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Abstract

Symmetry breaking has been shown to be an im-
portant method to speed up the search in con-
straint satisfaction problems that contain symme-
try. When breaking symmetry by dominance detec-
tion, a computationally efficient symmetry break-
ing scheme can be achieved if we can solve the
dominance detection problem in polynomial time.
We study the complexity of dominance detection
when value and variable symmetry appear simulta-
neously in constraint satisfaction problems (CSPs)
with single-valued variables and set-CSPs. We
devise an efficient dominance detection algorithm
for CSPs with single-valued variables that yields
symmetry-free search trees and that is based on
the abstraction to the actual, intuitive structure of
a symmetric CSP.

1 Introduction

During the past five years, symmetry breaking has been
topic of increasing interest in the constraint programmin
community. It was shown that symmetry breaking can play"’

some classes of pure value symmetry was investigated and
proven to be computationally tractable. The approach taken
was generalized ifRoney-Dougakt al, 2004, where the
notion of symmetry-free search trees, so-called GE-treas,
introduced. In combination with GAP, GE-trees were shown
to break arbitrary value symmetries in polynomial time.

In this paper, we continue this successful line of research
by studying combinations of value and variable symmetry in
constraint satisfaction problems (CSPs) and CSPs with set
variables (set-CSPs). We offer three main contributiorse T
first regards a combination of variable and value symmetry
for CSPs with single-valued variables. For the first time, in
Section 3, we show that the corresponding dominance detec-
tion problem is computationally tractable. In Section 4, we
build up on this result and show an efficient way of using the
dominance detection algorithm for filtering rather thart jus
pruning. The third main contribution regards set variabiles
Section 5 we show that the general dominance detection prob-
lem becomes NP-hard for set-CSPs that contain symmetric
set variables and value symmetry. Finally, as a minor side-

ote, in Section 6 we show that higher forms of symmetry
here sets of set variables are symmetric to other sets of set
pvariables in combination with value symmetry can be reduced

a decisive role in the solution of numerous constraint pro
lems, and sophisticated symmetry breaking methods ha
been developed, such as the addition of symmetry breaking

Vi@ the partial set variable symmetry case.

constraints (see for exampl€rawfordet al, 199€), sym-
metry breaking by adapting the search stratel®rown et
al., 1984, symmetry breaking during search (SBO&ent

and Smith, 200[) or symmetry breaking by dominance de-

2 Preliminaries

Let us start out by introducing some notation that we will use
throughout the paper. In the reminder of this paper, let us

tection (SBDD)[Fahleet al, 2001; Focacci and Milano,
2001]. Especially the latter has attracted a lot of interest:

assume that, m,p € IN.

improvements were suggested Barnier and Brisset, 2002; Definition 1

Puget, 200Pfor example. SBDD works by checking whether
the current choice point under investigation represenysma s
metric variant of a part of the search space that has been in-
vestigated completely before.

The core of an SBDD symmetry breaking code is domi-
nance detection which was automated@entet al,, 2003
by using the generic computational group theory tool, yield
ing a method named GAP-SBDD. While using a generic tool
is appealing from the perspective of the ease-of-use for the
constraint programmer, the generality comes with no guaran
tee of efficiency. Therefore, ivan Hentenryclet al,, 2009,
the special case of dominance detection in the presence of

e A Constraint Satisfaction Problem (CSB) a tuple

(Z,V,D,C) whereZ = {Xy,...,X,} is a finite set
of variables,V. = {v1,...,v,,} is a set of values,
D ={D,...,D,}isasetoffinite domains where each
D; € D is the set of possible instantiations to variable
X;, andC = {c1,...,c,} is a finite set of constraints
where each; € C is defined on a subset of the vari-
ables inZ and specifying their valid combinations. We
say that the CSP hasngle-valued variablesf for all

