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Abstract

Many real-world decision making tasks require us to
choose among several expensive observations. In a sen-
sor network, for example, it is important to select the sub-
set of sensors that is expected to provide the strongest re-
duction in uncertainty. It has been general practice to use
heuristic-guided procedures for selecting observations. In
this paper, we present the first efficient optimal algorithms
for selecting observations for a class of graphical models
containing Hidden Markov Models (HMMs). We provide
results for both selecting the optimal subset of observa-
tions, and for obtaining an optimal conditional observation
plan. For both problems, we present algorithms for the fil-
tering case, where only observations made in the past are
taken into account, and the smoothing case, where all ob-
servations are utilized. Furthermore we prove a surpris-
ing result: In most graphical models tasks, if one designs
an efficient algorithm for chain graphs, such as HMMs,
this procedure can be generalized to polytrees. We prove
that the value of information problemMPF¥ -hard even

for discrete polytrees. It also follows from our results that
even computing conditional entropies, which are widely
used to measure value of information, igtP-complete
problem on polytrees. Finally, we demonstrate the effec-
tiveness of our approach on several real-world datasets.
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guarantees. In this paper, we present efficient algorithms,
which guarantee optimal nonmyopic value of information
in chain graphical models such as Hidden Markov Models
(HMMs). We address two settingsubset selectignrwhere

the optimal subset of observations is obtained in an open-loop
fashion, andconditional plans a closed-loop plan where the
observation strategy depends on the actual value of the ob-
served variablesc(f. Fig. 1(a)). To our knowledge, these are
the first optimal and efficient algorithms for these tasks for this
class of graphical models. For both settings, we address the
filtering and thesmoothingversions: Filtering is important in
online decision making, where our decisions can only utilize
observations made in the past. Smoothing arises for example
in structured classification tasks, where there is no temporal
dimension in the data, and hence all observations can be taken
into account. We evaluate our algorithms empirically on three
real-world datasets, and also show that they are well-suited for
interactive classification of sequential data.

Most problems in graphical models, such as probabilistic in-
ference and the most probable explanation, that can be solved
efficiently for chain-structured graphs, can also be solved effi-
ciently for polytrees. We prove that the problem of maximizing
value of information iSNPF P -hard even for discrete polytree
graphical models, giving a complexity theoretic classification
of a core artificial intelligence problemNP¥F-hard prob-
lems are believed to be significantly harder tidR-complete
or even#P-complete problems commonly arising in the con-
text of graphical models. As a special case, we also prove that

In probabilistic reasoning, where one can choose among s&@6mputing conditional entropies §P-complete even in the
eral possible but expensive observations, it is often a centrghse of discrete polytrees. This is a surprising result about a

issue to decide which variables to observe in order to most gheasure of uncertainty that is frequently used in practice.
fectively increase the expected utility. In a medical expert sys-

tem[14], for example, multiple tests are available, and eac
test has a different cost. In such systems, it is thus important

2) Optimization criteria

decide which tests to perform in order to become most certaln order to maximize value of information, our objective func-
about the patient’s condition, at a minimum cost. Occasionallyions should depend on probability distributions over variables.

the cost of testing can even exceed the value of information fdet S = { X1, ..

any possible outcome.

., X, } be a set of discrete random variables.
We consider a class @dcal rewardfunctionsR, which are de-

The following running example motivates our research antined on the marginal probability distributions of the variables.
is empirically evaluated in Section 7. Consider a temperaturghis class has the computational advantage that local rewards
monitoring task, where wireless temperature sensors are disn be evaluated using probabilistic inference techniques. The
tributed across a building. The task is to become most certaiatal reward will then be the sum of all local rewards.
about the temperature distribution, whilst minimizing energy Let O be a subset of. ThenP(X; | O = o) denotes the
expenditure, a critically constrained resoulék marginal distribution of variableéX; conditioned on observa-

