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Abstract

Reasoning with time1 needs more than just a list
of temporal expressions. TimeML—an emerging
standard for temporal annotation as a language cap-
turing properties and relationships among time-
denoting expressions and events in text—is a good
starting point for bridging the gap between tempo-
ral analysis of documents and reasoning with the
information derived from them. Hard as TimeML-
compliant analysis is, the small size of the only
currently available annotated corpus makes it even
harder. We address this problem with a hybrid
TimeML annotator, which uses cascaded finite-state
grammars (for temporal expression analysis, shal-
low syntactic parsing, and feature generation) to-
gether with a machine learning component capable
of effectively using large amounts of unannotated
data.

1 Temporal Analysis of Documents
Many information extraction tasks limit analysis of time
to identifying a narrow class of time expressions, which
literally specify a temporal point or an interval. For in-
stance, a recent (2004) ACE task is that of temporal ex-
pression recognition and normalisation (TERN; see http://
timex2.mitre.org/tern.html). It targets absolute date/
time specifications (e.g. “June 15th, 1998”), descriptions of
intervals (“three semesters”), referential (relative) expres-
sions (“last week”), and so forth. A fraction of such expres-
sions may include a relational component (“the two weeks
since the conference”, “a month of delays following the dis-
closure”), making them event-anchored; however, the major-
ity refer only to what in a more syntactic framework would be
considered as a ‘temporal adjunct’. The TERN task thus does
not address the general question of associating a time stamp
with an event.

Deeper document analysis requires awareness of tempo-
ral aspects of discourse. Several applications have recently
started addressing some issues of time. Document summari-
sation tackles identification and normalisation of time expres-

1This work was supported by the ARDA NIMD (Novel Intelli-
gence and Massive Data) program PNWD-SW-6059.

sions [Mani & Wilson, 2000], time stamping of event clauses
[Filatova and Hovy, 2001], and temporal ordering of events
in news [Mani et al., 2003]. Operational question answering
(QA) systems can now (under certain conditions) answer e.g.
‘when’ or ‘how long’ questions [Prager et al., 2003].

Beyond manipulation of temporal expressions, advanced
content analysis projects are beginning to define operational
requirements for, in effect, temporal reasoning. More sophis-
ticated QA, for instance, needs more than just information de-
rived from ‘bare’ temporal markers [Pustejovsky et al., 2003;
Schilder & Habel, 2003]. Intelligence analysis typically han-
dles contradictory information, while looking for mutually
corroborating facts; for this, temporal relations within such
an information space are essential. Multi-document sum-
marisation crucially requires temporal ordering over events
described across the collection.

A temporal reasoner requires a framework capturing the
ways in which relationships among entities are described in
text, anchored in time, and related to each other. Related are
questions of defining a representation that can accommodate
components of a temporal structure, and implementing a text
analysis process for instantiating such a structure.

This paper describes an effort towards an analytical frame-
work for detailed time information extraction. We sketch the
temporal reasoning component which is the ultimate ‘client’
of the analysis. We motivate our choice of TimeML, an
emerging standard for annotation of temporal information in
text, as a representational framework; in the process, we high-
light TimeML’s main features, and characterise a mapping
from a TimeML-compliant representation to an isomorphic set
of time-points and intervals expected by the reasoner.

We develop a strategy for time analysis of text, a syn-
ergistic approach deploying both finite-state (FS) grammars
and machine learning techniques. The respective strengths
of these technologies are well suited for the challenges of
the task: complexity of analysis, and paucity of examples of
TimeML-style annotation. A complex cascade of FS gram-
mars targets certain components of TimeML (time expres-
sions, in particular), identifies syntactic clues for marking
other components (related to temporal links), and derives fea-
tures for use by machine learning. The training is on a Time-
ML annotated corpus; given the small—and thus problematic
for training—size of the only (so far) available reference cor-
pus (TimeBank), we incorporate a learning strategy developed



to leverage large volumes of unlabeled data.
To our knowledge, this is the first attempt to use the rep-

resentational principles of TimeML for practical analysis of
time. This is also the first use of a TimeML corpus as refer-
ence data for implementing temporal analysis.