D; € D itholds thatD; C V. Iffor all D; € D it holds
thatD; C 2V (where2" denotes the set of all subsets of
V'), we say that the CSP isset-CSP



e Given a CSP with single-valued variables, assign- variable and each value as a member of a symmetry class. In
ment A is a set of pair{X,v) € Z x V such that the beginning, these classes correspond directly to teéset
(X,v),(X,w) € Aimpliesv = w. Given a set-CSP, and@,;. When assignments are committed, though, some of
a set-assignmentl is a set of pair§X,S) € Z x 2V those initial symmetries are broken. Then, in order to check

suchthat X, S1), (X, S2) € A impliesS; = Ss. which CSP objects are still indistinguishable, we need to in
troduce subclasses of the original symmetry classes. We wil
Definition 2 see that we can detect the remaining symmetries by label-
e Given a sefS and a set of set = {Py,...,P.} such ing each of those subclasses with a cerggnaturethat is
thatl J, P; = S and theP; are pairwise non-overlapping, defined by the set of initial symmetries and the given assign-
we say thatP is a partition of S, and we writeS =  ments. We will see also that it is really these signaturet tha
> P capture our intuitive wish to abstract from the CSP model at

e Given a setS and a partitions = 3, P, a bijection hand to the actual structure of the problem.

m : S — S such thatr(P;) = P, (wherexn(P;) = 3.1 Signatures

{n(s) | s € P;}) is called apartial permutatiorover
S=3,F. Consider the following example: We have variables
X1,...,Xs over domainsD(X;) = --- = D(Xg) =
Definition 3 {v1,...,u6}. Now assume that the first four and the last
e Given a CSP(Z,V,D,C), and partitionsZ =  four variables are indistinguishable, iB, = {X; ..., X4}
Yok<r P, V=37, Qi, we say that the CSP has par- and P, = {Xs,...,Xg}. Furthermore, assume that
tial variable and value symmetry iff all variables within Q1 = {vi,...,vs}, Q2 = {v4,...,vs}, and that
eachP, and all values within eac); are considered as we are given the following two assignmentsA; =
symmetric. {(X1,v1), (X2,v1), (X3,v2), (X6, v5), (X7,01), (Xs,v2)}

andA; = {(X1,ve), (X2,v1), (X3,02), (X4,v2), (X5, v1),-

metric CSP with single-valued variables, we say that (X6, v6), (X7,v2), (X5,v2)}. ~ See Figure 1(a) for an

; : : : . illustration. When looking at the first assignment, we see
%Oz u;isBPlkffatZZrae gjéiﬁ/pit%liegustigzlﬁ,gy ?Orr that: bll' There is c:jne value() ll)r|] Qs that is terl1ken by two
srer S8 variables inP; and one variable in%. 2. There is one
all (X,v) € Aitholds that{w(X), a(v)) € B.

value @2) in @ that is taken by one variable iR, and one

e Given a partially symmetric set-CSP and set-variable inP,. 3. There is one valuex) in Q» that is taken
assignmentsi and B, we say thatd dominatesB iff by one variable inP,. On the other hand, in the second
there exist partial permutationsoverZ = 3, _ Py assignment: |. There is one valug) in @, that is taken by
anda overV = Y, Q such thatA(m, «) C B, two variables inP; and two variables i. Il. There is one

whereA(r, o) = {(7(X), (9))|(X, S) € A}. value (1) in @, that is taken by one variable iR, and one
. T T ’ variable inP,. Ill. There is one valuei) in Q, that is taken
e Given two arbitrary (set-)assignmemtsandB forapar-  p one variable i, and one variable itP. Lining up 1-1

tially symmetric (set-)CSP, we call the problem of de- X, X X X X Xo X
termining if A dominatesB the Dominance Detection (th ’(:2 U,i' ;{}1 1{ X;]} : {{X23}7 {31(};}{ ,_f }{ )Z) }){ a7r’1d %]-,I)I'I
Problem (vs — v, {Xs} — {Xs}), we see thatl, is structurally an
. . . assignment extended from,, or, in other words, thati;
3 SymmetrIC SlnglE'Valued Variables over dominatesd4, (see also Figure 1(b)).
Symmetric Values What we have done in this small example is to abstract
The first general symmetry model that we study is pOW_from the given model and the (arbitrary) names of variables

erful enough to manage symmetric single-valued variable§mOI values to Fhe actuatructur_e_of th‘"'." problem. That is,
over symmetric values. Throughout this section, we comside"Stéad of talking about specific variables and values, we
the partially symmetric CSPZ, V, D, C) with single-valued considered members of classes. Specifically, for each as-

variables. We assume also that we are given a partition gfignment we implicitly assigned each valusignaturethat
the variablesy",_, P, = Z and a partition of the values captures by how many members of each variable-symmetry