Many researchers have suggested the use of myopionso. For classification purposes, it can be more appropriate
(greedy) approaches to select observat{d®s 15; 5; 1. Un-  to consider the max-marginal®™**(X; = z; | O = o) =
fortunately, this heuristic does not provide any performanceaxy P(X = x, X; = z; | O = o), thatis, forX; setto value
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x;, the probability of the most probable assignment to all other Rew(1:4) Rew(4:7)
random variables conditioned on the observatiariBhelocal » Rew(1:7) = Rew(1:4)+Ry(X,/X,)-c(X,)+Rew(4:7)
reward R; is a functional on the probability distributioR or (&) Example conditional plan. (b) Decomposition of the reward.

pPmer over X;. We write Figure 1:Example, and decomposing reward idea
a The set of random variable$ = {X;,...,X,} forms a
R;j(X;10) = ZP(O = 0)R;(P(X; | O =0)) chain graphical model (a chain), X; is conditionally inde-

pendent ofX, given X; whenever < j < k. We can assume

as an abbreviation to indicaexpected local rewargsvhere that the joint distribution is specified by the pri&Y(X;) and
the expectation is taken over all assignments the observa- conditional probability distribution®(X; [ X;). The time
tionsO. Important measures for value of information include:Series model for the temperature measured by one sensor in
our example can be formulated as a chain graphical model.
e Entropy. Ifwe setR;(P(X; | 0)) = —H(X; | O) =

S P(z;,0)log P(z; | o), the objective in the opti- Chain graphical models originating from time series have
mi;é{{)ion pjrzjblem beccj)mes ,to minimize the sum of resioladditional, specific properties: In a system for online decision

ual entronies. We choose this reward function in our runEnaking, only observations from the past and present time steps
; pI€s. ) can be taken into account, not observations which will be made
ning example to measure the uncertainty about the te

perature distribution T the future. Thi§ isin genera! referred to asjittering prob-

e Maximum expected .utility The concept of local reward lem. In this setting, the notatioR(X; | O) will refer to the
functions also includes thé concent of utility nodes in indlstr|but|on of X; conditional on observations @ prior to and
unctions P y Y including timei. For structured classification problems as dis-
fluence diagrams. IV; : A; x dom X; — R is a utility

function Mapping an actionm € A. and an outcome & cussed in Section 7, in general observations made anywhere in
ppINg J = the chain must be taken into account. This situation is usually
dom X; to a reward, then thenaximum expected utility

I . referred to as themoothingproblem. We will provide algo-
principle states that actions should be selected as to Maxsk s both for filtering and smoothin
imize EU;(a | 0) = Y, P(z | 0)U;(a,z). The more ' '9 ning.
certain we are aboux',, the more economica”y we can We will now describe the key |nS|ght, which allows for ef-
choose our action. Hénce we can define our local rewaififient optimization in chains. Consider a set of observations
functionR(P(X; | 0)) = 3, P(o) max, EUj(a | o). O C S. If the j variable is observed, i.eX; € O, then the

e Margin. We can also consider the margin of confi-local reward is simplyR(X; | O) = R(X; | X;). Now
dence: R;(P™(X; | 0)) = 3, P(o)[P™ (x* | considerX, ¢ O, and letO; be the subset of) contain-
0)— P (7 | 0)], wherez* = argm(‘;x P (g ‘]O) ing the closest ancestor (and for the smoothing problem also
_ ’ ’ e ’L the closest descendant) of; in O. The conditional inde-

andz = argmax, .. P (z; | o), which describes

, : %endence property of the graphical model implies that, given
the margin between the most likely outcome and the clogy . . is independent of the rest of the observed variables,

est runner up. This reward function is very useful forj & P(X; | O) = P(X; | O;). Thus, it follows that

structured classification purposes, as shown in Sec. 7. R(}(j 1 0) = R(X; | 0;).

