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Abstract
Many real-world decision making tasks require us to
choose among several expensive observations. In a sen-
sor network, for example, it is important to select the sub-
set of sensors that is expected to provide the strongest re-
duction in uncertainty. It has been general practice to use
heuristic-guided procedures for selecting observations. In
this paper, we present the first efficient optimal algorithms
for selecting observations for a class of graphical models
containing Hidden Markov Models (HMMs). We provide
results for both selecting the optimal subset of observa-
tions, and for obtaining an optimal conditional observation
plan. For both problems, we present algorithms for the fil-
tering case, where only observations made in the past are
taken into account, and the smoothing case, where all ob-
servations are utilized. Furthermore we prove a surpris-
ing result: In most graphical models tasks, if one designs
an efficient algorithm for chain graphs, such as HMMs,
this procedure can be generalized to polytrees. We prove
that the value of information problem isNPPP-hard even
for discrete polytrees. It also follows from our results that
even computing conditional entropies, which are widely
used to measure value of information, is a#P-complete
problem on polytrees. Finally, we demonstrate the effec-
tiveness of our approach on several real-world datasets.

1 Introduction
In probabilistic reasoning, where one can choose among sev-
eral possible but expensive observations, it is often a central
issue to decide which variables to observe in order to most ef-
fectively increase the expected utility. In a medical expert sys-
tem [14], for example, multiple tests are available, and each
test has a different cost. In such systems, it is thus important to
decide which tests to perform in order to become most certain
about the patient’s condition, at a minimum cost. Occasionally,
the cost of testing can even exceed the value of information for
any possible outcome.

The following running example motivates our research and
is empirically evaluated in Section 7. Consider a temperature
monitoring task, where wireless temperature sensors are dis-
tributed across a building. The task is to become most certain
about the temperature distribution, whilst minimizing energy
expenditure, a critically constrained resource[4].

Many researchers have suggested the use of myopic
(greedy) approaches to select observations[13; 15; 5; 1]. Un-
fortunately, this heuristic does not provide any performance

guarantees. In this paper, we present efficient algorithms,
which guarantee optimal nonmyopic value of information
in chain graphical models such as Hidden Markov Models
(HMMs). We address two settings:subset selection, where
the optimal subset of observations is obtained in an open-loop
fashion, andconditional plans, a closed-loop plan where the
observation strategy depends on the actual value of the ob-
served variables (c.f. Fig. 1(a)). To our knowledge, these are
the first optimal and efficient algorithms for these tasks for this
class of graphical models. For both settings, we address the
filtering and thesmoothingversions: Filtering is important in
online decision making, where our decisions can only utilize
observations made in the past. Smoothing arises for example
in structured classification tasks, where there is no temporal
dimension in the data, and hence all observations can be taken
into account. We evaluate our algorithms empirically on three
real-world datasets, and also show that they are well-suited for
interactive classification of sequential data.

Most problems in graphical models, such as probabilistic in-
ference and the most probable explanation, that can be solved
efficiently for chain-structured graphs, can also be solved effi-
ciently for polytrees. We prove that the problem of maximizing
value of information isNPPP-hard even for discrete polytree
graphical models, giving a complexity theoretic classification
of a core artificial intelligence problem.NPPP-hard prob-
lems are believed to be significantly harder thanNP-complete
or even#P-complete problems commonly arising in the con-
text of graphical models. As a special case, we also prove that
computing conditional entropies is#P-complete even in the
case of discrete polytrees. This is a surprising result about a
measure of uncertainty that is frequently used in practice.

2 Optimization criteria
In order to maximize value of information, our objective func-
tions should depend on probability distributions over variables.
Let S = {X1, . . . , Xn} be a set of discrete random variables.
We consider a class oflocal rewardfunctionsR, which are de-
fined on the marginal probability distributions of the variables.
This class has the computational advantage that local rewards
can be evaluated using probabilistic inference techniques. The
total reward will then be the sum of all local rewards.

Let O be a subset ofS. ThenP (Xj | O = o) denotes the
marginal distribution of variableXj conditioned on observa-
tionso. For classification purposes, it can be more appropriate
to consider the max-marginalsPmax(Xj = xj | O = o) =
maxx P (X = x, Xj = xj | O = o), that is, forXj set to value



xj , the probability of the most probable assignment to all other
random variables conditioned on the observationso. Thelocal
rewardRj is a functional on the probability distributionP or
Pmax overXj . We write

Rj(Xj | O) ,
∑

o

P (O = o)Rj(P (Xj | O = o))

as an abbreviation to indicateexpected local rewards, where
the expectation is taken over all assignmentso to the observa-
tionsO. Important measures for value of information include:

• Entropy. If we setRj(P (Xj | O)) = −H(Xj | O) =∑
xj ,o P (xj , o) log P (xj | o), the objective in the opti-

mization problem becomes to minimize the sum of resid-
ual entropies. We choose this reward function in our run-
ning example to measure the uncertainty about the tem-
perature distribution.