B s . o class it was taken. For instance, 41 v; has the signature
ZlSs Q= _V_SUCh that all varlables within eacF_lk and (2 x P1,1 x Py), or, in shorter writing, the signature of is
all values within eaclt); are considered symmetric. Note ;. ) — (2.1). In A, on the other hand, the signature
that such partitions could be derived by a static analyse of ¢ 1;21is siga,(v2) = (2,2). Consequentlyys in A, can be
constraint program. The main objective in this section will \;o\ved as rﬁore speciélized thanin A;, or one may also
be to show that there exists an effective symmetry breaking,y thag,, in A, dominates:s in A». In this terminologyy,
algorithm that runs in polynomial time for this scenario.

: - ; X in Ay has signatur@ig,(vi;) = (1,1) and therefore dom-
The key idea consists in the introductiongifuctural ab- inatesv; in A;. Note thatsiga, (vs) is also(1, 1), but that

stractions to model_ a CSR, we need to unlquely label eachU6 in A, does not dominate, in A, sincevs € Q- whereas
value and each variable with a name — which is, of course, Q1. In general:

not natural when certain variables and certain values are ac
tually indistinguishable. We can rectify this by viewingcha

e Given two assignmentd and B on a patrtially sym-
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Figure 1: Part (a) illustrates assignmedtsand A,. Part (b) gives the signatures for each value, links pairsabfes where
the one in assignmemt; dominates to the one id,, and a perfect matching that proves thlgtdominatesA, is designated
by solid lines.

Definition 4 Definition 5
e We say that a value in an assignmenfl dominatesa  Given two assignmentd andB, let us denote with’’ a set
valuew in assignmenB iff v andw belong to the same of duplicates of the values i1 by attaching a prime sign after
value-symmetry class andg 4 (v) < sigp(w).t the values’ names (i.& := {v' | v € V'}). Then, we define
e We say that a value in an assignment. is struc- {hedominance de'Eectlorj graghDG(A, B) := (VUV', E)
turally equivalentto a valuew in assignment3 iff v ~ WhereE := {(v,w’) | v in A dominates w in B} denotes
andw belong to the same value-symmetry class andfe Setofarcs.

siga(v) = sigp(w). Theorem 1

3.2 Dominance Detection Using Signatures Given two assignmentd and B over a CSP with partially

The following lemma shows how signature-abstractions carsYMMetric single-valued variables and partially symneetri
help to detect dominance relations among assignments:  alues, the dominance detection problem betwéemd B

has complexityp(M + m?* + mn), whereM = O(m??) is

the time needed to determine whether there exists a perfect
matching inDDG(A, B), m is the number of values, and

is the number of variables.

Lemma 1

An assignmentl dominates another assignméhtn a par-
tially symmetric CSP iff there exists a partial permutation
overy , . Q; such that in A dominatesx(v) in B for all

v In the interest of space here and at many other occasions
v .

we must omit a formal proof. However, we would like to
Proof:  First. let us assume that dominatesB. Then note that, with Lemma 1, it is clear that the dominance detec-

there exist partial permutations over 3", Py and o tion proplem can be so!ved .basically.by determining whether
over Zzgs Q. such that for all(X,v) € A it holds that there exists a perfect bipartite matchingG(A, B). The

. additional complexity denoted in the theorem is due to the
(m(X),a(v)) € B. Since bothX andw(X) belong to the  pecessity to construdd DG (A, B) first. It is obvious that

same symmetry class, we have that for all valueg V  his can be achieved in tim@(nm?2), which already proves
itis siga(v) < sigp(a(v)), which is the same as 10 say {hat symmetry breaking in this scenario is tractable. How-
thatv in A dominatesx(v) in B. Now assume there exists gyer the runfime can be improved to the complexity that is
a partial permutatiomv over ), Q; such thatsiga(v) < ¢jaimed here by using sparse representations of signatures
sigp(a(v)) for all v € V. Then, since each variable is as- Then, in the algorithm analysis we can exploit that the to-

signed to at most one value, there exists a partial permuatati tal number of non-zero signature components is bounded by
mover) , . P such that for all X,v) € A it holds that O(|A| + |B|) = O(n).

