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Abstract 9,=Go(p22,(195,175),(80,205),10,12,18,23,10,20)
. 9,=Go(p22,(80,205),(195,175),30,35,39,46,10,20)

Yaman et. al.[Yamanet al, 2004 introduce “go 9,=Go(p34,(150,130),(330,30),20,30,36,50,10,20)
theories” to reason about moving objects. In this 220 & Uisiiaisi
paper, we show that this logic often does not allow 208 : N
us to infer that an object isot present at a given Josd SN
place or region, even though common sense would Detroit
dictate that this is a reasonable inference to make. Paris

We define a class of models of go-theories called
coherentmodels. We use this concept to define a
motion closed world assumptigMCWA) and de-
velop a notion ofMCWA-entailment. We show
that checking if a go-theory has a coherent model 40 Bk @
is NP-complete. Arin atom checks if a given ob-
jectis present in a given region sometime in a given
time interval. We provide sound and complete al-
gorithms to check if a grounth literal (positive

or negativein atom) can be inferred from a go-
theory using theMCWA. In our experiments our
algorithms answer such queries in less than 1 sec-
ond when there are up to 1,086-atoms per object.
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Figure 1:Planes example

together with algorithms to check entailment of certain kinds
of atoms: ‘In” atoms that check if a given moving object is

) within a given region at a given time, andear” atoms which

1 Introduction are used to check if two objects are within a given distance of

Reasoning about moving objects is becoming increasinglach other at some time.
important. Air traffic controllers in both the US and Europe  Though the semantics given byamanet al, 2004 is ad-
are facing a dramatically increasing workload as the numbeequate for positive atoms, it is inadequate for negative atoms.
of flights increases. Cell phone companies are increasinglifor example, suppose we consider the go-theory containing
interested in knowing where cell phones on their network argust the two statements above about plane p22. In this case,
located — this is useful for hand-off policies between cellwe would like to infer that plane p22 is not in Detroit at time
phone towers. Vehicle security systems such as LOJACK and0, even though it may be theoretically possible for the plane
ONSTAR are increasingly being used to determine where veto make it to Detroit. The goal of this paper is to ensure that
hicles are and where they are not. intelligent negative inferences of this kind can be made from
[Yamanet al,, 2004 proposed the concept of a “go theory” go-theories.
which can be used to make statements of the form “Olkject  The contributions and organization of this paper are as fol-
is expected to leave locatidf, at some time pointin the in- ows: in Section 2, we recapitulate the syntax of go-theories
terval[t; , "] and reach locatioi?, at some time pointin the from [Yamanet al, 2004. In section 3, we introduce the
interval[t, , ¢ ] traveling at a velocity between andv,. Go  concept of a coherent model of a go-theory, and describe the
theories can be used, for example, to make statements such@mcept of coherent entailment. We also introducéMbéon
“Plane p22 is expected to take off from Paris at some time be€losed World AssumptiofMCWA for short) and show how
tween 10 and 12 and land at Boston at some time between 1Be MCWA can be used to reason about negative information.
and 23 traveling at a speed between 10 to 20.” Go theories ar&lso in Section 3, we show that the problem of checking if
sets of such statements. Figure 1 shows the spatial layout af go-theory has a coherent model is NP-complete. In Sec-
one such go-theory (the go theory is written in text at the top)tion 4, we provide algorithms to evaluaten™ literals w.r.t.
[Yamanet al., 2004 provides a model theory for go theories, the MCWA semantics. We are developing algorithms to pro-



cess other kinds of queries such asiher literals described o Vi € [t1,t2], Z(o,t) ison the line segmefhP;, P;]
in [Yamanet gl., 2004 —however, Space reasons preventus o vt ¢/ ¢ [ty,t,], t < t' impliesdist(Z(o,t), P1) <
from presenting them. Section 5 describes a prototype imple-  dist(Z (o, ¢'), P,) wheredist is the function that com-

mentation to answer positive and negatiu€’ fjueries — the putes the Euclidean distance between two points.
implementation shows that our system is highly scalable. We

compare our work with related work in Section 6.