These examples demonstrate the generality of our notion of lo- These observations imply that the expected reward of some
cal reward. One can generalize the algorithms even more, e.ggt of observations decomposes along the chain. For simplicity
to measure the total entropy or the margin between the mast notation, we add two independent dummy variabigsand
probable explanation and its runner up. Details are omitte§f, ., whereR, = Cy = ) = Rut1 = Cni1 = Bug1 = 0.
here due to space limitations. _ _ Let O = {X,,,...,X, ..} wherei, < i;4y, ip = 0 and

We also want to capture the constraint that observations are .| — p, + 1. Using this notation, the total rewargl(O) =
expensive. This can mean that each observaligrhas an - R;(X; | O) for the smoothing case is given by:
associated positiveenalty C; that effectively decreases the ~
reward. In our example, we might be interested in trading

off accuracy with sensing energy expenditure. Alternatively,™ fopr =1
it is also possible to define laudgetB for selecting observa- R; (Xi, | Xi,) —Cs, + Z R;j(X; | Xi,, Xi, 1)
tions, where each one is associated with an integst 3;.  v=0 j=iy+1

Here, we want to select observations whose sum cost is within

the budg_et, but these costs do not decrease the reward. IH‘fiItering settings, we simply replacg; (X; | X, Xi,,,)
our running exar_nple, the.sensors could be powered by S(.)I er(Xj | X;,). Figure 1(b) illustrates this decomposition.
power, and regain a certain amount of energy per day, whic ) v ) )
allows a certain amount of sensing. Our formulation of the Consider now a Hidden Markov Model unrolled fortime
optimization problems allows both for penalties and budgetSteps, i.e..S can be partitioned into the hidden variables

To simplify notation we also writ€?(0) = >- ., C; and l{_ﬁ\(ﬂll\»/l . ahXSL/} and éhe emcissi(én r:/ariab_|et[)§1§7f---7ﬂ}-h In
3(0) = ijeo 5, to extendC and to sets. s, theY; are observed and the variabl¥s form a chain.

In many applications, some of which are discussed in Sec-
. tion 7, we can observe some of the hidden variables, e.g., by
3 Decomposing Rewards asking an expert, in addition to observing the emission vari-
In the following Sections 4 and 5, we present efficient algoables. In these cases, the problem of selecting expert labels
rithms for two problems of optimizing value of information in also belongs to the class of chain graphical models addressed
the class of chain graphical models. by this paper.



4 Subset Selection

In the subset selectioproblem, we want to find a most in-
formative subset of the variables to obseiweadvancei.e.,

before any observations are made. In our running example, \

would, before deploying the sensors, identiffme points that
are expected to provide the most informative sensor readin
according to our model.

First, define the objective functiah on subsets of by

n

> Ri(X;]|0) - C(0).

J=1

L(O) 4.1)

Thesubset selectioproblem is to find the optimal subset

O* = argmax L(O)

0CS,3(0)<B

maximizing the sum of expected local rewards minus th

penalties, subject to the constraint that the total cost must n

exceed the budges.
We solve this optimization problem using a dynamic pro

gramming algorithm, where the chain is broken into sub-chains

using the insight from Sec. 3. Consider a sub-chain from var
able X, to X;,. We defineL,.;(k) to represent the expected
total reward for the sub-chaii,, ..., X;, whereX, (and X,

in the smoothing case) is observed, and with a budget level
k. More formally:

b—1
La:w(k) = oo v_;LlRJ’(Xj |OU{Xa}) —C(0),
so)<k 77
for the filtering version, and

b—1
= max Rj(X; | OU{X,, Xp})—C(O),
ocix sy 2 Rils | OU{Xe, Xi))=C(0)
B(O)<k

Lo (k)

for the smoothing version.  Note thak.,1(B)
maxo.s0)<p L(O), as in Eq. (4.1), i.e., by computing the

values forL,.;(k), we compute the maximum expected total

reward for the entire chain.
We can computé., ., (k) using dynamic programming. The
base case is simply:

b—1
La:b(o) = Z Rj(Xj | Xa)a

j=a+1
for filtering, and
b—1
La(0) = Y Ri(X; | Xay Xp),
j=a+1

for smoothing. The recursion fat,., (k) has two cases: we
can choose not to spend any more of the budget, reaching
base case, or we can break the chain into two sub-chains,
lecting the optimal observatiok;, wherea < j < b:

max

La:b(k) :maX{La:b(O)’j:a<j<b,ﬁj§k{_cj+
+ Rj(Xj | Xj) + La:j(0) + Ly (k — B5)}}

Input: Budget, rewardsR;, costs3; and penaltieg’;
Output: Optimal selectiorO of observation times
begin
ve for0<a<b<n+1do computeL,.(0);
for k=1to B do
for0<a<b<n+1do
sel(—1) := L4:(0);
forj=a+1tob—1do sel(j
—Cj + R;j(X; | Xj) + Lay(0)