2 Motivation: Reasoning with Time

We are motivated by developing a useful, and reusable, tem-
poral analysis framework, where ‘downstream’ applications
are enabled to reason and draw inferences over time elements.

A hybrid reasoner [Fikes et al., 2003], to be deployed in in-
telligence analysis, maintains a directed graph of time points,
intervals defined via start and end points, and temporal re-
lations such as BEFORE, AFTER, and EQUAL POINT. The
graph is assumed generated via a mapping process, exter-
nal to the reasoner, from a (temporal) text analysis. Rela-
tions are operationalised, and temporal algebra evaluates in-
stances, draws inference over goals, and broadens a base of
inferred assertions on the basis of relational axioms. An ex-
ample within the reasoner’s inferential capability is:

(find instances of ?int such that (during ?int 2003)).

Reasoning with relations such as during (associating an
event with an interval), costarts (associating two events), in-
stantiated for the example fragment: “On 9 August Iran ac-
cuses the Taliban of taking 9 diplomats and 35 truck drivers
hostage in Mazar-e-Sharif. The crisis began with that accu-
sation.” would infer, on the basis of predicates like:

(during Iran-accuses-Taliban-take-hostages August-9-1998)
(costarts Iran-accuses-Taliban-take-hostages Iran-Taliban-Crisis)

that the answer to the question “When did the Iranian-Taliban
crisis begin?” is “August 9, 1998”.

Details of this inferential process need not concern us here.
We gloss over issues like enumerating the range of tempo-
ral relations and axioms, describing the reasoner’s model of
events (e.g. Iran-accuses-Taliban-take-hostages), and elabo-
rating its notion of ‘a point in time’ (subsuming both lit-
eral expressions and event specifications). Operationally,
a separate component maps temporal analysis results to a
suitably neutral, and expressive, ontological representation
of time (DAML-Time [Hobbs et al., 2002]). This allows
for a representation hospitable to first-order logic inference
formalism—like the one assumed in Hobbs et al.—to be kept
separate from surface text analysis: much like the traditional
separation along the syntax-semantics interface.

We start from the belief that the representation for the rea-
soner is derivable from a TimeML-compliant text analysis. 2

TimeML is a proposal for annotating time information;e.g.
the first example sentence above would be marked up as:

2We are not alone: work on temporal reasoning from formal in-
ference point of view reaches a similar conclusion: “... the [TimeML]
annotation scheme itself, due to its closer tie to surface texts, can be
used as the first pass in the syntax-semantics interface of a temporal
resolution framework such as ours. The more complex representa-
tion, suitable for more sophisticated reasoning, can then be obtained
by translating from the annotations.” [Han & Lavie, 2004].

<SIGNAL sid="s1"> On </SIGNAL> <TIMEX3 tid="t1" type="DATE" value=

"1998-08-09"> 9 August </TIMEX3> Iran <EVENT eid= "e1" class= "I ACTION">

accuses </EVENT> the Taliban of <EVENT eid="e4" class="OCCURRENCE"> taking
</EVENT> 9 diplomats and 35 truck drivers hostage in Mazar-e-Sharif. The <EVENT

eid="e8" class="OCCURRENCE"> crisis </EVENT> <EVENT eid="e12" class=

"ASPECTUAL"> began </EVENT> <SIGNAL sid="s2" type="DATE" mod="START"> with
</SIGNAL> that <EVENT eid="e16" class="I ACTION"> accusation </EVENT>.
<MKINSTANCE eiId="ei1" evId="e1"/> <MKINSTANCE eiId="ei2" evId="e8"/>

<MKINSTANCE eiId="ei3" evId="e12"/> <MKINSTANCE eiId="ei4" evId="e16"/>

<TLINK eiId="ei1" relToTime="t1" relType="IS INCLUDED"/>

<TLINK eiId="ei4" relToEIId="ei1" relType="IDENTITY"/>

<ALINK eiId="ei2" relToEIId="ei4" relType="INITIATES"/>

TimeML is described in Section 3. Essentially, it promotes
explicit representation and typing of time expressions and
events, and an equally explicit mechanism for linking these
with temporal links, using a vocabulary of temporal relations.

