
Structural Symmetry Breaking

Meinolf Sellmann and Pascal Van Hentenryck
Brown University, Department of Computer Science

P.O. Box 1910, Providence, RI 02912, U.S.A.
sello,pvh@cs.brown.edu

Abstract
Symmetry breaking has been shown to be an im-
portant method to speed up the search in con-
straint satisfaction problems that contain symme-
try. When breaking symmetry by dominance detec-
tion, a computationally efficient symmetry break-
ing scheme can be achieved if we can solve the
dominance detection problem in polynomial time.
We study the complexity of dominance detection
when value and variable symmetry appear simulta-
neously in constraint satisfaction problems (CSPs)
with single-valued variables and set-CSPs. We
devise an efficient dominance detection algorithm
for CSPs with single-valued variables that yields
symmetry-free search trees and that is based on
the abstraction to the actual, intuitive structure of
a symmetric CSP.

1 Introduction
During the past five years, symmetry breaking has been a
topic of increasing interest in the constraint programming
community. It was shown that symmetry breaking can play
a decisive role in the solution of numerous constraint prob-
lems, and sophisticated symmetry breaking methods have
been developed, such as the addition of symmetry breaking
constraints (see for example[Crawfordet al., 1996]), sym-
metry breaking by adapting the search strategy[Brown et
al., 1988], symmetry breaking during search (SBDS)[Gent
and Smith, 2000], or symmetry breaking by dominance de-
tection (SBDD) [Fahle et al., 2001; Focacci and Milano,
2001]. Especially the latter has attracted a lot of interest:
improvements were suggested in[Barnier and Brisset, 2002;
Puget, 2002] for example. SBDD works by checking whether
the current choice point under investigation represents a sym-
metric variant of a part of the search space that has been in-
vestigated completely before.

The core of an SBDD symmetry breaking code is domi-
nance detection which was automated in[Gentet al., 2003]
by using the generic computational group theory tool, yield-
ing a method named GAP-SBDD. While using a generic tool
is appealing from the perspective of the ease-of-use for the
constraint programmer, the generality comes with no guaran-
tee of efficiency. Therefore, in[Van Hentenrycket al., 2003],
the special case of dominance detection in the presence of

some classes of pure value symmetry was investigated and
proven to be computationally tractable. The approach taken
was generalized in[Roney-Dougalet al., 2004], where the
notion of symmetry-free search trees, so-called GE-trees,was
introduced. In combination with GAP, GE-trees were shown
to break arbitrary value symmetries in polynomial time.

In this paper, we continue this successful line of research
by studying combinations of value and variable symmetry in
constraint satisfaction problems (CSPs) and CSPs with set
variables (set-CSPs). We offer three main contributions: The
first regards a combination of variable and value symmetry
for CSPs with single-valued variables. For the first time, in
Section 3, we show that the corresponding dominance detec-
tion problem is computationally tractable. In Section 4, we
build up on this result and show an efficient way of using the
dominance detection algorithm for filtering rather than just
pruning. The third main contribution regards set variables: in
Section 5 we show that the general dominance detection prob-
lem becomes NP-hard for set-CSPs that contain symmetric
set variables and value symmetry. Finally, as a minor side-
note, in Section 6 we show that higher forms of symmetry
where sets of set variables are symmetric to other sets of set
variables in combination with value symmetry can be reduced
to the partial set variable symmetry case.

2 Preliminaries
Let us start out by introducing some notation that we will use
throughout the paper. In the reminder of this paper, let us
assume thatn, m, p ∈ IN.

Definition 1
• A Constraint Satisfaction Problem (CSP)is a tuple

(Z, V, D, C) whereZ = {X1, . . . , Xn} is a finite set
of variables,V = {v1, . . . , vm} is a set of values,
D = {D1, . . . , Dn} is a set of finite domains where each
Di ∈ D is the set of possible instantiations to variable
Xi, andC = {c1, . . . , cp} is a finite set of constraints
where eachci ∈ C is defined on a subset of the vari-
ables inZ and specifying their valid combinations. We
say that the CSP hassingle-valued variablesiff for all
Di ∈ D it holds thatDi ⊆ V . If for all Di ∈ D it holds
thatDi ⊆ 2V (where2V denotes the set of all subsets of
V), we say that the CSP is aset-CSP.