• Maximum expected utility. The concept of local reward
functions also includes the concept of utility nodes in in-
fluence diagrams. IfUj : Aj × dom Xj → R is a utility
function mapping an actiona ∈ Aj and an outcomex ∈
dom Xj to a reward, then themaximum expected utility
principlestates that actions should be selected as to max-
imize EUj(a | o) =

∑
x P (x | o)Uj(a, x). The more

certain we are aboutXj , the more economically we can
choose our action. Hence we can define our local reward
functionR(P (Xj | O)) =

∑
o P (o) maxa EUj(a | o).

• Margin. We can also consider the margin of confi-
dence: Rj(Pmax(Xj | O)) =

∑
o P (o)[Pmax(x∗j |

o)−Pmax(x̄j | o)], wherex∗ = argmaxxj
Pmax(xj | o)

and x̄ = argmaxxj 6=x∗ Pmax(xj | o), which describes
the margin between the most likely outcome and the clos-
est runner up. This reward function is very useful for
structured classification purposes, as shown in Sec. 7.

These examples demonstrate the generality of our notion of lo-
cal reward. One can generalize the algorithms even more, e.g.,
to measure the total entropy or the margin between the most
probable explanation and its runner up. Details are omitted
here due to space limitations.

We also want to capture the constraint that observations are
expensive. This can mean that each observationXj has an
associated positivepenaltyCj that effectively decreases the
reward. In our example, we might be interested in trading
off accuracy with sensing energy expenditure. Alternatively,
it is also possible to define abudgetB for selecting observa-
tions, where each one is associated with an integercost βj .
Here, we want to select observations whose sum cost is within
the budget, but these costs do not decrease the reward. In
our running example, the sensors could be powered by solar
power, and regain a certain amount of energy per day, which
allows a certain amount of sensing. Our formulation of the
optimization problems allows both for penalties and budgets.
To simplify notation we also writeC(O) =

∑
Xj∈O Cj and

β(O) =
∑

Xj∈O βj to extendC andβ to sets.

3 Decomposing Rewards
In the following Sections 4 and 5, we present efficient algo-
rithms for two problems of optimizing value of information in
the class of chain graphical models.
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(a) Example conditional plan. (b) Decomposition of the reward.
Figure 1:Example, and decomposing reward idea

The set of random variablesS = {X1, . . . , Xn} forms a
chain graphical model (a chain), ifXi is conditionally inde-
pendent ofXk givenXj wheneveri < j < k. We can assume
that the joint distribution is specified by the priorP (X1) and
conditional probability distributionsP (Xi+1 | Xi). The time
series model for the temperature measured by one sensor in
our example can be formulated as a chain graphical model.

Chain graphical models originating from time series have
additional, specific properties: In a system for online decision
making, only observations from the past and present time steps
can be taken into account, not observations which will be made
in the future. This is in general referred to as thefiltering prob-
lem. In this setting, the notationP (Xi | O) will refer to the
distribution ofXi conditional on observations inO prior to and
including timei. For structured classification problems as dis-
cussed in Section 7, in general observations made anywhere in
the chain must be taken into account. This situation is usually
referred to as thesmoothingproblem. We will provide algo-
rithms both for filtering and smoothing.

We will now describe the key insight, which allows for ef-
ficient optimization in chains. Consider a set of observations
O ⊆ S. If the j variable is observed, i.e.,Xj ∈ O, then the
local reward is simplyR(Xj | O) = R(Xj | Xj). Now
considerXj /∈ O, and letOj be the subset ofO contain-
ing the closest ancestor (and for the smoothing problem also
the closest descendant) ofXj in O. The conditional inde-
pendence property of the graphical model implies that, given
Oj , Xj is independent of the rest of the observed variables,
i.e., P (Xj | O) = P (Xj | Oj). Thus, it follows that
R(Xj | O) = R(Xj | Oj).

These observations imply that the expected reward of some
set of observations decomposes along the chain. For simplicity
of notation, we add two independent dummy variablesX0 and
Xn+1, whereR0 = C0 = β0 = Rn+1 = Cn+1 = βn+1 = 0.
Let O = {Xi0 , . . . , Xim+1} where il < il+1, i0 = 0 and
im+1 = n + 1. Using this notation, the total rewardR(O) =∑

j Rj(Xj | O) for the smoothing case is given by:

m∑
v=0

Riv
(Xiv

| Xiv
)− Civ

+
iv+1−1∑
j=iv+1

Rj(Xj | Xiv
, Xiv+1)

 .