In addition to in-line mark-up, explicit links are marked.
Event instance identifiers, ei1, ei2, and ei4 refer to, respec-
tively, the accusation in the first sentence, the crisis, and the
reference to “that accusation” in the second sentence. The
relType attributes on the link descriptions define temporal re-
lationships between event instances and time expressions; in
this particular example, an IDENTITY link encodes the co-
referentiality between the event instances (mentions) in the
two sentences of the accusation event of the earlier example.

It is the combination of event descriptors, their anchoring
to time points, and the semantics of relational links, which
enable the derivation of during and costarts associations that
the reasoner understands.

3 TimeML: a Mark-up Language for Time

Most content analysis applications to date do not explicitly
incorporate temporal reasoning, and their needs can be met
by analysis of simple time expressions (dates, intervals, etc).
This is largely the motivation for TERN’s TIMEX2 tag; at the
same time it explains why TIMEX2 is inadequate for support-
ing the representational requirements outlined earlier. 3

TimeML aims at capturing the richness of time information
in documents. It marks up more than just temporal expres-
sions, and focuses on ways of systematically anchoring event
predicates to a time denoting expressions, and on ordering
such event expressions relative to each other.

TimeML derives higher expressiveness from explicitly se-
parating representation of temporal expressions from that of
events. Time analysis is distributed across four component
structures: TIMEX3, SIGNAL, EVENT, and LINK; all are ren-
dered as tags, with attributes [Saurı́ et al., 2004].4

3For a notable extension to TIMEX2, see [Gaizauskas & Setzer,
2002]. An attempt to codify some relational information linking the
TIMEX with an event, it is still limited, both in terms of scope (only
links with certain syntactic shape can be captured) and representa-
tional power (it is hard to separate an event mention from possibly
multiple event instances); see [Pustejovsky et al., 2003].

4Additionally, a MKINSTANCE tag embodies the difference be-
tween event tokens and event instances: for example, the analysis
of “Max taught on Monday and Tuesday” requires two different in-
stances to be created for a teaching EVENT. Even if typically there
is a one-to-one mapping between an EVENT and an instance, the
language requires that a realisation of that event is created.



TIMEX3 extends5 the TIMEX2 [Ferro, 2001] attributes:
it captures temporal expressions (commonly categorised as
DATE, TIME, DURATION), both literal and intensionally spec-
ified. SIGNAL tags are (typically) function words indicative
of relationships between temporal objects: temporal prepo-
sitions (for, during, etc.) or temporal connectives (before,
while). EVENT, in TimeML nomenclature, is a cover term
for situations that happen or occur; these can be punctual,
or last for a period of time. TimeML posits a refined typol-
ogy of events [Pustejovsky et al., 2003]. All classes of event
expressions—tensed verbs, stative adjectives and other modi-
fiers, event nominals—are marked up with suitable attributes
on the EVENT tag. Finally, the LINK tag is used to encode a
variety of relations that exist between the temporal elements
in a document, as well as to establish an explicit ordering of
events. Three subtypes to the LINK tag are used to represent
strict temporal relationships between events or between an
event and a time (TLINK), subordination between two events
or an event and a signal (SLINK), and aspectual relationship
between an aspectual event and its argument (ALINK).

TimeML’s richer component set, in-line mark-up of tempo-
ral primitives, and non-consuming tags for temporal relations
across arbitrarily long text spans, make it highly compatible
with the current paradigm of annotation-based encapsulation
of document analysis.

4 TimeML and Temporal Analysis
TimeML’s annotation-based representation facilitates integra-
tion of time analysis with the analysis of other syntactic and/
or discourse phenomena; it also naturally supports exploita-
tion of larger contextual effects by the temporal parser proper
(see 4.4) . This is a crucial observation, given that the promi-
nently attractive characteristic of TimeML—its intrinsic rich-
ness of expression—makes it challenging for analysis.

There are two broad categories of problems for develop-
ing an automated TimeML analyser: of substance and of in-
frastructure. Substantive issues include normalising time ex-
pressions to a canonical representation (TIMEX3’s value at-
tribute), identifying a broad range of events (e.g. event nom-
inals and predicative adjectives acting as event specifiers),
linking time-denoting expressions (typically a TIMEX3 and
an EVENT), and typing of those LINKs.