• Given a CSP with single-valued variables, anassign-
ment A is a set of pairs(X, v) ∈ Z × V such that
(X, v), (X, w) ∈ A implies v = w. Given a set-CSP,
a set-assignmentA is a set of pairs(X, S) ∈ Z × 2V

such that(X, S1), (X, S2) ∈ A impliesS1 = S2.

Definition 2
• Given a setS and a set of setsP = {P1, . . . , Pr} such

that
⋃

i Pi = S and thePi are pairwise non-overlapping,
we say thatP is a partition of S, and we writeS =∑

i Pi.

• Given a setS and a partitionS =
∑

i Pi, a bijection
π : S 7→ S such thatπ(Pi) = Pi (whereπ(Pi) =
{π(s) | s ∈ Pi}) is called apartial permutationover
S =

∑
i Pi.

Definition 3
• Given a CSP (Z, V, D, C), and partitions Z =∑

k≤r Pk, V =
∑

l≤s Ql, we say that the CSP has par-
tial variable and value symmetry iff all variables within
eachPk and all values within eachQl are considered as
symmetric.

• Given two assignmentsA and B on a partially sym-
metric CSP with single-valued variables, we say thatA
dominatesB iff there exist partial permutationsπ over
Z =

∑
k≤r Pk andα overV =

∑
l≤s Ql such that for

all (X, v) ∈ A it holds that(π(X), α(v)) ∈ B.

• Given a partially symmetric set-CSP and set-
assignmentsA andB, we say thatA dominatesB iff
there exist partial permutationsπ over Z =

∑
k≤r Pk

and α over V =
∑

l≤s Ql such thatA(π, α) ⊆ B,
whereA(π, α) := {(π(X), α(S))|(X, S) ∈ A}.

• Given two arbitrary (set-)assignmentsA andB for a par-
tially symmetric (set-)CSP, we call the problem of de-
termining if A dominatesB the Dominance Detection
Problem.

3 Symmetric Single-Valued Variables over
Symmetric Values

The first general symmetry model that we study is pow-
erful enough to manage symmetric single-valued variables
over symmetric values. Throughout this section, we consider
the partially symmetric CSP(Z, V, D, C) with single-valued
variables. We assume also that we are given a partition of
the variables

∑
k≤r Pk = Z and a partition of the values

∑
l≤s Ql = V such that all variables within eachPk and

all values within eachQl are considered symmetric. Note
that such partitions could be derived by a static analysis ofa
constraint program. The main objective in this section will
be to show that there exists an effective symmetry breaking
algorithm that runs in polynomial time for this scenario.

The key idea consists in the introduction ofstructural ab-
stractions: to model a CSP, we need to uniquely label each
value and each variable with a name — which is, of course,
not natural when certain variables and certain values are ac-
tually indistinguishable. We can rectify this by viewing each

variable and each value as a member of a symmetry class. In
the beginning, these classes correspond directly to the setsPk

andQl. When assignments are committed, though, some of
those initial symmetries are broken. Then, in order to check
which CSP objects are still indistinguishable, we need to in-
troduce subclasses of the original symmetry classes. We will
see that we can detect the remaining symmetries by label-
ing each of those subclasses with a certainsignaturethat is
defined by the set of initial symmetries and the given assign-
ments. We will see also that it is really these signatures that
capture our intuitive wish to abstract from the CSP model at
hand to the actual structure of the problem.