2 Go-Theories: Syntax and Semantics
We first provide a quick overview of the main definitions of

e For all but finitely many times in[t;,ts], v

d(|Z(o,t)|)/dt is defined and~(g) < v < vt (g).
The above definition intuitively says that|= ¢ over a time
interval T' = [t1, to] iff o starts moving at;, stops moving
att, and during this interval, the object moves away fr&n

[Yamanet al, 2004. We assume the existence of several setsowards P, without either stopping or turning back or wan-

of constant symbolsR is the set of all real number€) is the
set of names of object® = R x R is the set of all points
in two-dimensional cartesian space. We assume the existen
of three disjoint sets of variable symbolgg, Vo, andVp,
ranging oveR, O andP, respectively. Areal termt is any
member olR UVR. Object terms and point terms are defined

similarly. Ground terms are defined in the usual way. We now

define atoms as follows.

e If 01,09 are object terms, and, ¢, ¢, are positive real
terms, themear (o1, 09, d, t1,t2) is anatom When these
terms are ground, this atom says thato, are within
distanced of each other during the time interval , ¢-].

If o is an object termpPy, P, are point terms, ang, ¢,
are positive real terms, then(o, P, Ps,t1,t2) is an

dering away from the straight line connectiffg and P,. We
are now ready to define the concept of satisfaction of arbitrary
fieerals.
Definition 2 7 satisfiesa ground literal (denoted = A) in
these cases:
1. T |= go(o, Py, Py, 7, t,t5 , t5,v™,vt) iff there exists
an interval[tq, t5] such thatZ satisfiesA over|ty, to].
2.7 ': near(ol, 02, d, tl, tQ) iff diSt(I(Ol, t), I(OQ, t)) S
dforallt; <t <ty

3. Z E in(o, P, Py, ty,ts) iff there are numberg ¢
[t1,t2], z € [P\”, "] andy € [PY, P,Y] such that
Z(o,t) = (z,y).

4. 7 = —Aiff Z does not satisfy.

atom When these terms are ground, this atom says that satisfies (or is a model 0§ set of ground atom®!T iff 7

objecto is in the rectangle whose lower left (resp. upper
right) corner isP; (resp. P;) at some point in the time
interval ¢y, ta].

If o is an object term,P;, P, are point terms, and
ty 7ty 5w, vt are positive real terms, then
go(o, Py, Py, t7,t1 5,5, v, v") is an atom called a
go atom When all these terms are ground, this atom
says that object leaves point? atsome time irit; , ¢1]
and arrives at poinf% during [t;,t5], traveling in a
straight line with a minimum speed- and maximum
speedvt.

Ground atoms are defined in the usual wayg@theoryis a
finite set of ground go-atoms.
Notation. If g = go(o, Py, P»,t] ,t1,t5,t5,v~,v") then

obj(g) = o, v (g)=v", vT(g) =0T,
loci(g) = P1, t7(9)=ty, tf(g9)=t],
loca(g) = Pa, ty(9) =ty, ta(g)=t3.

If Ais an atom, therd and—A are callediterals. Due to

space constraints, we only consider literals in this paper —

[Yamanet al., 2004 provide a richer syntax including con-
junction and disjunction.

An interpretationis a continuous functio : O x R™ —
P. Intuitively, Z (o, t) is o’s location at timef. We first define
satisfaction of ago” atom w.r.t. a given time interval.

Definition 1 Let g = go(o, P1, Py, ty,t1,t5,t5, v, v )
be an atom andl be an interpretation.Z satisfiesg over
atime intervall’ = [t1, to] iff:

o t; €[ty ,tf]andZ(o,t;) = P

o ty € [ty,td] andZ(o,ty) = P,

satisfies everyd € MT. MT is consisteniff there is an in-
terpretatiorZ such thaZ = MT. L is alogical consequence
of MT, denotedMT E L, iff every model ofMT is also a
model of L.

Example 1 ThePlanes go-theory of Figure 1 is consistent
as the interpretationg; , Z, below both satisfy it.

e 7 : p22 leaves Paris at time 11, flies to Boston at a
constant speed of 14.85 and arrives in Boston atiP2.
waits in Boston until 32, then it departs for Paris with a
constant speed of 13.2 arriving in Paris at 41. The other
plane,p34 leaves London at time 25 and flies to Delhi at
a constant speed of 18.52, arriving in Delhi at 38.

e 1, : p22 leaves Paris at time 10, flies to Boston at con-
stant speed of 14.85 and reaches Boston at 18. It waits
in Boston until 19, when it takes off for Detroit where it
arrives at time 21. It immediately departs and reaches
Boston at time 29. At time 3@22 leaves Boston and
flies to Paris at a constant speed of 11.88, arriving in
Paris at time 40. The other plang34 leaves London at
time 25 and flies to Delhi at a constant speed of 18.52,
arriving in Delhi at 38.