In filtering settings, we simply replaceRj(Xj | Xiv , Xiv+1)
by Rj(Xj | Xiv

). Figure 1(b) illustrates this decomposition.

Consider now a Hidden Markov Model unrolled forn time
steps, i.e.,S can be partitioned into the hidden variables
{X1, . . . , Xn} and the emission variables{Y1, . . . , Yn}. In
HMMs, theYi are observed and the variablesXi form a chain.
In many applications, some of which are discussed in Sec-
tion 7, we can observe some of the hidden variables, e.g., by
asking an expert, in addition to observing the emission vari-
ables. In these cases, the problem of selecting expert labels
also belongs to the class of chain graphical models addressed
by this paper.



4 Subset Selection
In the subset selectionproblem, we want to find a most in-
formative subset of the variables to observein advance, i.e.,
before any observations are made. In our running example, we
would, before deploying the sensors, identifyk time points that
are expected to provide the most informative sensor readings
according to our model.

First, define the objective functionL on subsets ofS by

L(O) =
n∑

j=1

Rj(Xj | O)− C(O). (4.1)

Thesubset selectionproblem is to find the optimal subset

O∗ = argmax
O⊆S,β(O)≤B

L(O)

maximizing the sum of expected local rewards minus the
penalties, subject to the constraint that the total cost must not
exceed the budgetB.

We solve this optimization problem using a dynamic pro-
gramming algorithm, where the chain is broken into sub-chains
using the insight from Sec. 3. Consider a sub-chain from vari-
ableXa to Xb. We defineLa:b(k) to represent the expected
total reward for the sub-chainXa, . . . , Xb, whereXa (andXb
in the smoothing case) is observed, and with a budget level of
k. More formally:

La:b(k) = max
O⊂{Xa+1...Xb−1}

β(O)≤k

b−1X
j=a+1

Rj(Xj | O ∪ {Xa})− C(O),

for the filtering version, and

La:b(k) = max
O⊂{Xa+1...Xb−1}

β(O)≤k

b−1X
j=a+1

Rj(Xj | O∪{Xa, Xb})−C(O),

for the smoothing version. Note thatL0:n+1(B) =
maxO:β(O)≤B L(O), as in Eq. (4.1), i.e., by computing the
values forLa:b(k), we compute the maximum expected total
reward for the entire chain.

We can computeLa:b(k) using dynamic programming. The
base case is simply:

La:b(0) =
b−1∑

j=a+1

Rj(Xj | Xa),

for filtering, and

La:b(0) =
b−1∑

j=a+1

Rj(Xj | Xa, Xb),

for smoothing. The recursion forLa:b(k) has two cases: we
can choose not to spend any more of the budget, reaching the
base case, or we can break the chain into two sub-chains, se-
lecting the optimal observationXj , wherea < j < b:

La:b(k) =max{La:b(0), max
j:a<j<b,βj≤k

{−Cj+

+ Rj(Xj | Xj) + La:j(0) + Lj:b(k − βj)}}.

At first, it may seem that this recursion should consider the op-
timal split of the budget between the two sub-chains. However,

Input : BudgetB, rewardsRj , costsβj and penaltiesCj

Output : Optimal selectionO of observation times
begin

for 0 ≤ a < b ≤ n + 1 do computeLa:b(0);
for k = 1 to B do

for 0 ≤ a < b ≤ n + 1 do
sel(−1) := La:b(0);
for j = a + 1 to b− 1 do sel(j) :=
−Cj + Rj(Xj | Xj) + La:j(0) + Lj:b(k − βj);
La:b(k) = maxa<j<b sel(j);
Λa:b(k) = argmaxa<j<b sel(j);

end
end
a := 0; b := n + 1; k := B; O := ∅;
repeat

j := Λa:b(k);
if j ≥ 0 then O := O ∪ {Xj}; k := k − βj ;

until j = −1;
end

Algorithm 1 : Optimal subset selection.

since the subset problem is open-loop and the order of the ob-
servations is irrelevant, we only need to consider split points
where the first sub-chain receives zero budget.

A pseudo code implementation is given in Alg. 1. If we do
not consider different costsβ, we would simply chooseβj = 1
for all variables and computeLa:b(N). Alg. 1 uses the quanti-
tiesΛa:b to recover the optimal subset by tracing the maximal
values occurring in the dynamic programming equations. Us-
ing an induction proof, we obtain:

Theorem 1. The dynamic programming algorithm described
above computes the optimal subset with budgetB in ( 1

6n3 +
O(n2))B evaluations of expected local rewards.