3.1 Signatures

Consider the following example: We have variables
X1, . . . , X8 over domainsD(X1) = · · · = D(X8) =
{v1, . . . , v6}. Now assume that the first four and the last
four variables are indistinguishable, i.e.P1 = {X1 . . . , X4}
and P2 = {X5, . . . , X8}. Furthermore, assume that
Q1 = {v1, . . . , v3}, Q2 = {v4, . . . , v6}, and that
we are given the following two assignments:A1 =
{(X1, v1), (X2, v1), (X3, v2), (X6, v5), (X7, v1), (X8, v2)}
andA2 = {(X1, v6), (X2, v1), (X3, v2), (X4, v2), (X5, v1),-
(X6, v6), (X7, v2), (X8, v2)}. See Figure 1(a) for an
illustration. When looking at the first assignment, we see
that: 1. There is one value (v1) in Q1 that is taken by two
variables inP1 and one variable inP2. 2. There is one
value (v2) in Q1 that is taken by one variable inP1 and one
variable inP2. 3. There is one value (v5) in Q2 that is taken
by one variable inP2. On the other hand, in the second
assignment: I. There is one value (v2) in Q1 that is taken by
two variables inP1 and two variables inP2. II. There is one
value (v1) in Q1 that is taken by one variable inP1 and one
variable inP2. III. There is one value (v6) in Q2 that is taken
by one variable inP1 and one variable inP2. Lining up 1-I
(v1 7→ v2, {X1, X2} 7→ {X3, X4}, {X7} 7→ {X7, X8}),
2-II (v2 7→ v1, {X3} 7→ {X2}, {X8} 7→ {X5}), and 3-III
(v5 7→ v6, {X6} 7→ {X6}), we see thatA2 is structurally an
assignment extended fromA1, or, in other words, thatA1

dominatesA2 (see also Figure 1(b)).
What we have done in this small example is to abstract

from the given model and the (arbitrary) names of variables
and values to the actualstructureof the problem. That is,
instead of talking about specific variables and values, we
considered members of classes. Specifically, for each as-
signment we implicitly assigned each value asignaturethat
captures by how many members of each variable-symmetry
class it was taken. For instance, inA1 v1 has the signature
(2 × P1, 1 × P2), or, in shorter writing, the signature ofv1 is
sigA1

(v1) = (2, 1). In A2, on the other hand, the signature
of v2 is sigA2

(v2) = (2, 2). Consequently,v2 in A2 can be
viewed as more specialized thanv1 in A1, or one may also
say thatv1 in A1 dominatesv2 in A2. In this terminology,v1

in A2 has signaturesigA2
(v1) = (1, 1) and therefore dom-

inatesv1 in A1. Note thatsigA2
(v6) is also(1, 1), but that

v6 in A2 does not dominatev1 in A1 sincev6 ∈ Q2 whereas
v1 ∈ Q1. In general:

X1

X2

X3

X4

P1

X5

X6

X7

X8

P2

v1

v2

v3

Q1

v4

v5

v6

Q2

X5

X6

X7

X8

P2

X1

X2

X3

X4

P1

v1

v2

v3

Q1

v4

v5

v6

Q2

A2A1

(a)

v4

v5

v6

v4

v5

v6

v1

v2

v3

v1

v2

v3(0,0)

(1,1)

(2,1)

(0,0)

(0,0)

(0,1)

(0.0)

(1,1)

(2,2)

(0,0)

(0,0)

(1,1)

A1 A2

(b)
Figure 1: Part (a) illustrates assignmentsA1 andA2. Part (b) gives the signatures for each value, links pairs ofvalues where
the one in assignmentA1 dominates to the one inA2, and a perfect matching that proves thatA1 dominatesA2 is designated
by solid lines.

Definition 4
• We say that a valuev in an assignmentA dominatesa

valuew in assignmentB iff v andw belong to the same
value-symmetry class andsigA(v) ≤ sigB(w).1

• We say that a valuev in an assignmentA is struc-
turally equivalentto a valuew in assignmentB iff v
and w belong to the same value-symmetry class and
sigA(v) = sigB(w).

