence there is; or a; in D\c,. Consider the

The basic operations on belief spaces needed in planning atase witha; (a; goes similarly.) Asa; ¢ ¢}, a; € ¢;. By

(2

gorithms are testing the membership of a set of states in @efinition of M, M k= a; and hencéVl |= ¢;. As this holds
belief space, and finding a set of states whose preimage wiffpr all 5 {1,...,m}, M =T. 0
respect to an action is not contained in the belief space. Next
we analyze the complexity of these operations. ) )

5 Planning Algorithms

Theorem 6 For belief spacess and state sets3, testing  Based on the problem representation in the preceding section,
whether there i3’ € flat(G) such thatB C B, and com- e devise a planning algorithm that repeatedly identifies new
putingG & B takes polynomial time. belief states (and associated plans) until a plan covering the
initial states is found. The algorithm in Figure 2 tests for
plan existence; further book-keeping is needed for outputting
aplan. The size of the plan is proportional to the number of it-
Our algorithm for extending belief spaces by computingerations the algorithm performs, and outputting the plan takes
the preimage of a set of states (Lemma 8) uses exhaustiylynomial time in the size of the plan. The algorithm uses
search and runs in worst-case exponential time. This asymphe subprocedurndnew(Figure 1) for extending the belief
totic worst-case complexity is very likely the best possiblespace (this is the NP-hard subproblem from Theorem 7). Our
because the problem is NP-hard. Our proof for this fact is amplementation of the subprocedure orders g&ts. ., fi,
reduction from SAT: represent each clause as the set of liteby cardinality in a decreasing order: bigger belief states are
als that are not in it, and then a satisfying assignment is a sétied first. We also use a simple pruning technique for deter-
of literals that is not included in any of the sets, correspondingninistic actionso: If preimg, (f;) C preimg,(f;) for some:
to the same question about belief spaces. andj such that > j, then we may ignor¢;.

Proof: Idea: A linear number of set-inclusion tests suffices.
O



PROCEDURHindnewg,A,F',H);
IF F = () AND preimg,(A) € B for all B € flat(H)
THEN RETURN4;
IF F = () THEN RETURN);
Fis{{fi,.-.,fm}, Fo,..., Fy) forsomek > 1;
FORi:=1TOm DO
B :=findnewp,A U f; (F5, ...
IF B # ) THEN RETURNB,;
END;
RETURNY

, Fr),H),

Figure 1: Algorithm for finding new belief states

PROCEDURBplan(l,0,G);
H :=B(G);
progress = true;
WHILE progress and ¢ I’ for all I’ € flat(H) DO
progress = false;
FOR EACHo € O DO
B :=findnewg,0,H,H);
IF B # () THEN
BEGIN
H := H @ preimg,(B);
progress := true;
END;
END;
END;
IF I C I’ for somel’ € flat(H) THEN RETURNrue
ELSE RETURMalse;

Figure 2: Algorithm for planning with partial observability

Lemma 8 Let H be a belief space andan action. The pro-
cedure call findnew(d,F', H) returns a setB’ of states such
that B’ = preimg,(B) for someB ¢ flat(F) and B’  B”

The second lemma says that if we have belief states in dif-
ferent observational classes such that each is included in a
belief state of a belief spadé, then there is a set in flgh)
that includes all these belief states.

Lemma 10 Let By, ..., B, be sets of states so that for every
i €{l,...,n} thereisB] € flat(H) such thatB; C B/, and
there is no observational clags such that for som¢i, j} C
{1,...,n} bothi # jandB;NC # @ andB; NC # (. Then
there isB’ € flat(H) such thatB, U --- U B,, C B’.

The proof of the next theorem shows how the algorithm
is capable of finding any plan by constructing it bottom up
starting from the leaf nodes. The construction is based on
first assigning a belief state to each node in the plan, and then
showing that the algorithm reaches that belief state from the
goal states by repeated computation of preimages.

Theorem 11 Whenever there exists a finite acyclic plan for a
problem instance, the algorithm in Figure 2 returtngse.

Proof: Assume there is a plafiV, b, I) for a problem instance
(S,I1,0,G, P). Label all nodes of the plan as follows. The
root nodeb is labeled withI, that is, Z(b) = I. When all
parent nodes of a nodehave a label, we assign a labelto

Letl(ny) = (01,m),...,l(nm) = {(om,n) for action nodes
ni,...,n, that haven as the child node, and létn}) =
{(Ci,n),...},...,l(n}) = {(Ck,n),...} for all observation
nodesny,...,n; withn as one of the children. Thefi(n) =

img,, (Z(n1))U---Uimg, (Z(n,))U(Z(n)NC1)U---U
(Z(n},) N Cy). If the above labeling does not assign anything
to a noden, then assigi¥Z(n) = (). Each node is labeled with
those states that are possible in that node on some execution.
We show that if plans fo&Z(n;), ..., Z(ny) exist, where
ni,...,n, are children of a node in a possible plan, then

for all B” € flat(H), and if no such belief state exists it re- the algorithm determines that a plan t6(n) exists as well.

turns@.