If the variablesXi are continuous, our algorithm is still ap-
plicable when the integrations and inferences necessary for
computing the expected rewards can be performed efficiently.

5 Conditional Plan
In theconditional planproblem, we want to compute an opti-
mal querying policy: We sequentially observe a variable, pay
the penalty, and depending on the observed values, select the
next query as long as our budget suffices. The objective is
to find the plan with the highest expected reward, where, for
each possible sequence of observations, the budgetB is not
exceeded. For filtering, we can only select observations in the
future, whereas in the smoothing case, the next observation can
be anywhere in the chain. In our running example, the filter-
ing algorithm would be most appropriate: The sensors would
sequentially follow the conditional plan, deciding on the most
informative times to sense based on the previous observations.
Fig. 1(a) shows an example of such a conditional plan.

The formal definition of the objective functionJ is given
recursively. The base case considers the exhausted budget:

J(O = o; 0) =
∑

Xj∈S

Rj(Xj | O = o)− C(O).

The recursion,J(O = o; k), represents the maximum expected
reward of the conditional plan for the chain whereO = o has



been observed and the budget is limited tok:

J(O = o; k) = max{J(O = o; 0), max
Xj /∈O

{∑
y

P (Xj = y | O = o) · J(O = o,Xj = y; k − βj)}}.

The optimal plan has rewardJ(∅;B).
We propose a dynamic programming algorithm for obtain-

ing the optimal conditional plan that is similar to the subset
algorithm presented in Sec. 4. Again, we utilize the decompo-
sition of rewards described in Section 3. The difference here
is that the observation selection and budget allocation now de-
pend on the actual values of the observations.

We again consider sub-chainsXa, . . . , Xb. The base case
deals with the zero budget setting:

Ja:b(xa; 0) =

b−1X
j=a+1

Rj(Xj | Xa = xa),

for filtering, and

Ja:b(xa, xb; 0) =

b−1X
j=a+1

Rj(Xj | Xa = xa, Xb = xb),

for smoothing. The recursion definesJa:b(xa; k)
(Ja:b(xa, xb; k) for smoothing), the expected reward for
the problem restricted to the sub-chainXa, . . . , Xb condi-
tioned on the values ofXa (andXb for smoothing), and with
budget limited byk. To compute this quantity, we again iterate
through possible split pointsj, such thata < j < b. Here
we observe a notable difference between the filtering and
the smoothing case. For smoothing, we now must consider
all possible splits of the budget between the two resulting
sub-chains, since an observation at timej might require us to
make an additional, earlier observation:

Ja:b(xa, xb; k) = max{Ja:b(xa, xb; 0), max
a<j<b

{−Cj+X
xj

P (Xj = xj | Xa = xa, Xb = xb){Rj(Xj | Xj)+

max
0≤l≤k−βj

[Ja:j(xa, xj ; l) + Jj:b(xj , xb; k − l − βj)]}}}.

Looking back in time is not possible in the filtering case, hence
the recursion simplifies to

Ja:b(xa; k) = max{Ja:b(xa; 0), max
a<j<b:βj≤k

{−Cj+X
xj

P (Xj = xj | Xa = xa){Rj(Xj | Xj)+

Ja:j(xa; 0) + Jj:b(xj ; k − βj)}}}.

The optimal reward is obtained byJ0:n+1(∅;B) = J(∅;B).
Alg. 5 presents a pseudo code implementation for the smooth-
ing version – the filtering case is a straight-forward modifica-
tion. The plan itself is compactly encoded in the quantitiesπa:b

which determines the next variable to query andσa:b, which
determines the allocation of the budget. Considering the ex-
ponential number of possible sequences of observations, it is
remarkable that the optimal plan can even be represented us-
ing only polynomial space. Alg. 5 indicates how the computed
plan can be executed. The procedure is recursive, requiring the
parametersa := 0, xa := 1, b := n + 1, xb := 1 andk := B
for the initial call. Again, by induction, we obtain:

Theorem 2. The algorithm for smoothing presented above
computes an optimal conditional plan ind3·B2·( 1

6n3+O(n2))
evaluations of local rewards, whered is the maximum domain
size of the random variablesX1, . . . , Xn. In the filtering case,
or if no budget is used, the optimal plan can be computed us-
ing d3 ·B · ( 1

6n3 +O(n2)) or d3 · ( 1
6n4 +O(n3)) evaluations

respectively.

The faster computation for the no budget case is obtained by
observing that we do not require the third maximum computa-
tion, which distributes the budget into the sub-chains.