The infrastructure problems—small size and less than con-
sistent mark-up of the TimeBank corpus—are due to the fact
that this, first, version is largely a side product of a small num-
ber of annotators trying out TimeML’s expressive capabilities.
TimeBank is thus intended as a reference, and not for training.
Our hybrid approach to temporal parsing, combining finite-
state (FS) recognition with machine learning from sparse data
(4.2), is largely motivated by this nature of TimeBank.

4.1 The TimeBank corpus
TimeBank has only 186 documents (68.5K words). If we
held out 10% of the corpus as test data, we have barely
over 60K words for training. Below we show counts of

5TIMEX2 and TIMEX3 differ substantially in their treatment of
event anchoring and sets of times.

(EVENT-TIMEX3) TLINK6 and EVENT types [Saurı́ et al.,
2004]. TLINK examples are particularly sparse; the data also
shows highly uneven distribution of examples of different
types.

In comparison, the Penn TreeBank corpus for part-of-
speech tagging contains >1M words (> 16 times larger than
TIMEBANK); the CoNLL’03 named entity chunking train-
ing set (at http://cnts.uia.ac.be/conll2003/ner/)
has over 200K words with 23K examples (15 times more
than TLINK examples) over just 4 name classes (compared
to the 13 TLINK classes defined by TimeML). TERN’s train-
ing set—almost 800 documents/300K words—is considered
to be somewhat sparse, with over 8K TIMEX examples.

tlink type # occurrences event type # occurrences
IS INCLUDED 866 OCCURRENCE 4,452

DURING 146 STATE 1,181
ENDS 102 REPORTING 1,010

SIMULTANEOUS 69 I ACTION 668
ENDED BY 52 I STATE 586

AFTER 41 ASPECTUAL 295
BEGINS 37 PERCEPTION 51
BEFORE 35

INCLUDES 29
BEGUN BY 27

IAFTER 5
IDENTITY 5
IBEFORE 1

Total : 1,451 Total : 8,243

4.2 Analytical strategy
Minimally, the reasoner would require that the analytical
framework supports time stamping and temporal ordering of
events; thus we target the analysis tasks of finding TIMEX3’s,
assigning canonical values, marking and typing EVENTs, and
associating (some of them) with TIMEX3 tags.

TIMEX3 expressions are naturally amenable to FS descrip-
tion. FS devices can also encode some larger context for time
analysis (temporal connectives for marking putative events,
clause boundaries for scoping possible event-time pairs, etc;
see 4.4). To complement such analysis, a machine learn-
ing approach can cast the problem of marking EVENTs as
chunking. Recently, [Ando, 2004] has developed a frame-
work for exploiting large amounts of unannotated corpora
in supervised learning for chunking. In such a framework,
mid-to-high-level syntactic parsing—typically derived by FS
cascades—can produce rich features for classifiers.

Thus, we combine FS grammars for temporal expressions,
embedded in a general purpose shallow parser, with machine
learning trained with TimeBank and unannotated corpora.

4.3 FS-based parser for temporal expressions
Viewing TIMEX3 analysis as an information extraction task,
a cascade of finite-state grammars with broad coverage (com-
piled down to a single TIMEX3 automaton with 500 states and
over 16000 transitions) targets abstract temporal entities such

6In all of our experiments we exclude TIMEX3 markup in meta-
data; the TLINK counts only reflect links to temporal expressions in
the body of documents.



as UNIT, POINT, PERIOD, RELATION, etc; these may be fur-
ther decomposed and typed into e.g. MONTH, DAY, YEAR (for
a UNIT); or INTERVAL or DURATION (for a PERIOD).

Fine-grained analysis of temporal expressions, in-
stantiating attributes like granularity, cardinality,
ref direction, and so forth, is crucially required for nor-
malising a TIMEX3: representing“the last five years” as il-
lustrated below facilitates the derivation of a value for the
TIMEX3 value attribute.