3.2 Dominance Detection Using Signatures
The following lemma shows how signature-abstractions can
help to detect dominance relations among assignments:

Lemma 1
An assignmentA dominates another assignmentB in a par-
tially symmetric CSP iff there exists a partial permutationα
over

∑
l≤s Ql such thatv in A dominatesα(v) in B for all

v ∈ V .

Proof: First, let us assume thatA dominatesB. Then,
there exist partial permutationsπ over

∑
k≤r Pk and α

over
∑

l≤s Ql such that for all(X, v) ∈ A it holds that
(π(X), α(v)) ∈ B. Since bothX andπ(X) belong to the
same symmetry class, we have that for all valuesv ∈ V
it is sigA(v) ≤ sigB(α(v)), which is the same as to say
that v in A dominatesα(v) in B. Now assume there exists
a partial permutationα over

∑
l≤s Ql such thatsigA(v) ≤

sigB(α(v)) for all v ∈ V . Then, since each variable is as-
signed to at most one value, there exists a partial permutation
π over

∑
k≤r Pk such that for all(X, v) ∈ A it holds that

(π(X), α(v)) ∈ B. Thus, we have thatA dominatesB.

Consequently, we have thatA dominatesB iff there exists
a perfect matching in a bipartite graph where the edges are
defined by the signature-relation of values (see Figure 1(b)):

1Where the≤-relation on vectors is defined as the usual
component-wise comparison that yields to the so-called dominance
ordering - which is different from a lexicographic ordering.

Definition 5
Given two assignmentsA andB, let us denote withV ′ a set
of duplicates of the values inV by attaching a prime sign after
the values’ names (i.e.V ′ := {v′ | v ∈ V }). Then, we define
thedominance detection graphDDG(A, B) := (V ∪ V ′, E)
whereE := {(v, w′) | v in A dominates w in B} denotes
the set of arcs.

Theorem 1
Given two assignmentsA andB over a CSP with partially
symmetric single-valued variables and partially symmetric
values, the dominance detection problem betweenA andB
has complexityO(M + m2 + mn), whereM = O(m2.5) is
the time needed to determine whether there exists a perfect
matching inDDG(A, B), m is the number of values, andn
is the number of variables.

In the interest of space here and at many other occasions
we must omit a formal proof. However, we would like to
note that, with Lemma 1, it is clear that the dominance detec-
tion problem can be solved basically by determining whether
there exists a perfect bipartite matching inDDG(A, B). The
additional complexity denoted in the theorem is due to the
necessity to constructDDG(A, B) first. It is obvious that
this can be achieved in timeO(nm2), which already proves
that symmetry breaking in this scenario is tractable. How-
ever, the runtime can be improved to the complexity that is
claimed here by using sparse representations of signatures.
Then, in the algorithm analysis we can exploit that the to-
tal number of non-zero signature components is bounded by
O(|A| + |B|) = O(n).

Interestingly, it can also be shown thateverybipartite graph
can also be viewed as a dominance detection graph of a CSP
and assignmentsA andB that can be determined in time lin-
ear in the size of the given graph. And therefore, a perfect
bipartite matching exists iffA dominatesB, which makes
the dominance detection problem at least as hard as bipar-
tite matching. In other words, we can show that dominance
detection takes timeT whereT ∈ Ω(M)∩O(M+m2+mn).

4 Symmetry-Based Filtering
With Theorem 1, we can break all symmetries when given a
CSP with partially symmetric variables and values in poly-
nomial time when using a symmetry breaking by dominance
detection (SBDD) approach[Fahleet al., 2001; Focacci and
Milano, 2001]. What is annoying in this setting is that we
still have to check every choice point to see if it is not domi-
nated by one that was previously expanded, i.e. we still have
to touch the garbage in order to see that it is garbage. We
will now develop an algorithm that does not suffer from this
disadvantage.