Input : BudgetB, rewardsRj , costsβj and penaltiesCj

Output : Optimal conditional plan(πa:b, σa:b)
begin

for 0 ≤a < b≤ n + 1, xa ∈ dom Xa, xb ∈ dom Xb do
computeJa:b(xa, xb; 0);
for k = 1 to B do

for 0≤a<b≤n+1, xa∈dom Xa, xb∈dom Xb do
sel(−1) := Ja:b(0);
for a < j < b do
sel(j) := −Cj + Rj(Xj | Xj);
for a < j < b, xj ∈ dom Xj do

for 0 ≤ l ≤ k − βj do ;
bd(l) :=

Ja:j(xa, xj ; l) + Jj:b(xj , xb; k − l − βj);
sel(j) := sel(j) + P (xj | xa, xb) ·maxl bd(j);
σ(j, xj) = argmaxl bd(j);

end
Ja:b(k) = maxa<j<b sel(j);
πa:b(xa, xb; k) = argmaxa<j<b sel(j);
for xj ∈ dom Xπa:b(k) do
σa:b(xa, xb, xj ; k) = σ(πa:b(k), xj);

end
end

end
Algorithm 2 : Computation of optimal conditional plan.

Input : Budgetk, observationsXa = xa, Xb = xb, σ, π
begin

j := πa:b(xa, xb; k);
if j ≥ 0 then

ObserveXj = xj ;
l := σa:b(xa, xb, xj ; k);
Recurse withk := l, a := a, b := j;
Recurse withk := k − l − βj , a := j, b := b;

end
end
Algorithm 3 : Observation selection using conditional plan.

6 Theoretical Limits
Many problems that can be solved efficiently for discrete chain
graphical models can also be efficiently solved for discrete
polytrees. Examples include probabilistic inference and the
most probable explanation (MPE). Surprisingly, we prove that
for the optimization problems discussed in this paper, this gen-
eralization is not possible, unlessP = NP. All proofs in this
section are stated in the Appendix.

In order to solve the optimization problems, we will most
likely have to evaluate the objective function, i.e., the expected
local rewards. Our first result states that this problem is in-
tractable even for discrete polytrees.
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Figure 2: Experimental results.

Theorem 3. The computation of expected local rewards for
discrete polytrees is#P-complete.1

This negative result can be specialized to the conditional en-
tropy, one of the most frequently used reward function to char-
acterize the residual uncertainty in value of information prob-
lems.

Corollary 4. The computation of conditional entropy for dis-
crete polytrees is#P-complete.

Since evaluating local rewards is#P-complete, it can be
suspected that the subset selection problem is at least#P-
hard. We show that it is evenNPPP-complete2, a complexity
class containing problems that are believed to be significantly
harder thanNP or #P complete problems. This result pro-
vides a complexity theoretic classification of value of informa-
tion, a core AI problem.

Theorem 5. Subset Selection isNPPP-complete even for dis-
crete polytrees.

For our running example, this implies that the generalized
problem of optimally selectingk sensors from a network of
correlated sensors is most likely computationally intractable
without resorting to heuristics. A corollary extends the hard-
ness of subset selection to the hardness of conditional plans.

Corollary 6. Computing conditional plans isNPPP-hard
even for discrete polytrees.

7 Experiments
In this section, we evaluate the proposed methods for several
real world data sets. A special focus is on the comparison of
the optimal methods with the greedy heuristic and other heuris-
tic methods for selecting observations, and on how the algo-
rithms can be used for interactive structured classification.

7.1 Temperature time series
The first data set consists of temperature time series collected
from a sensor network deployed at Intel Research Berkeley[4]
as described in our running example. Data was continuously
collected for 19 days, linear interpolation was used in case of
missing samples. The temperature was measured once every

1#P contains problems such as counting the number of satisfying
assignments to a Boolean formula.

2NPPP is natural for AI planning problems[9]. A complete
problem isEMAJSAT , where one has to find an assignment to the
first k variables of a 3CNF formula, such that the formula is satisfied
under the majority of assignments to the remaining variables.

60 minutes, and it was discretized into 10 bins of 2 degrees
Kelvin. To avoid overfitting, we used pseudo countsα = 0.5
when learning the model. Using parameter sharing, we learned
four sets of transition probabilities: from 12 am - 7am, 7 am -
12 pm, 12 pm - 7 pm and 7 pm - 12 am. Combining the data
from three adjacent sensors, we got 53 sample time series.