(7(X),a(v)) € B. Thus, we have thal dominatesB. = Interestingly, it can also be shown tleaterybipartite graph
can also be viewed as a dominance detection graph of a CSP
r%nd assignmentd and B that can be determined in time lin-
€ar in the size of the given graph. And therefore, a perfect
bipartite matching exists iffA dominatesB, which makes
YWhere the <-relation on vectors is defined as the usual theé dominance detection problem at least as hard as bipar-
component-wise comparison that yields to the so-calledidance  tite matching. In other words, we can show that dominance
ordering - which is different from a lexicographic ordering detection takes tim& whereT’ € Q(M)NO(M +m?+mn).

Consequently, we have thdtdominatesB iff there exists
a perfect matching in a bipartite graph where the edges a
defined by the signature-relation of values (see Figurg1(b)



4 Symmetry-Based Filtering andD, := DDG(A, B') only differ in that the latter bipar-

With Theorem 1, we can break all symmetries when given i€ graph may contain some additional edges that must all be

CSP with partially symmetric variables and values in poly-Incident tow’ in the right partition. Obviously, ifD, con-

nomial time when using a symmetry breaking by dominancd@ins ann-matching, this matching must contain exactly one

detection (SBDD) approadifahleet al, 2001; Focacci and ©f those additional edges. Consequentlydilominatess”,

Milano, 2004. What is annoying in this setting is that we thénD: must contain am: — 1-matching. Only if this is the

still have to check every choice point to see if it is not domi- €€, Work needs to be done to makencestor-symmetry

nated by one that was previously expanded, i.e. we still havEeSistant with respect td. _ .

to touch the garbage in order to see that it is garbage. We, SO letus assume thax contains ann — 1-matching. Pro-

will now develop an algorithm that does not suffer from this Vided with that matching, using some straight-forward ratc

disadvantage. ing _theory we can identify efficiently those and only tho_se
We achieve this goal by using dominance detection also foﬁddmonalledg_es that would allow us to transfo_rm the exist-

filtering rather than just prunifg Obviously, a brute-force N9 matching into a.perfect one. Fu_rthermore, it can also be

approach could simply try assignments out and use the donshown that those_crmcal edges are mdependem of thecparu

inance detection algorithm above to perform filtering adwel ularm — 1-matching that we computed (For an introduction

This procedure would lead to a very poor runtime, though. I Matching theory we refer fihujaet al, 1993). Among

the following, we will show that filtering based on symmetry those critical edges that, if added, would allow us to carstr

can be performed much more efficiently. anm-matching, the only ones that we need to consider are
Within SBDD, there exists a natural distinction betweenth0se which run between nodesindw’ with v, w € @, for

two types of filtering that apply: The first consists in making SOMel < [ < s and for which there exists < k < r such

sure that none of the newly created children are symmetric @t siga(v) < sigp(w) + ex. If and only if we find such

a node that was fully expanded before the node that is cu@ Pair of nodes, a single extra assignment adde8 twill

rently branching off. When applying unary branching Con_reSL_JIt in a successful do_mlnance de;ecnon. F_’remselyyeve

straints (which we assume are used here), this can be adhiev@SSignment oiv to a previously unassigned variablee Py

by shrinking domain variables accordingly. The other, fand will result in a dominated choice point. Thus, if we remove

mentally different type of “filtering” consists in the crgat @ from the domain ofX” for all unassignedt’ € P, we keep

of children that are also not symmetrical to each other. Botfh® unique parts of the search space and we never produce

types need to be addressed to achieve a symmetry-free sea@}PiCe points that are symmetric to one that was expanded

tree (which corresponds to the GE-tree§Roney-Dougaét  Previously toB. _ o

al., 2004). We distinguish the two types of filtering by nam- Wlth Theorem 1, 'ghe runtime needgq for the initial value-

ing them differently:symmetric-ancestor based filteriapd ~ Matching algorithm is bounded ly(m*° + mn). We can

symmetric-sibling based filtering also prove that a filtering algorithm can be formulated that,
) T once the matching is computed, runs in timén? + mn).4
Symmetric-Ancestor based Filtering Therefore, since within SBDD at mostm — 1) ancestor

The goal of symmetric-ancestor based filtering is to shrinknodes need to be considered, we can prove the following:
the domains such that instantiating a variable with onesof it

domain values will not result in the creation of a search nOde\'heorem 2

thatis symmetric to one that was previously expanded. i en a4 cSP with partially symmetric single-valued vari-
ables and partially symmetric values, we can achieve
ancestor-symmetry resistance for a given search node é tim
O(nm??® + n?m?).