0s

)=
+ Lju(k = B5);

a:b k)= maXeg<j<b sel(]),
Aan(k) = argmax, < j<p sel(j);
end
end
a:=0b=n+1k:=B;0 :=0;
repeat
j:: Aa:b(k);
e if j>0then O:=0U{X,}; k:=Fk—f;;
ot until j = —1;

end

Algorithm 1: Optimal subset selection.
|_
since the subset problem is open-loop and the order of the ob-
servations is irrelevant, we only need to consider split points
here the first sub-chain receives zero budget.
A pseudo code implementation is given in Alg. 1. If we do
not consider different costs$, we would simply choosg; =1
for all variables and computg,.,(N). Alg. 1 uses the quanti-
ties A, ., to recover the optimal subset by tracing the maximal
values occurring in the dynamic programming equations. Us-
ing an induction proof, we obtain:

Theorem 1. The dynamic programming algorithm described
above computes the optimal subset with budsgjét (én3 +
O(n?)) B evaluations of expected local rewards. O

If the variablesX; are continuous, our algorithm is still ap-

plicable when the integrations and inferences necessary for
computing the expected rewards can be performed efficiently.

5 Conditional Plan

In the conditional planproblem, we want to compute an opti-
mal querying policy: We sequentially observe a variable, pay

the penalty, and depending on the observed values, select the

next query as long as our budget suffices. The objective is
to find the plan with the highest expected reward, where, for
each possible sequence of observations, the budgstnot

exceeded. For filtering, we can only select observations in the
future, whereas in the smoothing case, the next observation can
be anywhere in the chain. In our running example, the filter-
ing algorithm would be most appropriate: The sensors would
sequentially follow the conditional plan, deciding on the most
i éormative times to sense based on the previous observations.

. 1(a) shows an example of such a conditional plan.
The formal definition of the objective functios is given
recursively. The base case considers the exhausted budget:

J(O=00)= > R;(X;|0=0)-C(O).

X;eSs

At first, it may seem that this recursion should consider the opFhe recursion] (O = o; k), represents the maximum expected
timal split of the budget between the two sub-chains. Howevereward of the conditional plan for the chain whe&pe= o has



been observed and the budget is limited to Theorem 2. The algorithm for smoothing plresented above
o o computes an optimal conditional plandA- B2-(:n3+0(n?))
J(O = 0;k) = max{J(O = 0;0), ?}%}é{ evaluations of local rewards, wheris the maximum domain
o _ e _ size of the random variableX,, . . ., X,,. In the filtering case,
Y P(X;=y[0=0)J(0=0X;=y:k—0)}} or if no budget is used, the optimal plan can be computed us-
¥ ingd®- B+ (3n®+ O(n?)) or &* - (in* + O(n?)) evaluations
The optimal plan has rewatfi§); B). respectively. O

_We propose a dynamic programming algorithm for obtain- hg taster computation for the no budget case is obtained by
ing the optimal conditional plan that is similar to the SUbseBbserving that we do not require the third maximum computa-

algorithm presented in Sec. 4. Again, we utilize the decomp@on, which distributes the budget into the sub-chains.
sition of rewards described in Section 3. The difference here

is that the observation selection and budget allocation now degﬁftdf%d%er;g I E%Vr‘]’girt?sr}fél' C%‘T’ﬁtsﬁf and ;;enalnegjj
pend on the actual values of the observations. put: Op Plaa:b, Ta:b