The goal of this task was to selectk out of 24 time points
during the day, during which sensor readings are most infor-
mative. The experiment was designed to compare the perfor-
mance of the optimal algorithms, the greedy heuristic, and a
uniform spacing heuristic, which distributed thek observations
uniformly over the day. Fig. 2(a) shows the relative improve-
ment of the optimal algorithms and the greedy heuristic over
the uniform spacing heuristic. The performance is measured
in decrease of expected entropy, with zero observations as the
baseline. It can be seen that ifk is less than about the half of
all possible observations, the optimal algorithms decreased the
expected uncertainty by several percent over both heuristics.
The improvement gained by the optimal plan over the subset
selection algorithms appears to become more drastic if a large
number of observations (over half of all possible observations)
is allowed. Furthermore, for a large number of observations,
the optimal subset and the subset selected by the greedy heuris-
tic were almost identical.

7.2 CpG-Island detection
We then studied the bioinformatics problem of finding CpG
islands in DNA sequences. CpG islands are regions in the
genome with a high concentration of the cytosine-guanine se-
quence. These areas are believed to be mainly located around
the promoters of genes, which are frequently expressed in
the cell. In our experiment, we considered the gene loci
HS381K22, AF047825 and AL133174, for which the Gen-
Bank annotation listed three, two and one CpG islands each.
We ran our algorithm on a 50 base window at the beginning
and end of each island, using the transition and emission prob-
abilities from[6] for our Hidden Markov Model, and we used
the sum of margins as reward function.

The goal of this experiment was to locate the beginning and
ending of the CpG islands more precisely by asking experts,
whether or not certain bases belong to the CpG region or not.
Fig. 2(b) shows the mean classification accuracy and mean
margin scores for an increasing number of observations. The
results indicate that, although the expected margin scores are
similar for the optimal algorithm and the greedy heuristic, the
mean classification performance of the optimal algorithm was
still better than the performance of the greedy heuristic.



7.3 Part-of-Speech Tagging
In our third experiment, we investigated the structured classi-
fication task of part-of-speech (POS) tagging[3]. Problem in-
stances are sequences of words (sentences), where each word
is part of an entity (e.g., “United States of America”), and each
entity belongs to one of five categories: Location, Miscella-
neous, Organization, Person or Other. Imagine an application,
where automatic information extraction is guided by an expert:
Our algorithms compute an optimal conditional plan for asking
the expert, trying to optimize classification performance while
requiring as little expert interaction as possible.

We used a conditional random field for the structured clas-
sification task, where each node corresponds to a word, and
the joint distribution is described by node potentials and edge
potentials. The sum of margins was used as reward function.
Measure of classification performance was the F1 score, the
geometric mean of precision and recall. The goal of this ex-
periment was to analyze how the addition of expert labels in-
creases the classification performance, and how the indirect,
decomposing reward function used in our algorithms corre-
sponds to real world classification performance.

Figure 2(c) shows the increase of the mean expected mar-
gin and F1 score for an increasing number of observations,
summarized over ten 50 word sequences. It can be seen that
the classification performance can be effectively enhanced by
optimally incorporating expert labels. Requesting only three
out of 50 labels increased the mean F1 score from by more
than five percent. The following example illustrates this ef-
fect: In one scenario both words of an entity, the sportsman
‘P. Simmons’, were classified incorrectly – ‘P.’ asOther and
‘Simmons’ asMiscellaneous. The first request of the optimal
conditional plan was to label ‘Simmons’. Upon labeling this
word correctly, the word ‘P.’ was automatically labeled cor-
rectly also, resulting in an F1 score of 100 percent.

8 Related Work
Decision Trees[12] popularized the value of information as a
criterion for creating conditional plans. Unfortunately, there
are no guarantees on the performance of this greedy method.
Bayer-Zubek[1] proposed a heuristic method based on the
Markov Decision Process framework. Several researchers[15;
5] suggested myopic, i.e., greedy approaches for selectively
gathering evidence in graphical models. Heckermanet al. [7]
propose a method to compute the maximum expected utility
for specific sets of observations. While their work considers
more general graphical models than this paper, they provide
only large sample guarantees for the evaluation of a given se-
quence of observations, and use a heuristic without guarantees
to select such sequences The subset selection problem as an in-
stance of feature selection is a central issue in machine learn-
ing, with a vast amount of literature (see[10] for a survey).
The problem of choosing observations also has a strong con-
nection to the field of active learning[2] in which the learning
system designs experiments based on its observations.

9 Conclusions
We have described novel efficient algorithms for optimal sub-
set selection and conditional plan computation in chain graph-
ical models, including HMMs. Empirical evaluation indi-
cates that these algorithms can improve upon commonly used

heuristics for decreasing expected uncertainty. Our algorithms
can also effectively enhance performance in interactive struc-
tured classification tasks.