Proof: Sketch: The procedure goes through the ele

Induction hypothesis: For each plan nodesuch that all
paths to a terminal node have lengtbr less, its labeB =
Z(n) is a subset of somB’ € flat(H) whereH is the value
of the program variablé{ after thewhile loop exits andH

ments (By,...,B,) of F; x --- x F,, and tests whether
preimg,(B; U---UBy,)isin H. The setsB; U---U B, are

the elements of flaf”). The traversal throughy x - X Fn i’ p oo By Lemma 9, there i€ such thatG C G

is by generating a search tree with elementg'oés children LY -
of the root node, elements & as children of every child of andC” € flat(H) because inifiallyi? = B(G) and thereafter
iwas repeatedly extended.

the root n n n, and testing whether the preim i ) .
€ root node, and so on, and testing whether the preimage Inductive caseé > 1: Let n be a plan node. By the induc-

in H. The second parameter of the procedure represents the ; - ; )
state set constructed so far from the belief space, the third pd>" ?ny[’%t[hes's for all children’ of n, Z(n') C B for some
rameter is the remaining belief space, and the last parametét < a.( )- . . .

f If n is an observation node with children,...,n, and

is the belief space that is to be extended, that is, the new belie - -
state may no?belong toit. respective observationSy,...,Cy, thenZ(n) N C4, ...,

Z(n) N Cy all occupy disjoint observational classes and su-

The correctness proof of the procedptan consists of the ~ Perset ofZ(n) N C; for everyi € {1,... k} is in flat(H).
following lemma and theorems. The first lemma simply saysHence by Lemma 1@/(n) C B for someB € flat(H).
that extending a belief spadé is monotonic in the sense that  If 7 is an action node with action and child noder’,

the members of flg#l) can only become bigger. then img,(Z(n)) € Z(n'), and by the induction hypothe-
sisZ(n') C B’ for someB’ € flat(H). We have to show that

Z(n) € B” for someB” € flat(H). Assume that there is
no suchB”. But now by Lemma 8 findnew((), #,H) would
return B”’ such that preimg B"’) ¢ B for all B € flat(H),

could not be extended further.
Base casé = 0: Terminal nodes of the plan are labeled

Lemma 9 Assumel is any set of states anB < flat(H).
Then there i3’ € flat(H @ T') so thatB C B'.



and thewhile loop could not have exited with/, contrary to runtime in seconds iterations

our assumption about. ] problem |S| MBP BBSP BBSP
BTCS1601 98 0.60 1.21 32

BTCS1701 104 0.79 1.38 34

Theorem 12 LetIl = (S, 1,0, G, P) be a problem instance. BTCS1801 110 101 2.08 36
- BTCS1901 116 1.22 2.28 38

If plan(Z,0,G) returnstrug, thenII has a solution plan. BTCS2001 122  1.44 252 40
. medicall8 148 7.34 2.49 21

Proof: Let Hy, Hy,... be the sequence of belief spadds medical20 164/ 24.13 291 23
produced by the algorithm. We show that for al> 0, for medical22 180| 60.53 3.48 25
everyB € flat(H;) there is a plan that reachés medical24 196/ >20m 4.11 27
Induction hypothesisH; contains only such state sdisc medical26 212 >20m 6.61 29
flat(H;) for which a plan reaching’ exists. emptyroom07 49 0.09 0.38 41
Base casé = 0: Hy = B(@), and the only state set il emptyroom08 64 012 0.63 53
emptyroom10 100 0.16 1.56 81

is G. The empty plan reaché&s from G.

. . . . . . emptyroom15 225 0.37 9.60 198
Inductive caseé > 1: H;, is obtained a$/; ©preimg, (B) emptyroom20 400 062 2558 243
whereB3 = findnew(,,H;,H,). o fing03 162 009  0.16 11
Because by Lemma B ¢ flat(H;), by induction hypothe- ring04 648 0.38 0.44 19
sis there is a plam for B. The plan that executesfollowed ring05 2430 1.99 1.03 23
by 7 reacheg from preimg,(B). ring06 8748| 13.12 1.63 27
Let B be any member of flat; ;). We show that forB ring07 30618| 94.73 241 31
there is a plan for reaching. The plan forB starts by a ring08 104976| 744.90 3.34 35
branci. We show that for every possible observation, cor- | ng09 354294| >20m 5.55 39
responding to one observational class, there is a plan that g'\q/%gf 118091?30 >32206“1 g'cl)g 4;’
reaches7. Let C; be thejth observational class. When ob- 0 : '
. J S BWO04fo 73| >20m 0.67 22
servingC}, the current state is i3, = B N C;. Now for BWOSfo 501| >20m 6.43 46
4 isB’, i+1.; With B; C B’ whereH,, ; is the '
B there isBj € H,q,; with B; C Bj v i+1, | BWO6fo 4051| >20m  133.14 64
jth component of{;; 1. Now by induction hypothesis there BWO3pfo 13 013 012 9
is a plan forB} if Bj € H;;, and if B} € H;i1,;\H;;, BW04pfo 73| 90.15  0.69 22
then for the branch corresponding@ we use the plan for BWO5pfo 501| >20m 6.29 46
preimg,(B), asB; must be preimg(B) N C;. O BWO06pfo 4051| >20m 133.88 64
_ . BWO3po 13 008 0.12 9
Until now we have used only one partition of the state | Bwo4po 73 0.71 0.64 22
space to observational classes. However, it is relatively | BW05po 501| 13.49 6.41 46
straightforward to generalize the above definitions and algo-| BW06po 4051| 394.21 198.85 64