[timex : [relative : true ]
[ref_direction : past ]
[cardinality : 5 ]
[granularity : year ] ]

Such analysis amounts to a parse tree under the TIMEX3.
(Not shown above is additional information, anchoring the
expression into the larger discourse and informing other
normalisation processes which emit the full complement of
TIMEX3 attributes—type, temporalFunction, anchorTimeID,
etc). TimeBank does not contain such fine-grained mark-up:
the grammars thus perform an additional ‘discovery’ task, for
which no training data currently exists, but which is essen-
tial for discourse-level post-processing, handling e.g. ambigu-
ous and/or underspecified time expressions or the relationship
between document-internal and document-external temporal
properties (such as ‘document creation time’).

4.4 Shallow parsing for feature generation
In principle, substantial discourse analysis can be carried out
from a shallow syntactic base, and derived by means of FS
cascading [Kennedy & Boguraev, 1996]. Our grammars in-
terleave shallow parsing with named entity extraction. They
specify temporal expressions in terms of linguistic units, as
opposed to simply lexical cues (as many temporal taggers to
date do). This point cannot be over-emphasised. One of the
complex problems for TimeML analysis is that of event iden-
tification. A temporal tagger, if narrowly focused on time ex-
pressions only (cf. [Schilder & Habel, 2003]), offers no clues
to what events are there in the text. In contrast, a tempo-
ral parser aware of the syntax of a time phrase like “during
the long and ultimately unsuccessful war in Afghanistan” is
very close to knowing—from configurational properties of a
prepositional phrase—that the nominal argument (“war”) of
the temporal preposition (“during”) is an event nominal.

Ultimately, syntactic analysis beyond TimeML components
is used to derive features for the classifiers tasked with finding
EVENTs and LINKs (Section 5).

Feature generation typically relies on a mix of lexical prop-
erties and some configurational syntactic information (de-
pending on the complexity of the task). Our scheme addi-
tionally needs some semantic typing, knowledge of bound-
aries of longer syntactic units (typically a variety of clauses),
and some grammatical function. An example (simplified) of
the FS cascade output is:

[Snt [svoClause
[tAdjunct In [NP [timex3 the 1988 period timex3] NP] tAdjunct],
[SUB [NP the company NP] SUB]
[VG [GrmEventOccurrence earned grmEventOccurrence] VG]
[OBJ [NP [Money $20.6 million Money] NP] OBJ] svoClause] ... Snt]

Most of the above is self-explanatory, but we emphasise a
few key points. The analysis captures the mix of syntactic
chunks, semantic categories, and TimeML components used
for feature generation. It maintains local TIMEX3 analysis;
the time expression is inside of a larger clause boundary, with
internal grammatical function identification for some of the
event predicates. The specifics of mapping configurational
information into feature vectors is described in Section 5.

4.5 Machine learning for TimeML components
TimeML parsing is thus a bifurcated process of TimeML com-
ponents recognition: TIMEX3’s are marked by FS gram-
mars; SIGNALs, EVENTs and LINKs are identified by clas-
sification models derived from analysis of both TimeBank
and large unannotated corpora. Features for these models
are derived from common strategies for exploiting local con-
text, as well as from mining the results—both mark-up and
configurational—from the FS grammar cascading, as illus-
trated in the previous section. (More details on feature gener-
ation follow in Section 5 below.)

Classifiers and feature vectors
The classification framework we adopt for this work is based
on a principle of empirical risk minimization. In particular,
we use a linear classifier, which makes classification deci-
sions by thresholding inner products of feature vectors and
weight vectors. It learns weight vectors by minimizing clas-
sification errors (empirical risk) on annotated training data.

For our experiments (Section 6), we use the Robust Risk
Minimization (RRM) classifier [Zhang et al., 2002], which
has been shown useful for a number of text analysis tasks
such as syntactic chunking, named entity chunking, and part-
of-speech tagging.

In marked contrast to generative models, where assump-
tions about features are tightly coupled with algorithms,
RRM—as is the case with discriminative analysis—enjoys
clear separation of feature representation from the underlying
algorithms for training and classification. This facilitates ex-
perimentation with different feature representations, since the
separation between these and the algorithms which manipu-
late them does not require change in algorithms. We show
how choice of features affects performance in Section 6.