We achieve this goal by using dominance detection also for
filtering rather than just pruning2. Obviously, a brute-force
approach could simply try assignments out and use the dom-
inance detection algorithm above to perform filtering as well.
This procedure would lead to a very poor runtime, though. In
the following, we will show that filtering based on symmetry
can be performed much more efficiently.

Within SBDD, there exists a natural distinction between
two types of filtering that apply: The first consists in making
sure that none of the newly created children are symmetric to
a node that was fully expanded before the node that is cur-
rently branching off. When applying unary branching con-
straints (which we assume are used here), this can be achieved
by shrinking domain variables accordingly. The other, funda-
mentally different type of “filtering” consists in the creation
of children that are also not symmetrical to each other. Both
types need to be addressed to achieve a symmetry-free search
tree (which corresponds to the GE-trees in[Roney-Dougalet
al., 2004]). We distinguish the two types of filtering by nam-
ing them differently:symmetric-ancestor based filteringand
symmetric-sibling based filtering.

Symmetric-Ancestor based Filtering
The goal of symmetric-ancestor based filtering is to shrink
the domains such that instantiating a variable with one of its
domain values will not result in the creation of a search node
that is symmetric to one that was previously expanded.

Definition 6
Given a depth-first-search treeT ,3 we say that a choice point
B (associated with its homonymous assignmentB that cap-
tures previously committed unary branching decisions) is
ancestor-symmetry resistantiff for all previously fully ex-
panded nodesA ∈ T (A is called anancestorof B) and for
all variablesX and valuesv ∈ D(X) it holds thatA does not
dominateB ∪ {(X, v)}.

Assume that we are currently investigating choice pointB
and thatA is some ancestor node that does not dominateB.
Observe that instantiating one more variableX ∈ Pk for
somek by settingX 7→ w ∈ Ql for somel will change only
the signature ofw from sigB(w) to sigB(w) + ek, where
ek denotes the unit vector with a1 in the kth component.
We setB′ := B ∪ {(X, w)}. Then,D1 := DDG(A, B)

2With ’filtering’, we refer to the idea of domain reduction in CP;
’pruning’ refers to the detection of a sufficient reason to backtrack.

3In the interest of space, we must omit a formal definition of a
search tree here. The meaning should become clear from the context.

andD2 := DDG(A, B′) only differ in that the latter bipar-
tite graph may contain some additional edges that must all be
incident tow′ in the right partition. Obviously, ifD2 con-
tains anm-matching, this matching must contain exactly one
of those additional edges. Consequently, ifA dominatesB′,
thenD1 must contain anm − 1-matching. Only if this is the
case, work needs to be done to makeB ancestor-symmetry
resistant with respect toA.

So let us assume thatD1 contains anm−1-matching. Pro-
vided with that matching, using some straight-forward match-
ing theory we can identify efficiently those and only those
additional edges that would allow us to transform the exist-
ing matching into a perfect one. Furthermore, it can also be
shown that those critical edges are independent of the partic-
ular m − 1-matching that we computed (For an introduction
to matching theory we refer to[Ahuja et al., 1993]). Among
those critical edges that, if added, would allow us to construct
an m-matching, the only ones that we need to consider are
those which run between nodesv andw′ with v, w ∈ Ql for
some1 ≤ l ≤ s and for which there exists1 ≤ k ≤ r such
that sigA(v) ≤ sigB(w) + ek. If and only if we find such
a pair of nodes, a single extra assignment added toB will
result in a successful dominance detection. Precisely, every
assignment ofw to a previously unassigned variableX ∈ Pk

will result in a dominated choice point. Thus, if we remove
w from the domain ofX for all unassignedX ∈ Pk, we keep
the unique parts of the search space and we never produce
choice points that are symmetric to one that was expanded
previously toB.