Unfortunately, the optimization problems become in-
tractable for even a slight generalization of chains. We pre-
sented surprising theoretical limits, which indicate that com-
monly used local reward functions, such as conditional en-
tropies, cannot be efficiently computed even in discrete poly-
tree graphical models. We also identified optimization of value
of information as a new class of problems that are intractable
(NPPP-complete) for polytrees.

Our hardness results, along with other recent results for
polytree graphical models, theNP-completeness of maximum
a posteriori assignment[11] andNP-hardness of inference in
conditional linear Gaussian models[8], suggest the possibil-
ity of developing a generalized complexity characterization of
problems that are hard in polytree graphical models.

In light of these theoretical limits for computing optimal
solutions, it is a natural question to ask whether approxima-
tion algorithms with non-trivial performance guarantees can be
found. We are currently focusing our research in this direction.
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Appendix
Proof of Theorem 3. Membership in#P is straightforward.
To show hardness, we use a construction similar to the one
presented in[11] for the maximum a posteriori problem.
Let φ be an instance of#3SAT , where we have to count
the number of assignments toX1, . . . , Xn satisfyingφ. Let
C = {C1, . . . , Cm} be the set of clauses. Now create a
Bayesian network with nodesUi for eachXi, each with uni-
form Bernoulli prior. Add variablesY0, which uniformly varies
over{1, . . . ,m} andY1, . . . , Yn with CPTs defined the follow-
ing way:

Yi | [Yi−1 = j, Ui = ui] ∼

(
0, if j = 0, or Ui = ui

satisfies clauseCj ;
j, otherwise.

In this model,Yn = 0 iff U1, . . . , Un encode a satisfying
assignment ofφ. Let all nodes have zero reward, except for
Yn, which is assigned the following reward:

R(Yn | O = o) =

�
2n, if P (Yn = 0 | O = o) = 1;
0, otherwise.

Since the prior probability of any assignment is2−n, the ex-
pected rewardR(Yn | U1, . . . , Un) is exactly the number of
satisfying assignments toφ.

Proof of Corollary 4. We start from the same construction as
in the proof of Theorem 3, and add an additional random vari-
ableZ after Yn on the chain.Z | Yn is 0 if Yn = 0, and
takes uniformly random values in{0, 1} if Yn 6= 0. Then
H(Z | U = u) is 0 if u is a satisfying assignment, and1
otherwise. HenceH(Z | O) = 1 − K2−n, whereK is the
number of satisfying assignments toφ.

Proof of Theorem 5. Membership follows from Theorem 3.
Let φ be an instance ofEMAJSAT , where we have to find an



instantiation ofX1, . . . , Xn such thatφ(X1, . . . , X2n) is true
for the majority of assignments toXn+1, . . . , X2n. Let C =
{C1, . . . , Cm} be the set of 3CNF clauses. Create the Bayesian
network shown in Fig. 3, with nodesUi, each having a uniform
Bernoulli prior. Add bivariate variablesYi = (seli, pari), 0 ≤
i ≤ 2n, whereseli takes values in{0, . . . ,m} and pari is
a parity bit. The CPTs forYi are defined as:sel0 uniformly
varies over{1, . . . ,m}, par0 = 0, and forY1, . . . , Y2n:

seli | [seli−1 = j, Ui = ui] ∼
�

0, if j = 0, or ui satisfiesCj ;
j, otherwise;

pari | [pari−1 = bi−1, Ui] ∼ bi−1 ⊕ Ui,

where⊕ denotes the parity (XOR) operator.
We now add variablesZT

i andZF
i for 1 ≤ i ≤ n and let

ZT
i | [Ui = ui] ∼

{
I({0, 1}), if ui = 1;
0, otherwise;

whereI denotes the uniform distribution. Similarly, let

ZF
i | [Ui = ui] ∼

{
I({0, 1}), if ui = 0;
0, otherwise.

Intuitively, ZT
i = 1 guarantees us thatUi = 1, whereasZT

i =
0 leaves us uncertain aboutUi. The case ofZF

i is symmetric.
We use the subset selection algorithm to choose theZis that

encode the solution toEMAJSAT . If ZT
i is chosen, it will

indicate thatXi should set to true, similarlyZF
i indicates a

false assignment toXi. The parity function is going to be used
to ensure that exactly one of{ZT

i , ZF
i } is observed for eachi.

We first assign penalties∞ to all nodes exceptZT
i , ZF

i for
1 ≤ i ≤ n, andUj for n + 1 ≤ j ≤ 2n, which are assigned
zero penalty. Let all nodes have zero reward, except forY2n,
which is assigned the following reward:

R(Y2n | O = o) =


4n, if P (sel2n = 0 | O = o) = 1 and

[P (par2n = 1 | O = o) = 1 or
P (par2n = 0 | O = o) = 1];

0, otherwise.

