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Abstract network I may be represented by the conjunction of all its
) _ o constraint atoms. For simplicity, we limit our attention here
We give a clear picture of the tractability/intracta- to closed quantified constraint formulas, where all variables
bility frontier for quantified constraint satisfaction occurring inI are quantified. However, all our results may be

problems (QCSPs) under structural restrictions. On  gasily extended to formulas with free variables.
the negative side, we prove that checking QCSP As an example, consider the following quantified

satisfiability remains PSPACE-hard for all known constraint formulag,: VS, X,Y,T,R,U,P 3V.Z YW
structural properties more general than bounded a(S, X, T, R) A b(S ;'U P)j/\ é(]’ﬂ U Z’) A d(W’X Z) A
treewidth and for the incomparable hypergraph e(Y:Z)7 /\, f(R, P, ‘7/)7/\7g(X,Y). ’Th7is formulaisa{QCSP
acygII|C|ty. Moreover, r']f th de dom?ln IS notﬂxed,dthe instance, whose constraint netwaf®/ (¢. ) is represented by
problem is PSPACE-hard even for tree-shaped con- e constraint atoms occurring in the conjunction. The quan-
straint scopes. On the positive .S'de’ we |den§|fy rel- tifier prefix (short: prefix) ofp. is the stringv3v.
ﬁ;’%nvt ;]r:\;:itnablbeoﬁlr?j:g? 'nglrlt"ri'ggv%tchsgs dW'tgglgi' Not surprisingly, the increased expressive power of QCSPs
with a bour?ded numbe?%f uards fhe Iager are comes at a cost. Indeed, while deciding the satisfiability of
. nber of gu : traditional (i.e., purely existential) CSPs is NP-complete, this
solvable in polynomial time without any bound on problem is PSPACE-comple{®orneret al., 2003, in the
domains or quantifier alternations. general quantified setting. Hence, much effort has been spent
to identify tractable classes of QCSPs.
1 Introduction These approaches can be divided into two main groups:

. . . : techniques that identify tractable classes of QCSPs by ex-
Quantified constraint satisfaction problems (QCSPs) are 6Ioiting particular properties of constraint relations, and tech-

generalization of constraint satisfaction problems (CSPS)yio 65’ that identify tractable classes by exploiting the struc-
where variables may be existentially and universally quantiy,re of constraint scopes, usually known sisictural de-

fied, and nested quantifications are allowed. This frameworI&)mposmOn methods. While several deep results have been

is clearly much more expressive than plain existentiaI-CSPalready achieved by techniques in the former group (see,

and may be fruitfully exploited for modeling a wide spectrume_g_ [Borner et al., 2003: Bulatovet al., 2000: Bunindet

of problems from several domff“”s- . . al., 1995; Chen, 2004a; Creignaa al., 2001; Jeavonst
A QCSPinstance (or quantified constraint formula) is al., 1997), only a few papers focused on structural de-

an expression of the for@, Vi - -- @V, I, wherel isa  omnasition methods, though they were proven to be use-
constraint network (denoted lyN (¢)), Q; is a quantifierin ¢, iy the non-quantified setting (see, e.fRechter, 2003;
{3,V} (with Q; # Q.+1), andV; is a set of variables, for Gottlobet al., 2000).

1 < 4 < m. The string of quantifier); - -- Qr, is called Recall that the structure of constraint netwdris best rep-
the prefix of ¢. Recall that aconstraint network is a triple o o0 g by its associated hypergrapti) — (V, ), where
I = (Var,U,C), where Var is a finite set of variableg/ is V = Var andH = {var(S) | C = (S,r) € C} :’:lnd'var(S)
tche_setcof gomamg (Vll ;c}?niicge}/%rfliﬂﬁgtriin@r' Aaggn- denotes the set of variables in the scapef constraintC.