rithms to the case in which several partitions are used, each
for a different set of actions. This means that the possible

; ' Table 1: Runtime comparison BBSP vs. MBP
observations depend on the action that has last been taken. P

6 Experimentation with an Implementation Some of the MBP runtimes given by Bertoli et E2001]
are much better than given by us in this paper (specifically on

We have implemented the algorithm from the previous sec: : : : o
tion and call the resulting planning system BBSP. The Onlythe medical and ring problems) because the branching heuris

heuristic is th d ved in th di fifin: tic used by Bertoli et al. works well on their formulations of
eunstc1s (ne one described In the preceding SeCUbNG: e hanchmarks: branch only on one observable state variable

new chooses bigger belief states first. The implementa-lf ossible. We used a slightly different formulation where

tion is based on representing sets of states and actions g8e any. valued observation is replaced by a small number
BDDs [Burch et al, 1994. There is a small improvement of Boolean observations

in th lief i ith BDDs: all . . .
in the belief space representation wit s: all components Runtimes of the planners are given in Table 1. The runs

(S);?tggllbe; 3?120558”8'5“”9 of one belief state only are reprev'vere on a 360 MHz Sun Sparcstation under Solaris. The

We carried out a comparison to the MBP planfertoli ~ Problem instances are the same akRimtanen, 200where
et al, 2001 which uses forward-search together with som MBP was shown in almost all cases to be faster than GPT

e

heuristics for restricting branching. MBP starts search fron{?or?ﬁt daéli?,teneﬁnnezrbgfoﬂd Tufct?] fasrteél tr::n th V;Kth

the initial states, and proceeds forward by taking actionsP,2N"€ anen, on mostorine problems except the
locks worlds problems with full or almost full observability.

leading to another set of states, or by using observations;é . ; . . -
split the current state set to several smaller ones. Differerit | C> IS the bomb-in-the-toilet problem with sensing. In the
choices of actions and observations induce a search tree.  edical problems patients are cured by performing tests and
medicating. The emptyroom problems are about navigating
2Some branches might not be needed, and if the intersectiBn of from an unknown location to the center of the room. The ring
with only one observational class is non-empty the plan could starproblems are about closing and locking all the windows of
with an action node instead of a degenerate observation node.  a building consisting of a cycle of rooms. BW is the blocks



world with increasing number of blocks with the goal to ar- [Burchet al, 1994 J. R. Burch, E. M. Clarke, D. E. Long,

range them into one stack from any initial configuration under

different degrees of observabilitfo is full observability,pfo
is with the on relation observable, ango is partial observ-

K. L. MacMillan, and D. L. Dill. Symbolic model check-
ing for sequential circuit verificationlEEE Transactions
on Computer-Aided Design of Integrated Circuits and Sys-

ability (clear andontableare observable). The problems are  tems 13(4):401-424, 1994.

solvable under partial observability because moving a blocly aepiinget al, 1999 Leslie Pack Kaelbling, Michael L.

only requires that it is clear and a move action is applicable Littman, and Anthony R. Cassandra. Planning and act-

no matter where the block is. o ing in partially observable stochastic domainattificial
TZe ;lghft_m(;)_st colulmn gmeBsPthe r;_umbe_r of iterations BBSP Intelligence 101(1-2):99-134, 1998.

needs for finding a plan. runtimes in some cases gro , . .

faster because it performs more search. This is most ob\m\/'""‘j""r"et al, 1999 Omid Madani, Steve Hanks, and Anne

ous in some of the problems with more observations as the Con(_do_n._ On the decu_jablllty of probabilistic plan_m_ng

number of possible ways of branching becomes astronomi- and infinite-horizon partlally observable_Markov decision

cal. In our algorithm, the dynamic programming character of pfOb'e_“?S.- IrProcgedmgs of the 16th National Conference

plan generation better avoids this explosion in the number of on Artificial Intell_lgence (_AAAI-99) a”d_t_h? 11th C_onfer-
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