Note thatsel2n = 0 with probability 1 iff U1, . . . , U2n encode
a satisfying assignment ofφ, as in the proof of Theorem 3.
Furthermore, we get positive reward only if we are both cer-
tain thatsel2n = 0, i.e., the chosen observation set must con-
tain a proof thatφ is satisfied, and we are certain aboutpar2n.
The parity certainty will only occur if we are certain about the
assignmentU1, . . . , U2n. It is only possible to infer the value
of eachUi with certainty by observing one ofUi, Z

T
i or ZF

i .
Since, fori = 1, . . . , n, the cost of observingUi is ∞, to re-
ceive any reward we must observe at least one ofZT

i or ZF
i .

Assume that we compute the optimal subsetÔ for budget2n,
then we can only receive positive reward by observing exactly
one ofZT

i or ZF
i .

We interpret the selection ofZT
i andZF

i as an assignment
to the firstn variables ofEMAJSAT . Let R̂ = R(Y2n | Ô).
We claim thatφ ∈ EMAJSAT if and only if R̂ > 0.5. First
let φ ∈ EMAJSAT , with assignmentx1, . . . , xn to the first
n variables. Now addUn+1, . . . , U2n to O and addZT

i to O
iff xi = 1 andZF

i to O iff xi = 0. This selection guarantees
R̂ > 0.5.

Now assumeR̂ > 0.5. We call an assignment to
U1, . . . , U2n consistentif for any 1 ≤ i ≤ n, if ZT

i ∈ Ô,

Figure 3:Graphical model used in proof of Theorem 6.

thenUi = 1 and if ZF
i ∈ Ô thenUi = 0. For any consis-

tent assignment, the chance that the observationsZi prove the
consistency is2−n. HenceR̂ > 0.5 implies that the major-
ity of all provably consistent assignments satisfyφ and hence
φ ∈ EMAJSAT . This proves that subset selection isNPPP

complete.

Proof of Corollary 6. The construction in the proof of Theo-
rem 5 also proves that computing conditional plans isNPPP-
hard, since, in this instance, any plan with positive reward must
observe allUn+1, . . . , U2n and one each of theZ1, . . . , Zn, to
satisfy the parity condition. In this case, the order of selec-
tion is irrelevant, and, hence, the conditional plan effectively
performs subset selection.

References
[1] V. Bayer-Zubek. Learning diagnostic policies from examples by

systematic search. InUAI, 2004.
[2] D. A. Cohn, Z. Gharamani, and M. I. Jordan. Active learning

with statistical models.J AI Research, 4:129–145, 1996.
[3] CoNLL. Conference on computational natural language learn-

ing shared task. http://cnts.uia.ac.be/conll2003/ner/, 2003.
[4] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and

W. Hong. Model-driven data acquisition in sensor networks.
In VLDB, 2004.

[5] S. Dittmer and F. Jensen. Myopic value of information in influ-
ence diagrams. InUAI, pages 142–149, San Francisco, 1997.

[6] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison.Biolog-
ical Sequence Analysis : Probabilistic Models of Proteins and
Nucleic Acids. Cambridge University Press, 1999.

[7] D. Heckerman, E. Horvitz, and B. Middleton. An approximate
nonmyopic computation for value of information.IEEE Trans.
Pattern Analysis and Machine Intelligence, 15:292–298, 1993.

[8] U. Lerner and R. Parr. Inference in hybrid networks: Theoretical
limits and practical algorithms. InUAI, 2001.

[9] M. Littman, J. Goldsmith, and M. Mundhenk. The computa-
tional complexity of probabilistic planning.Journal of Artificial
Intelligence Research, 9:1–36, 1998.

[10] L. Molina, L. Belanche, and A. Nebot. Feature selection algo-
rithms: A survey and experimental evaluation. InICDM, 2002.

[11] J. D. Park and A. Darwiche. Complexity results and approx-
imation strategies for map explanations.Journal of Aritificial
Intelligence Research, 21:101–133, February 2004.

[12] J. R. Quinlan. Induction of decision trees.Machine Learning,
1:81–106, 1986.

[13] T. Scheffer, C. Decomain, and S. Wrobel. Active learning of
partially hidden markov models for information extraction. In
ECML/PKDD Workshop on Instance Selection, 2001.

[14] P. D. Turney. Cost-sensitive classification: Empirical evaluation
of a hybrid genetic decision tree induction algorithm.Journal
of Artificial Intelligence Research, 2:369–409, 1995.

[15] L. van der Gaag and M. Wessels. Selective evidence gathering
for diagnostic belief networks.AISB Quart., 86:23–34, 1993.