- {C1,Cs, ..., Co} ; . ' ’ Some graph-based techniques are based opritml graph
straintC; = (S;,r;) consists of a list of variables; called G(H(I)) = (V,E) of H(I), where two variables are con-
constraint scope, and of a relation;, calledconstraint réla- o o ing if they occur together in some hyperedge (i.e., in
tion, providing C;’s allowed combinations of values for the the scope of some constraint)

\éa“abé%s g\ s scopel.l Sdomet|mgs itis m(?gre c_?rr?fortahble to Chen recently presented an interesting result about struc-
enoteC; by its so called constraint atom(S;). Then, the turally tractable QCSP$Chen, 2004h He describes a

“This work was supported by the Austrian Science Fund (pwp)polynomlal-tlr_ne algorithm for C|§5595 _Of QCSPs_havmg (P”'
project: Nr. P17222-N04 Complementary Approaches to Constraint  mal graphs with) bounded treewidth, fixed domain, and fixed
Satisfaction. prefix. In fact, the complexity of this algorithm depends



dramatically on the number of quantifier alternations and on acyclic PSPACE

the size of the largest variable domain. As notedGhen, R ——
SR (avrav\

20044, the same result has been independently derived by ERRRRA
o TN
Ve Gvr3
R \
\>

[Feder and Kolaitis, 20Q4 by exploiting Courcelle’s theo-
rem about monadic second order logic on bounded treewidth
structures.

Notice that there is no indication that these results are op-
timal, and in fact several interesting questions arose, and will
be the subject of this paper:

(1) Are QCSPs having bounded treewidth tractable if do-
mains are not fixed?

(2) May we extend this result to other structural notions,
possibly more general than bounded treewidth? Tquamﬁc,

(3) Are there different kind of restrictions on quantified alternations
constraint formulas that make QCSPs tractable? tractability area
anght?agnnst\al\\:\(/asr.s\}\(/)etg(raos\(/aeqsl:reosr?\c(])rrgr%%n;g:fgszﬁtsh gSf\?vgngzFlgure 1: Structural restrictions and (in)tractable QCSPs.
identify new tractable classes of QCSPs, having neither fixedf for each constraintS;,r;) € C, o(S;) € r;. An extension
bound on domains nor fixed bound on quantifier alternations?f o to a setV” 5 V' is an assignment’ for V' such that
Our main contributions, shown in Figure 1, are the following: @' (V) = (V) for eachV" € V. We denote byat(o, V') the
» We prove that, without the fixed domain restriction, evenSet Of all the extensions efto V. For the trivial assignment

QCSP instances whose structure is a tree and whose presf%ﬁgtfglf ;n?:lseggpr%(saﬁisoff d}(’{?r'ab'egxt(ﬂwa V') is clearly the
is V3 are co-NP-hard. Moreover, adding further alternation e _ .
we get complete problems for all Ieveiqs of the polynomial L€t¢: @1V1Q2V2Q3Vs ... Qr Vi I be @ QCSP instance,

hierarchy. It follows that this problem is PSPACE-compIeteand leto, be the trivial assignmenty. A strategy for ¢ is
if there are no bounds on the quantifier prefix. any functions such that, for each paig;, o; 1, with 1. < i <
» On the positive side, we prove that, if the prefidig (or i(%" Jitﬁl) 'Sh elltherto?e ass.llggfnmetnt m.”é(a;i*h Vi)‘-’/ i
some substring of it), then solving acyclic QCSPs is fea-.fi T ovr :W oelste of possible ex 'endS| X aEJ(ITi}h i)
sible in LOGCFL and hence in polynomial time. More- | &i = V. A complete assignment,, is derivable from a
over, this tractability extends to all known generalizationssuategys If there arem — 1 assignmentsy, ..., o, —1 Such

e . : thato; € s(Qq,0;-1), foranyl < ¢ < m. Then,sis a
of acyclicity, and in particular to bounded hypertree-width : o0 : ) :
QCSP4Gottlobet al., 2004. solution for ¢ if all derivable assignments satisfy A QCSP

instance isatisfiable iff it has a solution.
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» We prove that, for fixed domains, the tractability result
for bounded treewidth is almost optimal. Indeed, solvingdi
QCSPs over the binary domaifd), 1} remains PSPACE-
complete even if the structure is an acyclic hypergraph

whose incidence graph has bounded treewidth, and Whosgain 7 or, equivalently, with the same domaif(V) for each
primal graph has small (i.e., logarithmic) treewidth. variablel. We say that such QCSPs aretyped, in contrast