Definition 6

Given a depth-first-search trég® we say that a choice point
B (associated with its homonymous assignmBrthat cap-
tures previously committed unary branching decisions)
ancestor-symmetry resistaiit for all previously fully ex- To achieve full symmetry prevention, we also need to guar-
panded noded € T (A is called anancestoof B) and for Y yPp ' 9

all variablesX and values € D(X) it holds thatA does not antee that newly created siblings are not symmetric to each
dominateB U {(X,v)} other. Therefore, after we choose the next variable to be as-

signed, but before we branch on it, we need to perform one

Assume that we are currently investigating choice paint more “filtering” step (it is actually more of an implicit prun
and thatA is some ancestor node that does not domiate ing step) where we choose a single representative value out
Observe that instantiating one more variable ¢ P, for of each equivalence class of values which, when assigned to
somek by settingX — w € Q, for somel will change only  the chosen variable, would result in the creation of symimetr
the signature ofv from sigp(w) to sigp(w) + e, where  choice points. Due to the fact that, whenever a sibling dom-
e, denotes the unit vector with & in the kth component.  inates another, they both must already be structurallyvequi
We setB’ := B U {(X,w)}. Then,D; := DDG(A, B) a_Ier_1t (see Definition 4), we can avoid producing symmetric
siblings simply by choosing exactly one representativeeal

iSSymmetric-Siinng based Filtering

2With *filtering’, we refer to the idea of domain reduction iPC
‘pruning’ refers to the detection of a sufficient reason tokbeack. “Again, the main technical idea consists in the use of spagse s

3In the interest of space, we must omit a formal definition of anatures. The proof of the complexity is not particularlyighsful
search tree here. The meaning should become clear fromitexto  but lengthy, which is why we leave it out here.



among those that are structurally equivalent. The complexProof: We reduce the problem to subgraph-isomorphism. In

ity of this filtering step is dominated by that of symmetric- order to apply Theorem 3, we need to ensure that both graphs

ancestor based filtering. operate over the same set of nodes. In case that the set of
Putting ancestor and sibling-based filtering together, wé0des of the given graphs differ, it is easy to see (hacan-

have completed our development of an effective symmetryi©t D€ sub-isomorphic 16 if G, contains more nodes than
In case thaty; actually contains fewer nodes théh,

breaking algorithm for CSPs with partial single-valuedivar Go. h dd isolated nodes tavith
able and value symmetry that runs in polynomial time. Notelt IS €asy to see that we can add isolated nodéstwithout

that the practical performance of the algorithms sketchaed ¢ 2ffecting subgraph-isomorphism.  Then, we have that both
be enhanced in practice: for example, it is fully sufficient9raPhs contain the same number of nodes, and by relabelling

to check against previously expanded nodes for which af{1® nodes '”h both graphs,f wedmay assume that both graphs
m — 1 — h-maximum matching was found only after vari- OPerate on the same set of nodes. u
able instantiations th different values have been committed.  Note that, despite this negative result, in some important

And as usual, by considering incremental updates of matchspecial cases the symmetry detection problem for CSPs with

ings, memory can be traded for cpu-time.

5 Limits of Efficient Dominance Detection

partially symmetric set variables and values is still tahdt.

For instance, when the set variables cannot overlap, tlee alg
rithm developed in Section 3 can be adapted easily (by sim-
ply exchanging the roles of values and variables) to brdak al

After having developed a polynomial symmetry breaking al-symmetries efficiently.

gorithm for CSPs with partially symmetric single-valuediva

ables in the presence of partial value symmetry, we now showt.orollary 2

that dominance detection for partially symmetric set aga

The dominance detection problem over partially symmetric

in the presence of partial value symmetry is NP-hard. Moreyon-overlapping set variables and partially symmetricieal
precisely, we reduce the corresponding dominance detectigs tractable.

problem to subgraph-isomorphism.