Word profiling for exploitation of unannotated corpora
In general, classification learning requires substantial amount
of labeled data for training—considerably more than what
TimeBank offers (cf. 4.1). This characteristic of size is poten-
tially a limiting factor in supervised learning approaches. We,
however, seek to improve performance by exploiting unan-
notated corpora, with their natural advantages of size and
availability. We use a word profiling technique, developed
specially for exploiting a large unannotated corpus for tag-
ging/chunking tasks [Ando, 2004]. Word profiling identifies,
and extracts, word-characteristic information from unanno-
tated corpora; it does this, in essence, by collecting and com-
pressing feature frequencies from the corpus.

Word profiling turns co-occurrence counts of words and
features (e.g. ‘next word’, ‘head of subject’, etc) into new
feature vectors. For instance, observing that “extinction” and
“explosion” are often used as syntactic subject to “occur”,



and that “earthquakes” “happen”, helps to predict that “ex-
plosion”, “extinction”, and “earthquake” all function like
event nominals. Below (6.1) we demonstrate the effective-
ness of word profiling, specifically for EVENT recognition.

5 Implementation
To use classifiers, one needs to design feature vector repre-
sentation for the objects to be classified. This entails selection
of some predictive attributes of the objects (in effect promot-
ing these to the status of features) and definition of mappings
between vector dimensions and those attributes (feature map-
ping). In this section we describe the essence of our feature
design for EVENT and TLINK recognition. 7

5.1 EVENT recognition
Similarly to named entity chunking, we cast the EVENT
recognition task as a problem of sequential labeling of tokens
by encoding chunk information into token tags. For a given
class, this generates three tags: E:class (the last, end, token
of a chunk denoting a mention of class type), I:class (a to-
ken inside of a chunk), and O (any token outside of any target
chunk). The example sequence below indicates that the two
tokens “very bad” are spanned by an event-state annotation.

· · · another/O very/I:event-state bad/E:event-state week/O · · ·
In this way, the EVENT chunking task becomes a (2k + 1)-

way classification of tokens where k is the number of EVENT
types; this is followed by a Viterbi-style decoding. (We use
the same scheme for SIGNAL recognition.)

The feature representation used for EVENT extraction ex-
periments mimics the one developed for a comparative study
of entity recognition with word profiling [Ando, 2004]. The
features we extract are:
◦ token, capitalization, part-of-speech (POS) in 3-token

window;
◦ bi-grams of adjacent words in 5-token window;
◦ words in the same syntactic chunk;
◦ head words in 3-chunk window;
◦ word uni- and bi-grams based on subject-verb-object and

preposition-noun constructions;
◦ syntactic chunk types (noun or verb group chunks only);
◦ token tags in 2-token window to the left;
◦ tri-grams of POS, capitalization, and word ending;
◦ tri-grams of POS, capitalization, and left tag.

5.2 TLINK recognition
TLINK is a relation between events and time expressions
which can link two EVENTs, two TIMEX3’s, or an EVENT and
a TIMEX3. Presently (see 4.2) we focus on TLINKs between
events and time expressions.

As a relational link, TLINK does not naturally fit the tag-
ging abstraction for a chunking problem, outlined above. In-
stead, we formulate a classification task as follows. After
posting EVENT and TIMEX3 annotations (by the event classi-
fier and the FS temporal parser, respectively), for each pairing

7We do not discuss SIGNAL recognition here, as the signal tag
itself contributes nothing to EVENT or TLINK recognition, beyond
what is captured by a lexical feature over the temporal connective.

between an EVENT and a TIMEX3, we ask whether it is a cer-
tain type of TLINK. This defines a (� + 1)-way classification
problem, where � is the number of TLINK types (BEFORE,
AFTER, etc; Section 4.1). The adjustment term ‘+1’ is for
the negative class (not-a-temporal-link).