We again consider sub-chaif,, ..., X;. The base case | Pegin
deals with the zero budget setting: for 0 <a<b<n+1,2, € dom Xg, 2, € dom X;, do
computeJ,., (x4, xp; 0);
1 for k = 1to B do
Jan(a; 0) = Z Rj(Xj | Xa = xa), for 0<a<b<n+1,z,€dom X,, 2, €dom X; do
J=att sel(—1) := Juu(0);
for filtering, and for a <j<bdo
- fsel(]) = —ng + chng |XXJd);
N Ty _ . Oora<y<bo,xr; € domdX,;do
Jaib(Ta, 25 0) = _ZIR](X] | Xo =20, Xp = ), for 0 < 1 sic—ﬁj 4o J
et bd(l) ==
for smoothing. The recursion defined,.,(zq; k) Jaij(Ta, i3 1) + Jjp(zj, zes k — 1 — B5);
(Ja:p(za, zp; k) for smoothing), the expected reward for sel(j) := sel(j) + P(x; | za,xs) - max; bd(j);
the problem restricted to the sub-chak,,..., X; condi- o(j,zj) = argmax, bd(j);
tioned on the values ok, (and X, for smoothing), and with end
budget limited byk. To compute this quantity, we again iterate Ja (k) = max,;<p sel(§);
through possible split pointg, such thata < j < b. Here Wa;b(fayxb;k) = argmax,__ ; _, sel(j);

we observe a notable difference between the filtering and
the smoothing case. For smoothing, we now must consider
all possible splits of the budget between the two resulting

for x; € dom X, (1) do
Ua:b(xaa-rbaxj; k) = O(Wa;b(k),l‘j);

sub-chains, since an observation at tijn@ight require us to endend
make an additional, earlier observation: end
Jaw(za, zo; k) = max{Ja:(2a, 75 0), algfi(b{—cj'f‘ Algorithm 2 : Computation of optimal conditional plan.
Input : Budgetk, observationsX, = x,, Xy = zp, 0, 7
ZP(Xj =z | Xa = e, Xp = x){R; (X, | X;)+ bepgln 9 e @ b b
I j = Wa:b(xaamb;k);
otmax | [Jaij (wa, 25 0) + Jjw (g, sk — L= B;)1}}}- if j > 0then
- ObserveX; = z;;
Looking back in time is not possible in the filtering case, hence l:=04p(Ta, T, xj; k);
the recursion simplifies to Recurse withk :=1, a :=a, b := j;
Tu(was k) = max{Jup(2a:0), max {—Cj+ Recurse withk :=k — 1 — 3;,a :=j,b:=1b;
a<j<b:B;<k dend
en

P(X;,=z; | Xoa =x){R; (X, | X;)+ ] _ _ _ _
; (X =2, | ) { By (X5 | X) Algorithm 3 Observation selection using conditional plan.
J

Jaii (a3 0) + Jin(@si b = Bi) 6 Theoretical Limits
The optimal reward is obtained b¥., 1 (0; B) = J(0; B).
Alg. 5 presents a pseudo code implementation for the smoot
ing version — the filtering case is a straight-forward modifica:
tion. The plan itself is compactly encoded in the quantities
which determines the next variable to query and,, which

any problems that can be solved efficiently for discrete chain
raphical models can also be efficiently solved for discrete
polytrees. Examples include probabilistic inference and the
most probable explanation (MPE). Surprisingly, we prove that

. X @01 for the optimization problems discussed in this paper, this gen-
determines the allocation of the budget. Considering the €x4ization is not possible, unleBs= NP. All proofs in this
ponential number of possible sequences of observations, itd8ion are stated in the Appendix.

remarkable that the optimal plan can even be represented usy, order to solve the optimization problems, we will most

ing only polynomial space. Alg. 5 indicates how the computeq oy have to evaluate the objective function, i.e., the expected
plan can be executed. The procedure is recursive, requiring t

al rewards. Our first result states that this problem is in-
parameters := 0, z, := 1,b:=n+1,z, := 1 andk := B P

- ® . . ; tractable even for discrete polytrees.
for the initial call. Again, by induction, we obtain: poly
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Figure 2: Experimental results.

Theorem 3. The computation of expected local rewards for60 minutes, and it was discretized into 10 bins of 2 degrees
discrete polytrees ig-P-complete: [0 Kelvin. To avoid overfitting, we used pseudo couats= 0.5

This negative result can be specialized to the conditional eithen learning the model. Using parameter sharing, we learned
tropy, one of the most frequently used reward function to chafOur Sets of transition probabilities: from 12 am - 7am, 7 am -

acterize the residual uncertainty in value of information prob2 Pm, 12 pm - 7 pm and 7 pm - 12 am. Combining the data
lems. from three adjacent sensors, we got 53 sample time series.