With Theorem 1, the runtime needed for the initial value-
matching algorithm is bounded byO(m2.5 + mn). We can
also prove that a filtering algorithm can be formulated that,
once the matching is computed, runs in timeO(m2 + mn).4

Therefore, since within SBDD at mostn(m − 1) ancestor
nodes need to be considered, we can prove the following:

Theorem 2
Given a CSP with partially symmetric single-valued vari-
ables and partially symmetric values, we can achieve
ancestor-symmetry resistance for a given search node in time
O(nm3.5 + n2m2).

Symmetric-Sibling based Filtering
To achieve full symmetry prevention, we also need to guar-
antee that newly created siblings are not symmetric to each
other. Therefore, after we choose the next variable to be as-
signed, but before we branch on it, we need to perform one
more “filtering” step (it is actually more of an implicit prun-
ing step) where we choose a single representative value out
of each equivalence class of values which, when assigned to
the chosen variable, would result in the creation of symmetric
choice points. Due to the fact that, whenever a sibling dom-
inates another, they both must already be structurally equiv-
alent (see Definition 4), we can avoid producing symmetric
siblings simply by choosing exactly one representative value

4Again, the main technical idea consists in the use of sparse sig-
natures. The proof of the complexity is not particularly insightful
but lengthy, which is why we leave it out here.

among those that are structurally equivalent. The complex-
ity of this filtering step is dominated by that of symmetric-
ancestor based filtering.

Putting ancestor and sibling-based filtering together, we
have completed our development of an effective symmetry
breaking algorithm for CSPs with partial single-valued vari-
able and value symmetry that runs in polynomial time. Note
that the practical performance of the algorithms sketched can
be enhanced in practice: for example, it is fully sufficient
to check against previously expanded nodes for which an
m − 1 − h-maximum matching was found only after vari-
able instantiations toh different values have been committed.
And as usual, by considering incremental updates of match-
ings, memory can be traded for cpu-time.

5 Limits of Efficient Dominance Detection
After having developed a polynomial symmetry breaking al-
gorithm for CSPs with partially symmetric single-valued vari-
ables in the presence of partial value symmetry, we now show
that dominance detection for partially symmetric set variables
in the presence of partial value symmetry is NP-hard. More
precisely, we reduce the corresponding dominance detection
problem to subgraph-isomorphism.

In order to achieve the desired reduction we construct a
set-assignment from a graph in the following way:

Definition 7
Given an undirected graphG = (V, E) with c := |V |,
we define a set of symmetric valuesN := {n1, ..., nc},
and a set of symmetric variablesP := {pij|{i, j} ∈ E}.
Then, the set-assignmentA(G) is defined asA(G) :=
{(pij , {ni, nj}) | {i, j} ∈ E}.

Theorem 3
Given two undirected graphsG1 = (V, E1) and G2 =
(V, E2), G1 is sub-isomorphic toG2 iff A(G1) dominates
A(G2) when all variables and values are considered to be
symmetric.

Proof: We start by showing thatA(G1) dominatesA(G2)
if G1 is sub-isomorphic toG2. Let σ : V 7→ V bi-
jective such that{i, j} ∈ E1 implies {σ(i), σ(j)} ∈
E2. Then, for all (pij , {ni, nj}) ∈ A(G1) it holds that
(pσ(i),σ(j), {nσ(i), nσ(j)}) ∈ A(G2). Therefore,A(G1)
dominatesA(G2).

Now let us assume thatA(G1) dominatesA(G2). Then,
there exist functionsπ : E1 7→ E2 andα : V 7→ V such that
(pij , {ni, nj}) ∈ A(G1) implies(pπ({i,j}), {nα(i), nα(j)}) ∈
A(G2). By construction ofA(G2), this is equivalent to
{nα(i), nα(j)} ∈ E for all {i, j} ∈ E. Thus,α is a sub-
isomorphism betweenG1 andG2.

With Theorem 3, it is easy to prove the following

Corollary 1
The dominance detection problem over partially symmetric
set variables and partially symmetric values is NP-hard.