Itis important to note that even though satisfies thélanes
go theory, it is an interpretation that allows plap22 to
wander around in ways that were not explicitly stated in the
Planes go theory. In particular, it lets the plane wander to
Detroit which was never mentioned in the go-theory. We
would like to exclude such “wandering” interpretations as
they prevent us from making the intuitive (nonmonotonic) in-
ference that Plang22 was never in Detroit.

Throughout the rest of the paper we are going to use the
notationG|o] to denote the set of all atoms about an object
in a go theonG.



Definition 3 LetG be a go theory, o be an object aftlo] = Vt € [tia, tj1] Z(o,t) = loca(gs), i.€. destination of;.
{91,92,--.,9,}. Then for every;, g, € Glo] we define a
partial order < such thatg; < g, iff t5(g;) < t;(g;)- A

total order T on G[o] is compatible withGo] iff C is a

topological sort of <.

I is acoherent model of7 iff 7 is coherent w.r.to and G for
all objectso.
G is acoherent go-theoryff G has a coherent model.

_ . . . Example 2 LetG be the go theory in Figure 1. L&} andZ,
Definition 4 Supposé. is a go theory, ois an objectand  pg the two interpretations in Example T, is coherent with
is a total order compatible witldz[o]. ThenL(G]o], C) is set respect taG; and p22 because it satisfieg over|[11,19], g

of linear constraints such that over[32,40] and in betweeri19, 32] planep22 is in Boston.
e for everyg = go(o, P1, Po,ty,t1,t5,t5,v",vt) € Iy is not coherent with respect & and p22 because al-
Glo], L(G[o],C) contains: though it satisfies; over [10,18], g2 over [30,41] during

[18, 30], p22 does not stay in Boston which is the destination

_ + - +
—tl SSgStl andtg SEgStQ’ Ofgl-

- _ - + _
v x (B — 8g) < dist(Py, P) < v x(Ey —5), The following lemma and definition are useful in checking
o for everyg,g’ € Glo] such thaty C ¢, L(G[o],C)  whether a non-collinear go-theory has a coherent model or

contains: £, < S, . not.
Intuitively Sy, E, are variables that represent the times o Definition 8 Supposé- is a non-collinear go theory, o is an
starts and stops moving. object andC is a total order compatible witld+[o]. Letg; C
Definition 5 A go theoryG is non-collinear iff for each ob- 92 £ gn be the atoms of/[o]. T is spatially continuous
jecto there are nay, ¢’ € GJo] such that W.rL. G[%} iff for everyi, 1 <i < n, locs(g:) = loc1(giy1),
o The intersection of line segmeritsc: (g), loca(g)] and €93 estination 'Yi+1S ONGIN, ,
[locy(g'), loca(g')] is a line segmenitP, Q] Lemma 1 Supposé&- is a non-collinear go theoryG is co-

herent if for every objeat there is a total ordeE, compati-
ble with G[o] such that(G[o], C,) has a solution and_, is
spatially continuous w.r.tG[o].

The following theorem shows that checking coherence of a
go-theory is NP-complete.

heorem 2 (i) Checking coherence of a non-collinear go
eory is NP-complete(ii) Checking coherence of a go the-
ory is NP-complete.

The proof is omitted due to lack of space. We now define the
concept of coherent entailment.

Definition 9 (MCWA entailment) Let L be a ground literal
3 Coherence and G be a go theory. G entails L via MCWA, denoted

. . , . GE™cv [, iff every coherent model ¢f also satisfied..
In this section, we define the concept of a coherent interpre- = y

tation. We start by defining precedence of time intervals. TheMCWA is inspired by Minker’s generalized closed world
. assumptiodMinker, 1982 where a class of models is used to

Definition 6 (Precedence)LetS = {T1,...T,} be asetof  cnackif 4 given literal is true. We do the same here. The fol-

time intervals, wherd; = [ti1, ;2] for eachi. T; immedi-  |oing example shows that tHCWA can handle examples

ately preceded; in S'if t;o < ¢;, and for everyl}, € S, g\ch as the Planes example.