. . . The goal of this task was to selefetout of 24 time points
Corollary 4. The computation of conditional entropy for d's'during the day, during which sensor readings are most infor-
crete polytrees istP-complete. U mative. The experiment was designed to compare the perfor-
Since evaluating local rewards #P-complete, it can be mance of the optimal algorithms, the greedy heuristic, and a
suspected that the subset selection problem is at &5t uniform spacing heuristic, which distributed thebservations
hard. We show that it is eveNPFF-completé, a complexity uniformly over the day. Fig. 2(a) shows the relative improve-
class containing problems that are believed to be significantipent of the optimal algorithms and the greedy heuristic over
harder tharlNP or #P complete problems. This result pro- the uniform spacing heuristic. The performance is measured
vides a complexity theoretic classification of value of informain decrease of expected entropy, with zero observations as the
tion, a core Al problem. baseline. It can be seen thatkifis less than about the half of
. PP . all possible observations, the optimal algorithms decreased the
Ig?grsg?yﬁéigbset Selection NP -complete even forgls- expected uncertainty by several percent over both heuristics.
' The improvement gained by the optimal plan over the subset
For our running example, this implies that the generalizedelection algorithms appears to become more drastic if a large
problem of optimally selecting: sensors from a network of number of observations (over half of all possible observations)
correlated sensors is most likely computationally intractablg allowed. Furthermore, for a large number of observations,

without resorting to heuristics. A corollary extends the hardthe optimal subset and the subset selected by the greedy heuris-
ness of subset selection to the hardness of conditional planstic were almost identical.

Corollary 6. Computing conditional plans i&NPF¥-hard .
even for discrete polytrees. o 72 CpG—Is.Iand detggtlon . o

We then studied the bioinformatics problem of finding CpG
7 Experiments islands in DNA sequences. CpG islands are regions in the

. . nome with a high concentration of the cytosine-guanine se-
In this section, we evaluate the proposed methods for seve%‘i g y g

real quld data sets. A special focus is Qn_the Comparison. e promoters of genes, which are frequently expressed in
the optimal methods with the greedy heuristic and other heunﬁﬁe cell. In our experiment, we considered the gene loci

tic methods for selecting observations, and on how the alg(P—IS381K22 AF047825 and AL133174. for which the Gen-
rithms can be used for interactive structured classification. Bank annoiation listed three. two and O’ne CpG islands each.
7.1 Temperature time series We ran our algorithm on a 50 base window at the beginning

d end of each island, using the transition and emission prob-

, . . . a
The first data set consists of temperature time series Cc’”eCtﬁailities from[6] for our Hidden Markov Model, and we used
from a sensor network deployed at Intel Research Beri{dley he sum of margins as reward function. '

as described in our running example. Data was continuous‘y The goal of this experiment was to locate the beginning and

collected for 19 days, linear interpolation was used in case %fnding of the CpG islands more precisely by asking experts,

missing samples. The temperature was measured once eVii¥ather or not certain bases belong to the CpG region or not.

4P contains problems such as counting the number of satisfyin 9. Z(b) shows the mean C_IaSS|f|cat|0n accuracy a_lnd mean
assignments to a Boolean formula. argin scores for an increasing number of observations. The

2NPPP s natural for Al planning problemfS]. A complete esults indicate that, although the expected margin scores are
problem isEM AJSAT, where one has to find an assignment to thesimilar for the optimal algorithm and the greedy heuristic, the
first k variables of a 3CNF formula, such that the formula is satisfiedhean classification performance of the optimal algorithm was
under the majority of assignments to the remaining variables. still better than the performance of the greedy heuristic.