In order to achieve the desired reduction we construct a Note that the dominance detection problem as we consider

set-assignment from a graph in the following way:

Definition 7

Given an undirected grapf = (V, E) with ¢ := |V|,
we define a set of symmetric valuéé := {nq,...,n.},
and a set of symmetric variablés := {p;;|{i,j} € E}.

Then, theset-assignmentd(G) is defined asA(G)
{(pij; {ni,ns}) [ {i,j} € E}.

Theorem 3
Given two undirected graph&, = (V,E;) andGy =
(V, Es), G is sub-isomorphic ta7, iff A(G1) dominates

it here regards arbitrary assignments. This implies thagrw

the detection problem is tractable, we can break symmetries
efficiently. However, the situation changes when we achieve
an intractability result like the previous one: Within meth
ods like SBDD the assignments that need to be compared can
only differ in a rather specific fashion. We can also show that
these more specific dominance detection problems are NP-
hard as well, therefore proving that SBDD in its general form
is incapable of breaking symmetries in partially symmetric
set-CSPs efficiently. However, we would like to stress that
this result does not imply that symmetry breaking is NP-hard
in general since we do not consider other methods here like
remodeling or the adaption of the branching scheme.

A(G3) when all variables and values are considered to be

symmetric.

Proof: We start by showing thati(G;) dominatesA(Gz)
if G is sub-isomorphic toG,. Leto : V — V bi-
jective such that{i,j} € E; implies {c(i),0(j)} €
E,. Then, for all (p;j,{n:,n;}) € A(G:1) it holds that
(pa(i)_’g(j),{na(i),na(j)}) S A(Gg) Therefore,A(Gl)
dominatesA(Gs).

Now let us assume that(G;) dominatesA(Gz). Then,
there exist functions : E; — E; anda : V — V such that
(pij; {nism;}) € A(G1) implies(pr (i jy): {Ta): M) ) €
A(G3). By construction ofA(G2), this is equivalent to
{na@y,nay}t € E forall {i,5} € E. Thus,a is a sub-
isomorphism betwee@'; andGs. n

With Theorem 3, it is easy to prove the following

Corollary 1

The dominance detection problem over partially symmetri

set variables and partially symmetric values is NP-hard.

6 Higher Forms of Symmetry

Note that our intractability proof above shows that domoean
detection over symmetric set variables and symmetric galue
is already NP-hard when there exists only one set of symmet-
ric set variables and one set of symmetric values. Clearly,
the problem stays NP-hard when we allow partial symmetry.
Partial symmetry is very helpful when even more complicated
forms of symmetry need to be handled. Consider for example
the Social Golfer Problem (SGP):

32 golfers want to play in 8 groups of 4 each week,
such that any two golfers play in the same group at
most once. How many weeks can they do this for?

The problem can be generalized by parameterizing it to
groups ofs players each, playing fav weeks (instances are
usually written ing-s-w-format). A common model for the
problem introduces a set variable for each group, so that-int

.group symmetries are broken automatically. Groups within
c__ -

SProblem 10 in CSPLib - http://www.csplib.org/.



Group 1| Group 2| Group 3 whose symmetry structures are more refined. Consider for

Week1][ 1 2 3 4 5 6 example the case where the variables form a ring structure
Week?2|| 1 3 2 5 | * % and all rotations on the ring yield to an equivalent CSP. Wnde

what conditions can we break value and variable symmetry

Table 1: A partial instantiation of SGP 3-2-2. when the permutations on the CSP elements form structures

that are different from partitions?

In our view, it is perceivable that structural symmetries
[@@@V@] could be derived automatically by a static analysis of a
given constraint program if the modeling language used pro-
vided semantics regarding symmetries. For instance, an all
different constraint could provide the information that al
1 \ variables and values are treated as symmetric by this con-
[g@@@ @ @] @] straint. Then, built-in efficient dominance detection algo

rithms like the one that we developed can be used efficiently

to break the symmetries that were derived automaticallyg th
Figure 2: Symmetry-breaking model for SGP 3-2-2 frommaking symmetry breaking an effective and efficient compo-
Table 1. We view the problem as containing six groupsnent of constraint programming that is totally seamless for
G1,...,Gs (3 per week). Only upon instantiation of the as- the user.
sociated set variable, a group is assigned to a week.
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