elthertkg <t Orty > tjl-

.. : . ) Example 3 Let G be the go theory in Figure 1. Lef;
Intuitively, 7 is a coherentinterpretation of a go theorgx  5g 7, be the interpretations in Example 1. Suppase-
if for each objecto, there is a time intervdl’ such that for in(p22, (75, 200), (85, 210), 23, 30). Gl=""*""¢ since in all

every time point ¢ T, Z(o, 1) either satisfies a go-atom in coherent models af, during[23, 30] planep22 is in Boston

G or keeps the object at the destination of the last satisfieq,nich is inside the rectangle of the atem

go-atom inG' . Supposé = in(p22, (55,185), (80, 200), 23,30). Then
Definition 7 (Coherent Model and Theory) Let Z be a GE™“*=bsince in all coherent models 6f, during[23, 30]
model of the go theor. LetGlo] = {g1,92,.--,9,} be  planep22 stays in Boston which is not in the rectangle of the
the set of all go-atoms iGF about objecto. 7 is coherent  atomb.

w.r.t. o and G iff Also note thatG ~ a and G = —b because according
to the semantics ihYamanet al, 2004 plane p22 can be

e The direction of the movement jnand ¢’ is same, i.e.,
Jk € Rt such thatt = k x @ whered = locs(g) —
loci(g) andd = loca(g') — loci (g')

e t7(9) < tf(¢") andt; (¢') < t5(g), i.e. temporally
overlapping.

The following theorem establishes necessary and sufficieq
conditions for non-collinear go theories to be consistent.

Theorem 1 A non-collinear go theory: is consistent iff for
every objecb there is a total ordeiC,, compatible withG[o]
such thatC(G[o], C,) has a solution.

(i) There are time intervalsTy = [ti1,t12], To = ;

[to1, tas], -+ T = [tn1,tno] SUCh that for each, 7 ~ @nywhere during23, 30].

satisfiesy; overT; and Theorem 3 Let L be a groundin() literal and G be a go
(iiy For every pair of time intervaldl}, T; such thatT; im-  theory. Checking itz=""*L is co-NP complete.

mediately precedé€s; in {11, 15, ..., T, } the following Since incoherent theories entail everything the following

holds: section describes algorithms for coherent go theories.



1 <i < n, P = P,41)1- LetR be arectangular region. An
entry-exit of L for R is (i, j) iff

e iNR#Pandi >1 = P € R

e /;NR#0Dandj<n = Pjx ¢ R

e Vke[i,j) Po €R
The following lemma gives necessary conditions for

GE™"*q when the atoms in G are satisfied in a specific
order and the object enters and exitsc(a) multiple times.

2.¢/]

Ps

Figure 2: Spatial layout of two go atoms (related to objgct
going from P; to P; and P; to P5; and a rectangl&k. In a
coherent modeb, stays inR between the point®, and P;.
Lemma 2 Let G be a coherent go theoryy be an ob-
. . ject andC be a total order compatible witki[o] such that
4 MCWA-Entailment Algorithms L(Glo],C) has a solution and is spatially continuous w.r.t

This section provides algorithms to check fMCWA-  Glo]. Letgi T go--- T g, be the atoms of G[o]. Let
entailment of both positive and negatiyeund literals. Due @ = in(0,¢1, g2, t1,t2) be an atom. liG=""*q then there
to space limitations we assume all theories are non-collinedp an entry-exit(i, j) of LS(g1) ... LS(g,) for Rec(a) such
go theories. Extending our algorithm to remove this asthat
sumption is straightforward using the methods defined in T*(Glol|,C, g, P;) <ty andty < T~ (G[o],C,g;,Q;).
[Yamanet al, 2004 that combine collinear go atoms into
“movements”— our implementation applies to all go theories Where[Ls, Qu] = LS(gr) N Rec(a),

We first introduce some notations. {§fis a go atom, The following algorithm uses this lemma to check for
thenLS(g) is the line segment between the source and desMCWA-entailment w.r.t. a specific total ordering.

tination of g. Let G be a go-theoryp be an object and

C be a total ordering compatible witt[o]. Let P be a Algorithm CheckCoherentin(G, C, a)
point onLS(g) whereg € G. ThenT~ (Glo],C, g, P) and Supposea = in(0, g1, g2, t1, t2);
T+(Glo],C, g, P) are the earliest and latest possible times | L€tg1 E g2~ E g, be atoms of G[o]
for o to be atP, subject toG,0, C andg. 1 !f C is not spatially contlnyous w.r.t G[ehen return true
if £(G[o], C) has no solutiorthen return true
4.1 Coherentin() for each entry-exit(i, j) of LS(g1) ... LS(gn) for Rec(a)
. ) Let [P;, Q:] = LS(g:) N Rec(a)
In this section, we show how to check whethgraund atom Let [P}, Q;] = LS(g;) N Rec(a)
of the forma = in(o, ¢1, g2, t1,t2) is MCWA-entailed by a it 7+ (Glo], C, gi, P) < t2 andty < T~ (Glo],C, g7, Q;)
ggtheoryG. Let Reg(a) denoteythe set of point8 such that then return true
qi < P* <q3andg) < PY <q,. end for
We first consider a non-collinear go theo6~{¢1, g2} return false