ence. These areas are believed to be mainly located around



7.3 Part-of-Speech Tagging heuristics for decreasing expected uncertainty. Our algorithms
In our third experiment, we investigated the structured class¢an also effectively enhance performance in interactive struc-
fication task of part-of-speech (POS) taggl8y Problem in- tured classification tasks. .
stances are sequences of words (sentences), where each woldnfortunately, the optimization problems become in-
is part of an entity (e.g., “United States of America”), and eackactable for even a slight generalization of chains. We pre-
entity belongs to one of five categories: Location, Miscellasented surprising theoretical limits, which indicate that com-
neous, Organization, Person or Other. Imagine an applicatiomonly used local reward functions, such as conditional en-
where automatic information extraction is guided by an expertfopies, cannot be efficiently computed even in discrete poly-
Our algorithms compute an optimal conditional plan for askindree graphical models. We also identified optimization of value
the expert, trying to optimize classification performance whil@f information as a new class of problems that are intractable
requiring as little expert interaction as possible. (NPFPP_complete) for polytrees.

We used a conditional random field for the structured clas- Our hardness results, along with other recent results for
sification task, where each node corresponds to a word, apdlytree graphical models, tié¢P-completeness of maximum
the joint distribution is described by node potentials and edge posteriori assignmeifit1] andNP-hardness of inference in
potentials. The sum of margins was used as reward functioponditional linear Gaussian moddB], suggest the possibil-
Measure of classification performance was the F1 score, tlity of developing a generalized complexity characterization of
geometric mean of precision and recall. The goal of this exproblems that are hard in polytree graphical models.
periment was to analyze how the addition of expert labels in- In light of these theoretical limits for computing optimal
creases the classification performance, and how the indiregglutions, it is a natural question to ask whether approxima-
decomposing reward function used in our algorithms corrdion algorithms with non-trivial performance guarantees can be
sponds to real world classification performance. found. We are currently focusing our research in this direction.

_Figure 2(c) shows the increase of the mean expected mar-acknowledgements. We would like to thank Ben Taskar
gin and F1 score for an increasing number of observationg,, providing the part-of-speech tagging model, and Reuters
summarized over ten 50 word sequences. It can be seen th@t making their news archive available. We would also like

the classification performance can be effectively enhanced By thank Brigham Anderson and Andrew Moore for helpful
optimally incorporating expert labels. Requesting only thregymments and discussions.

out of 50 labels increased the mean F1 score from by more ]
than five percent. The following example illustrates this efAppendix

fect: In one scenario both words of an entity, the sportsmapyoof of Theorem 3. Membership in#P is straightforward.

‘P. Simmons’, were classified incorrectly — ‘P @herand  To show hardness, we use a construction similar to the one
‘Simmons’ asMiscellaneous The first request of the optimal presented in[11] for the maximum a posteriori problem.
conditional plan was to label ‘Simmons’. Upon labeling thisLet ¢ be an instance of##3SAT, where we have to count

word correctly, the word ‘P.” was automatically labeled corthe number of assignments 10,, ..., X,, satisfyinge. Let

rectly also, resulting in an F1 score of 100 percent. C = {Ci,...,Cn} be the set of clauses. Now create a
Bayesian network with nodds; for eachX;, each with uni-

8 Related Work form Bernoulli prior. Add variable¥(, which uniformly varies

o ) ) ) over{l,...,m}andYy,...,Y, with CPTs defined the follow-
Decision Tree$12] popularized the value of information as ajng way:

criterion for creating conditional plans. Unfortunately, there
are no guarantees on the performance of this greedy method.
Bayer-Zubek[1] proposed a heuristic method based on the
Markov Decision Process framework. Several researdiérs

5] suggested myopic, i.e., greedy approaches for selectivelyin this model,Y,, = 0 iff Uy,...,U, encode a satisfying
gathering evidence in graphical models. Heckermgal. [7]  assignment of). Let all nodes have zero reward, except for
propose a method to compute the maximum expected utilifyi,,, which is assigned the following reward:

for specific sets of observations. While their work considers no i

more general graphical models than this paper, they provide R(Y, | O = o) = { 3 : gtfe(g/v\ﬁ; 0]0=0)=1

only large sample guarantees for the evaluation of a given se- ' '

quence of observations, and use a heuristic without guarantegsnce the prior probability of any assignmen®is®, the ex-

to select such sequences The subset selection problem as arpicted rewardk(Y,, | Uy, ..., U, ) is exactly the number of
stance of feature selection is a central issue in machine leargytisfying assignments ta O

ing, with a vast amount of literature (s¢&0l for a survey). _
The problem of choosing observations also has a strong corroof of Corollary 4. We start from the same construction as
nection to the field of active learnirfg] in which the learning in the proof of Theorem 3, and add an additional random vari-