The relation-extraction nature of the task of posting
TLINKs requires a different feature representation, capable
of encoding the syntactic function of the relation arguments
(EVENTs and TIMEX3’s), and some of the larger context of
their mentions. To that end, we consider the following five
partitions (defined in terms of tokens): spans of arguments
(P 1 or P 2); two tokens to the left/right of the left/right argu-
ment (P left/P right); and the tokens between the arguments
(P middle). From each partition, we extract tokens and parts-
of-speech as features.

We also consider segments (syntactic constructions derived
by FS analysis: ‘when-clause’, ’subject’, etc) in certain re-
lationship to partitions: contained in P 1, P 2, or P middle;
covering P 1 (or P 2) but not overlapping with P 2 (or P 1);
occurring to the left of P 1 (or the right of P 2); or covering
both P 1 and P 2. We use uni- and bi-grams of types of these
segments as features.

In this feature representation, segments play a crucial
role by capturing the syntactic functions of EVENTs and
TIMEX3’s, as well as the syntactic relations between them.

Thus in the example analysis on p. 4, svoClause is the
smallest segment containing both an EVENT and a TIMEX3,
indicative of a direct syntactic relation between the two. In
the next example, the TIMEX3 and EVENT chunks are con-
tained in different clauses (a thatClause and a svoClause,
respectively), which structurally prohibits a TLINK relation
between the two.
[Snt
Analysts have complained
[thatClause that [timex3 third-quarter timex3] corporate earnings

have n’t been very good thatClause]
[svoClause , but the effect [event hit event] ... svoClause] Snt]

Thus our feature representation is capable of capturing this
information via the types of the segments that contain each of
EVENT and TIMEX3 without overlapping.

6 Experiments
We present here performance results on EVENT and TLINK
recognition only. This is largely because the primary focus of
this paper is to report on how effective our analytical strategy
is in leveraging the reference nature of the small TimeBank
corpus for training classifiers for TimeML. Of these, SIGNAL
was briefly mentioned earlier (see footnote 7), and TIMEX3
recognition, driven by FS grammars, belongs to a different
paper. Since this is the first attempt to build a TimeML-
compliant analyser (cf. Section 1), there are no comparable
results in the literature.

The results (micro-averaged F-measure) reflect experi-
ments with different settings, against the TimeBank corpus,
and produced by 5-fold cross validation.



6.1 EVENT recognition
It should be clear, by looking at the example analysis (p. 4),
how local information and syntactic environment both con-
tribute to the feature generation process. Figure 1 shows per-
formance results with and without word profiling for exploit-
ing an unannotated corpus. For word profiling, we extracted

features with typing w/o typing
basic 61.3 78.6
basic + word-profiling 64.0 (+2.7) 80.3 (+1.7)

Figure 1: Event extraction results, with/without typing. Parentheses
show contribution of word profiling, over using basic features only.

feature co-occurrence counts from 40M words of 1991 Wall
Street Journal. The proposed event chunks are counted as
correct only when both the chunk boundaries and event types
are correct. While word profiling improves performance,
64.0% F-measure is lower than typical performance of, for
instance, named entity chunking. On the other hand, when we
train the EVENT classifiers without typing, we obtain 80.3%
F-measure. This is indicative of the inherent complexity of
the EVENT typing task.

6.2 TLINK recognition
In this experimental setting, we only consider the pairings of
EVENT and TIMEX3 which appear within a certain distance
in the same sentences.8

For comparison, we implement the following simple base-
line method. Considering the text sequence of EVENTs and
TIMEX3’s, only ‘close’ pairs of potential arguments are cou-
pled with TLINKs; EVENT e and TIMEX3 t are close if and
only if e is the closest EVENT to t and t is the closest TIMEX3
to e. For all other pairings, no temporal relation is posted.
Depending on the ‘with-’/‘without-typing’ setting, the base-
line method either types the TLINK as the most populous class
in TimeBank, IS INCLUDED, or simply marks it as ‘it exists’.