» Allthese results show that traditional structural techniques the general ones, calléghed. The following’ proposition
do not help very much, but for some simple cases and withy, . that the two formalisms are in fact logically equivalent.

limited quantification. Indeed, our hardness proofs sho " . .
hat th f ifi icallv al h roposmon_z.l For any QCSP instance o, there exists an
that the presence of quantifiers radically alters the structur ntyp ivalent instance &' Moreover, it CN (3) is a bi-

properties of the constraint scopes. We thus realize that it iy ) X A
worthwhile taking into account how they interact with the N&"y network, ¢ can be computed in polynomial time.
scope structure, and in fact considering quantifiers as part Notice that going from typed to untyped instances may be
of the scope structure itself. Following this idea, we iden-exponential for non-binary networks, as the former setting
tify a different kind of restriction on quantified constraint allows more succinct and efficient representations.
formulas that ensure tractability and that is incomparable We remark that all complexity results in this paper hold
with the other structural classes. In particular, for any fixedfor both settings. Indeed, we prove membership results and
k, we define the class-GQCSP ofk-guarded QCSPs, that Provide algorithms for the general typed setting, and prove
are solvable in polynomial time, without any restriction on hardness results by using either binary networks, or a unique
domains or quantifier alternations. bir:/i;\/ry dO":ﬁir; for Ia|;\g/affi6;1b|35- s has the bounded
g e say that a clasS of hypergraphs has the bounded hy-
2 Quantified CSPs pertree width property, denoted BHTW, if there is ak > 0
LetI = (Var,U,C) be a constraint network. An assignment such that every hypergraph khas hypertree width at most
o for a set of variabley” C Var is a function mapping each & [Gottlob et al., 200d. Similarly, we define the property
variableV € V onto its domair/ (V) € U. If V. = Var,oc  BTW, meaning bounded treewidfRobertson and Seymous,
is saidcomplete, otherwise it is a partial assignment. We say 1984 of the primal graph (of the constraint hypergraph), and
that a complete assignmentsatisfiesl, denoted bys = I,  the propertyBITW, meaning bounded treewidth of the inci-

It is worthwhile noting that, in the definition of QCSPs,
fferent variables have different domains, in general. This is
especially useful in the quantified setting. However, in the
literature, QCSPs are sometimes defined over a unique do-



dence graph. Moreover, we say that a cléss hypergraphs | — SC

has the small hypertree width property, denotedsbyw, if / ‘ 1 \ l \
the hypertree width of every hypergraph € S is at most B q¢ C
log |H|. The small treewidth propertyTw of primal graphs ! gy 2 !
is defined similarly. We also consider the proper@yCLIC / : lc\
(resp.,TREES) of any class of acyclic hypergraphs (resp., pri- B ‘ S, C,
mal graphs). 2 qQY ] \
We study how the complexity of QCSPs change as a func- / } C C.
tion of quantifier alternations and of constraint structures. B ‘ e S .
Moreover, we distinguish the case of arbitrary domains, de- 3 SV
noted byANY, and of binary domains, denoted bg, 1}. / 4
Let @ be a string of quantifier alternations, a hyper- ‘
graphs property, angd a domain property i{ANY, {0, 1}}. B, Qv
Then, QCSRQ, S, D) is the problem of deciding whether / | 5
an instance¢ < class(Q,S,D) is satisfiable, where Toe [0yl T2l
class(Q, S, D) is any class of QCSP instances over domains B; B,

of kind D, with alternation prefixQ, and whose associated

hypergraphs have propersy Figure 2: Constraint network(®) in Theorem 3.4. In the

right-bottom box, encodings of constraints in Theorem 3.7.