0, |fj:O,0rUZ:uz
Y| Yic1 =5,Ui = ui] ~ { satisfies claus€’;;
j, otherwise.

system designs experiments based on its observations. able Z afterY,, on the chain.Z | Y, is 0 if ¥;, = 0, and
takes uniformly random values 0,1} if ¥,, # 0. Then
9 Conclusions H(Z | U = u)is0if u is a satisfying assignment, ard

potherwise. Hencel(Z | O) = 1 — K27, whereK is the

We have described novel efficient algorithms for optimal su ﬁl_umber of satisfying assignmentsdo R

set selection and conditional plan computation in chain grap
ical models, including HMMs. Empirical evaluation indi- Proof of Theorem 5. Membership follows from Theorem 3.
cates that these algorithms can improve upon commonly usket ¢ be an instance df M AJ S AT, where we have to find an



instantiation ofX, ..., X,, such that(X,, ..
f{or the majority of assignments t&,,,1, ...
Cy,..
network shown in Fig. 3, with nodd$;, each having a uniform
Bernoulli prior. Add bivariate variableg; = (sel;, par;), 0 <
i < 2n, wheresel; takes values if{0,...,m} andpar; is
a parity bit. The CPTs fol; are defined assel, uniformly
varies ovef{1,...,m}, parg = 0, and forYy, ..., Y3,:

0, ifj =0, oru; satisfie’;;
j, otherwise;
par; | [pari—1 = bi—1,Us] ~ bi—1 ® Uj,

whered denotes the parity (XOI?E)
We now add variableg? andZ!

., Xoy,) is true
LetC =

s “A2n-

seli ‘ [selFl = j, U»; = ui] ~ {

operator.
7 forl <i<nandlet

Z7 | [Ui = uj] ~ { g,({(ll}),

whereZ denotes the uniform distribution. Similarly, let

otherwise.
Intuitively, ZI' = 1 guarantees us thaf; = 1, whereasZ! =
0 leaves us uncertain abolit. The case o/ is symmetric.
We use the subset selection algorithm to choos&/teehat
encode the solution t&! M AJSAT. If ZT is chosen, it will
indicate thatX; should set to true, similarI)ZZ-F indicates a

otherwise;

false assignment t&;. The parity function is going to be used

to ensure that exactly one ¢!, ZI'} is observed for each
We first assign penalties to all nodes except?’, Z[" for

1 <i < n,andU; forn+1 < j < 2n, which are assigned

zero penalty. Let all nodes have zero reward, except3iqr

which is assigned the following reward:
4", if P(selap, =0] O =0)=1and
_ _ [P(par27:,:1|020):10r
R(Yon | O =0) = P(pare, =00 =0) =1];
0, otherwise.
Note thatsely,, = 0 with probability 1 iff Uy, .. ., Us, encode

., C } be the set of 3CNF clauses. Create the Bayesian

Figure 3:Graphical model used in proof of Theorem 6.

thenU; = 1 and if ZF" € O thenU; = 0. For any consis-
tent assignment, the chance that the observatigmsove the

consistency i2~". HenceR > 0.5 implies that the major-
ity of all provably consistent assignments satigfgnd hence

¢ € EMAJSAT. This proves that subset selectioN®**
complete. O

Proof of Corollary 6. The construction in the proof of Theo-
rem 5 also proves that computing conditional plariSiBFF -
hard, since, in this instance, any plan with positive reward must
observe all/,,, 1, ...,Us, and one each of th&y, ..., Z,, to
satisfy the parity condition. In this case, the order of selec-
tion is irrelevant, and, hence, the conditional plan effectively
performs subset selection. O
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