Results are shown in Figure 2. Clearly, the detection of

distance (# of tlinks) features with typing w/o typing
distance ≤ 64 tokens baseline 21.8 34.9

(1370 tlinks) basic 52.1 74.1
basic+FS 53.1 (+1.0) 74.8 (+0.7)

distance ≤ 16 tokens baseline 38.7 61.3
(1269 tlinks) basic 52.8 75.8

basic+FS 54.3 (+1.5) 76.5 (+0.7)
distance ≤ 4 tokens baseline 49.8 76.1

(789 tlinks) basic 57.0 80.1
basic+FS 58.8 (+1.8) 81.8 (+1.7)

Figure 2: TLINK extraction results, with/without typing. Parenthe-
ses show contribution of grammar-derived features, over using basic
ones only. Baseline posts TLINKs over ‘close’ EVENT/TIMEX3 pairs.

temporal relations between events and time expressions re-
quires more than simply coupling the closest pairs within a

8To evaluate the TLINK classifier alone, we use the EVENT and
TIMEX3 annotations in TimeBank.

sentence (as the baseline does). It is also clear that the base-
line method performs poorly, especially for pairings over rel-
atively long distances. For instance, it produces 34.9% when
we consider the pairings within 64 tokens without typing. In
the same setting, our method produces 74.8% in F-measure,
significantly outperforming the baseline.

We compare performance in two types of feature repre-
sentation: ‘basic’ and ‘basic+FS grammar’, which reflect the
without- and with-segment-type information obtained by the
grammar analysis, respectively. As the positive delta’s show,
configurational syntactic information can be exploited benefi-
cially by our process. Focusing on within-4-tokens pairings,
we achieve 81.8% F-measure without typing of TLINKs, and
58.8% with typing. (The task without typing is a binary clas-
sification to detect whether the pairing has a TLINK relation
or not, regardless of the type.) As the figure shows, the task
becomes harder when we consider longer distance pairings.
Within a 64 token distance, we obtain figures of 74.8% and
53.1%, without and with typing respectively.

While we are moderately successful in detecting the ex-
istence of temporal relations, the noticeable differences in
performance between the task settings with and without typ-
ing indicate that we are not as successful in distinguishing
one type from another. In particular, the relatively low per-
formance of TLINK typing highlights the difficulty in distin-
guishing between DURING and IS INCLUDED.

The guidelines (and common sense analysis) suggest that
IS INCLUDED type should be assigned if the time point or du-
ration of EVENT is included in the duration of the associated
TIMEX3. DURING, on the other hand, should be assigned as a
type if some relation represented by the EVENT holds during
the duration of the TIMEX3. We note that for this particular
typing problem, the subtle distinctions are hard even for hu-
man annotators: the TimeBank corpus displays a number of
occasions where inconsistent tagging is evident.

7 Conclusion
TimeML is a significant development in time analysis, as it
captures detailed information, anchored in eventuality and
linguistic structure, and shown to be crucial inferential and
reasoning tasks. In addition to defining annotation guidelines,
the TimeML effort notably created the first reference corpus
illustrative of expressiveness of the language.

Unfortunately, the small size of the TimeBank corpus pre-
vents its straightforward use as a training resource, a problem
further exacerbated by the inherent complexity of TimeML-
compliant analysis. And yet, for reasoning engines to func-
tion, TimeML analysers need to be built.

[Mani et al., 2004] discuss some pioneering work in link-
ing events with times, and ordering events, indicative of
productive strategies for posting (some) TLINK information.
However, the nature of these efforts is such that differences
in premises, representation, and focus make a direct per-
formance comparison impossible. Furthermore, the work
pre-dates TimeML, and cannot be conveniently mapped to
TimeBank data; this, in effect, precludes a quantitative com-
parison with our work.

In a first systematic attempt at TimeML-compliant analysis,



and leveraging the TimeBank corpus, we have developed a
strategy which synergistically blends finite-state analysis over
linguistic annotations with a state-of-the-art machine learning
technique. Particularly effective are: aggressive analysis, by
complex grammars, of both TimeML components and syntac-
tic structure; coupled with a learning algorithm capable of
training over unannotated data, in addition to exploiting ar-
bitrarily small amounts of labeled data. While work remains
(notably refining the TLINK recogniser, targeting other types
of LINKs, and enhancing EVENT recognition with external
lexical resources), this is a significant step in instantiating a
deeper time analysis, capable of satisfying the needs of rea-
soning engines.
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