Proof: We reduce the problem to subgraph-isomorphism. In
order to apply Theorem 3, we need to ensure that both graphs
operate over the same set of nodes. In case that the set of
nodes of the given graphs differ, it is easy to see thatG1 can-
not be sub-isomorphic toG2 if G1 contains more nodes than
G2. In case thatG1 actually contains fewer nodes thanG2,
it is easy to see that we can add isolated nodes toG1 without
affecting subgraph-isomorphism. Then, we have that both
graphs contain the same number of nodes, and by relabelling
the nodes in both graphs, we may assume that both graphs
operate on the same set of nodes.

Note that, despite this negative result, in some important
special cases the symmetry detection problem for CSPs with
partially symmetric set variables and values is still tractable.
For instance, when the set variables cannot overlap, the algo-
rithm developed in Section 3 can be adapted easily (by sim-
ply exchanging the roles of values and variables) to break all
symmetries efficiently.

Corollary 2
The dominance detection problem over partially symmetric
non-overlapping set variables and partially symmetric values
is tractable.

Note that the dominance detection problem as we consider
it here regards arbitrary assignments. This implies that, when
the detection problem is tractable, we can break symmetries
efficiently. However, the situation changes when we achieve
an intractability result like the previous one: Within meth-
ods like SBDD the assignments that need to be compared can
only differ in a rather specific fashion. We can also show that
these more specific dominance detection problems are NP-
hard as well, therefore proving that SBDD in its general form
is incapable of breaking symmetries in partially symmetric
set-CSPs efficiently. However, we would like to stress that
this result does not imply that symmetry breaking is NP-hard
in general since we do not consider other methods here like
remodeling or the adaption of the branching scheme.

6 Higher Forms of Symmetry
Note that our intractability proof above shows that dominance
detection over symmetric set variables and symmetric values
is already NP-hard when there exists only one set of symmet-
ric set variables and one set of symmetric values. Clearly,
the problem stays NP-hard when we allow partial symmetry.
Partial symmetry is very helpful when even more complicated
forms of symmetry need to be handled. Consider for example
the Social Golfer Problem (SGP):

32 golfers want to play in 8 groups of 4 each week,
such that any two golfers play in the same group at
most once. How many weeks can they do this for?5

The problem can be generalized by parameterizing it tog
groups ofs players each, playing forw weeks (instances are
usually written ing-s-w-format). A common model for the
problem introduces a set variable for each group, so that intra-
group symmetries are broken automatically. Groups within

5Problem 10 in CSPLib - http://www.csplib.org/.

Group 1 Group 2 Group 3
Week 1 1 2 3 4 5 6
Week 2 1 3 2 5 * *

Table 1: A partial instantiation of SGP 3-2-2.

1 2 3 4 5 6 W1 W2

G6G5G4G3G2G1

Figure 2: Symmetry-breaking model for SGP 3-2-2 from
Table 1. We view the problem as containing six groups
G1, . . . , G6 (3 per week). Only upon instantiation of the as-
sociated set variable, a group is assigned to a week.

the same week are symmetric, and furthermore, whole weeks
are also symmetric, i.e. whole sets of set variables are sym-
metric to other sets of set variables. We can model this by
introducing new week-values, one of which each group must
be assigned to. Consider the assignment to an SGP instance
3-2-2 given in Table 1: By introducing two week-valuesW1

andW2 to one of which each group-variable is assigned upon
instantiation, we can model the SGP as a dominance detec-
tion problem over symmetric set variables and partially sym-
metric values (see Figure 2). By means of this little trick,
higher forms of symmetry can be reduced to symmetric set
variables over partially symmetric values, which makes the
corresponding dominance detection problem a most relevant
research subject. We believe that developing fast algorithms
that (approximately) solve this NP-hard problem should be a
focus of symmetry breaking research at this point.