about an object, and an atonu = in(o, ¢1, go, t1,t2). As- -

sume Figure 2 depict®Rec(a) and the two line segments Theorem 4 SupposeG is a coherentgo-theory anda =

[Py, P3], [Ps, Ps] representing movements defineddgayand ~ in(0, 41, g2, t1, £2) is a ground atom. Then is entailed by

g>. In any coherent model af, ¢, will be satisfied before Via MCWA iff for every total orderC compatible with:[o],

g2. Hence the object entef@ec(a) at P, and leaveskec(a) — the algorithmCheckCoherentin(G, C, a) returns “true”.

at Py. If o always arrives aP, beforet, and always leaves .

P, aftert; subject to the constraints i, then we can say 4.2 Coherent-in()

that G="cvq, We now address the problem of checking whether a literal of
For an arbitrary go theory, any object might enter and leavéhe form—in(o, Q1, Q2,%1,t2) is MCWA-entailed by ago-

Rec(a) multiple times. We need to identify these entrancetheoryG.

and exit points as well as the atoms that contain them. Consider a coherent go theofi={g:, 9>} about an object
o ) o, and an in-atona = in(o, ¢1, g2, t1, t2). As before Figure 2
Definition 10 Let L be a sequence of line segmefs = depictsRec(a) and two line segments,, Ps], [Ps, Ps] rep-

[Pr1Pro), b = [Po1 P, .., £y = [Pn1Ppyo] such that for  yesenting the movements defined fayandg.. Note that in

—Y . ) . _ any coherent model @, ¢, is satisfied beforg,. Hence the
T~ (Glo],E, g, P) is the solution to linear programming prob-  gpject enterskec(a) at point P, and leaveskec(a) at point

lem: minimize Xp , subject to £(G[o],C) U L(P,g), where Py. GE"mewe g iff

L(P, g) contains the following linear constraints: '

o distlonGLP) ¢ g diste(0).P) e t; is greater than or equal to the start timegefin any

vF(g) v (g) coherent model of5.
dist(loca(g),P) _ dist(loca(g),P) i II h | h d i f
s — T  SEi—Xpg< ) e t5 is smaller than or equal to the end timegfin any

where X p, 4 is the variable that represents the time the object will coherent model OG . .

arrive P while satisfying.. S, and E, are the variables associated ~ ® Let T} be the earliest arrival time t&, and7; be the
with g in £(G[o],C). T*(G|o],C, g, P) can be computed in the latest arrival time taP, in any coherent model @ then
same way, using maximization instead of minimization. T, >toorly < ty.



The following lemma gives necessary conditions for
GE™"2—q to hold w.r.t. a specific total ordering even
if the object enters and exif8ec(a) multiple times.

Lemma 3 Let G be a coherent go theory, o be an object and

C be a total order compatible wit&[o] such thatC(GJo], C)

has a solution andC is spatially continuous w.r.t. G[o].

Letgs C go--- C g, be the atoms of G[o]. Let =

in(o, g1, q2,t1, t2) be a ground atom. I&="“"*~qa then the
following hold

o TH(G[o],E, g1,l0c1(g1)) <t
o T~ (G[O]a Evgna l002(gn)) Z t2

e V entry-exit (i,5) of LS(g1)...LS(gn) for Rec(a),
Tﬁ(G[O]a Eagiaa) > tg OF T+(G[O}7Eagjan) <t
where[ Py, Qx] = LS(gx) N Rec(a).

The following algorithm checks iF=""**=in() w.r.t. a spe-
cific total ordering.