7 Conclusion
When breaking symmetry by dominance detection, a com-
putationally efficient symmetry breaking scheme can be
achieved if we can solve the dominance detection problem
in polynomial time. Therefore, we studied the complexity
of dominance detection between arbitrary assignments for
combined variable and value symmetry. For CSPs with par-
tially symmetric single-valued variables and partially sym-
metric values we developed an efficient dominance detection
algorithm that shaves the search-tree to a point where no two
search-nodes can be symmetrical to each other. In contrast to
these positive tractability results, for set-CSPs with symmet-
ric variables and symmetric values, we found that the domi-
nance detection problem is NP-hard.

Our algorithms are based on the structural abstraction of
a given CSP, a method that we refer to asstructural symme-
try breaking (SSB). When only the structure of variables and
values that partition into whole equivalence classes of pair-
wise symmetric elements is considered, the work presented
here effectively closes the outstanding complexity questions
regarding SBDD. Further research will have to regard CSPs

whose symmetry structures are more refined. Consider for
example the case where the variables form a ring structure
and all rotations on the ring yield to an equivalent CSP. Under
what conditions can we break value and variable symmetry
when the permutations on the CSP elements form structures
that are different from partitions?

In our view, it is perceivable that structural symmetries
could be derived automatically by a static analysis of a
given constraint program if the modeling language used pro-
vided semantics regarding symmetries. For instance, an all-
different constraint could provide the information that all
variables and values are treated as symmetric by this con-
straint. Then, built-in efficient dominance detection algo-
rithms like the one that we developed can be used efficiently
to break the symmetries that were derived automatically, thus
making symmetry breaking an effective and efficient compo-
nent of constraint programming that is totally seamless for
the user.

Acknowledgments
Many thanks to Pierre Flener and Justin Pearson for helping
tremendously in polishing up the presentation of this work!

References
[Ahujaet al., 1993] R. Ahuja, T. Magnati, J. Orlin.Network Flows.

Prentice Hall, 1993.

[Barnier and Brisset, 2002] N. Barnier and P. Brisset. Solving the
Kirkman’s schoolgirl problem in a few seconds.Proc. CP’02,
477–491, 2002.

[Brownet al., 1988] C. Brown, L. Finkelstein, P. Purdom Jr. Back-
track searching in the presence of symmetry.Proc. AAECC-6,
99–110, 1988.

[Crawfordet al., 1996] J. Crawford, M. Ginsberg, E. Luks,
A. Roy. Symmetry-breaking predicates for search problems.
Proc. KR’96, 149–159, 1996.

[Fahleet al., 2001] T. Fahle, S. Schamberger, M. Sellmann. Sym-
metry Breaking.Proc. CP’01, 93–107, 2001.

[Fleneret al., 2002] P. Flener, A. Frisch, B. Hnich, Z. Kiziltan,
I. Miguel, J. Pearson, T. Walsh. Breaking row and column sym-
metries in matrix models.Proc. CP’02, 462–476, 2002.

[Focacci and Milano, 2001] F. Focacci and M. Milano. Global cut
framework for removing symmetries.Proc. CP’01, 77–92, 2001.

[Gentet al., 2003] I. Gent, W. Harvey, T. Kelsey, S. Linton. Generic
SBDD using computational group theory.Proc. CP’03, 333–347,
2003.

[Gent and Smith, 2000] I. Gent, B. Smith. Symmetry breaking in
constraint programming.Proc. ECAI’00, 599–603, 2000.

[Puget, 2002] J.-F. Puget. Symmetry breaking revisited.
Proc. CP’02, 446–461, 2002.

[Roney-Dougalet al., 2004] C. Roney-Dougal, I. Gent, T. Kelsey,
S. Linton. Tractable symmetry breaking using restricted search
trees.Proceedings of ECAI’04, 2004.

[Van Hentenrycket al., 2003] P. Van Hentenryck, P. Flener, J. Pear-
son, M. Agren. Tractable symmetry breaking for CSPs with in-
terchangeable values.Proc. IJCAI’03, 2003.