Algorithm CheckCoherentNotIn(G, C, —a)

Suppose: = in(o, p1, p2, t1, t2);

Letg: C g2 - - C gn the atoms of7[o].

if C is not spatially continuous w.r¥[o] then return true

if £(G[o], C) has no solutiothen return true

if t1 < TT(Go], C, g1, loc1(g1)) return false

if t2 > T~ (Glo],C, gn, locz(gn)) return false

for eachentry-exit(z, j) of LS(g1) ... LS(gn) for Rec(a)
Let[P;, Qi] = LS(g:) N Rec(a)
Let [P}, Q;] = LS(g;) N Rec(a)
if 7 (G[OL 5, gi, Pl) < tpandi; < T+(G[O]7 £, 9, Q?)
then return false

end for

return true

Theorem 5 Suppose’ is a coherentgo-theory andL =
=in(o,q1, ¢2,t1,t2) is a ground literal. ThenL is entailed
by G via MCWA iff for every total order_ compatible with
GJo], the algorithmCheckCoherentNotIn(G, C, a) returns
“true”.

5 Implementation

DeterminingMCWA-entailment is co-NP complete because
the number of orderings spatially continuous w.6Gto] can

be exponential. However, in the real world, we expect a go
theory to allow only a small number of orderings compatible
with G[o]. In other words, the respective order of movement
an object is going to perform is mostly known. For exam-
ple we might not know exactly when the plap22 will land
but we usually know where it is going to fly next. Thus, i
practice there is a bound on the number of compatible tot
orderings per object.

n .

Setloci(g1) = P1 andloca(g1) = P,
Setloci (g2) = Pa, loca(g2) = Ps
andloci (g3) = Ps, loca(g3) = P,
Setloci(gs) = Po, loca(ga) = Py
andlocy (gs) = Py, loca(gs) = Pa,

Set temporal and speed intervals of evgrgo thaty, is
always first and the rest can be done in any order.

We have generalized the reasoning above to create random go
theories with an arbitrary bound on the number of spatially
continuous orderings.

We have implemented the two algorithr@hieckCoher-
entln and CheckCoherentNotIn in Matlab and conducted
experiments on a mobile Athlon XP 1800 processor running
under Windows XP and having 256MB of memory. Figure
3 shows the computation time of four types of queries for
coherent go theories with at most 256 spatially continuous
orderings and have the following properties: all points are se-
lected randomly from the rectandi@, 0), (1000, 1200)] and
the speeds allowed for any object less than 100. The four
query templates we used are:

Q1: in(o, (500, 500), (550, 600),0.5 * h,0.75 * h)
Q2: in(o, (100, 150), (350,400), h — 100, h — 10)
Q3. -Q1
Q4 —Q2

wherer is the latest end time for any atom relatedtm
the given theory. The data points in Figure 3 are an average
of 300 runs.

Our implementation performs very well, executing most
queries in less than 0.3 seconds even when there are as many
as 1,00Q0-atoms per object. In the que€y1 whereCheck-
Coherentln returns true in almost every compatible order-
ings the algorithm runs in linear time with respect to number
of atoms per object and takes up to 0.9 seconds when there
are 1,000g0-atoms per object. Consequentds, the com-
plement of@1, takes almost no time becauSdeckCoher-
entNotln returns false for any compatible ordering.

6 Related work

The Closed World Assumption (CWA) proposed [Reiter,
1977 holds that anything that cannot be entailed by a theory

is false. Minke{Minker, 1983 extended the CWA to a Gen-
eralized CWA (GCWA) that accounts for disjunction. GCWA

Sstates that a formula is false if it is false in all minimal mod-

els of the theory. The go-theories proposed Ygmanet al,,

2004 are disjunctive because the start and end times and ob-
ect velocities are all known to be within a given range. The
otion of a coherent model of a go-theory selects certain mod-
els (much like Minker selected minimal models in GCWA)

For our experiments we generated random go theories With 4" ;ses these to make closed world inferences.
at most 256 spatially continuous orderings. This is not a hard- [Intille, 1994: Intille et al, ] have used the CWA to track

coded limit of our implementation. Generating random go
theories such that more than one spatially continuous orde

ing exists is a little bit tricky. Here is one method to generate;

a go theoryG = {¢1, 92,93, 94, g5} With two spatially con-
tinuous orderings.

e Randomly pick pointdy, P, Ps and Py

moving objects in football games using computer vision algo-
Fithms. They use CWA to adaptively select and weight image
eatures used for correspondence. No motion reasoning of the
type we perform in this paper is done.
Numerousspatio-temporal logicsexist [Gabelaiaet al.,
2003; Merzet al, 2003; Wolter and Zakharyaschev, 2000;
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