3 Structural methods do not help very much Consider the following CNF formula, that we use as a run-
3.1 Sometractableinstances ning example® = (V3 vV Vo VV3)A (Vi V=Vi) A (VL V VsV
From [Gottlob et al., 2004, we already know that Vi) A (V2 V Vg). Then, Figure 2 shows the constraint struc-
QCSR3, BHTW, ANY) is in polynomial time, and the same ture (i.e. the constraint hypergraph)idf?). Note that in this
holds for any structural restriction stronger than boundedase hypergraph and primal graph representations coincide,
hypertree-width. ~ Moreover, it is easy to see thatasCN(®) contains only binary constraints.
QCSRV, BHTW, ANY) is even easier. We next show that also The set of variabled/ar is the union of a set oflause
QCSR3V, BHTW, ANY) is tractable. variablesC' = {C; | 1 < j < m} corresponding to the:
Let ¢ be a QCSP instancé,= (Var,U,C) the constraint clauses of®, of a setB = {B, | V; € V}, corresponding
network of¢, andY” be a set of universally quantified vari- to then Boolean variables occurring if?, and of two sets
ables. Letr(X,Y’) a constraint ofl over variable sets¥ ~ S¢ = {S¢,[1<j<m—1}andS” = {S},[1<i<n-—
andY”’, whereY” is the set ofY” variables occurring in the 1} of special variables, calledause selectors andvariable

scope ofr. Denote bycart(Y’) the relation containing all  sglectors, respectively.

combination of values from the domains of variables'i For a variabléV; of ®, the domain of/ () contains literal

i.e., cart(Y') = Xy ey U(Y). . . constants; and—w; associated with its truth-values. More-
Then, defineY-red(r) as the relation containing all and over, for any clause; in whichV; occurs, the domain df(®)

only those tupleg of relations such that, for any combi- .4ntains a literal constant i{wz’ _\,Ulj} encoding the truth

i / H x 7/ Y. ;
nationt’ of values for variabled™, ¢t[X] - t' € r. Note that, value forV; that makes:; true. We denote by; (resp..i’)

for the special cas®”’ = (), we getY-red(r) = r; for the € RN
special cpaséZ’ — (), we simply r?aquire aI(I gombinations of any of these (positive or negative) literals, and-dy (resp.,

values forY”, thatis,Y-red(r) = r, if r is preciselycart(Y'), ~ ~li) its complement. Moreover, we denote b Lit(c;) the

otherwise it is the empty relation. set of literals that make; true. E.g., forez = (V1 vV =Vy)in
Denote byY-red(¢) the QCSP obtained fromby replac- @, satLit(cz) = {vi, i}

ing each constraint relatianby Y-red(r). In more detail, the domains df(®) variables are the fol-

Lemma 3.1 For any QCSP ¢ and set of universally quanti- lowing: for any variabIeC’]« (corresponding to clause of

fied variables Y, Y-red () can be computed in logspace. ®), U(C;) = sailLit(c;); for any Boolean variableB;,

U(B;) = {vi,—w;}; for any clause-selectas$, U(SS) =

After the above lemma and exploiting the fact that no use U(C;); finally, for any variable-selectd”, U (S?) =
VAV ’ 7 [

ful assignment is lost with this transformation, we can sho J"EJ'U B
the following. Ui U(Bi). . .
Theorem 3.2 QCSR3V, BHTW, ANY) is in polynomial time. Intuitively, Boolean variables encode a truth-value assign-

Moreover, it is LOGCFL-complete, and hence tractableand ~ Ment 0@, whereas any clause variablé; chooses some
parallelizable. literal in satLit(c;) that satisfies it. Any selector variable

may take a value coming from either variable connected to it.
3.2 Encoding Boolean formulas as acyclic QCSPs Thus, any choice of all variable selectors corresponds to the
To any CNF formulab = ¢; A. . .Ac,,, over Boolean variables Propagation of a literal valug coming from some Boolean
V = {Vi,...,V,)}, we associate a binary acyclic constraint variableB; in the left branch. Similarly, any choice of clause
network I(®) = (Var,U,C) . This constraint network will selectors corresponds to the propagation in the right branch
be used hereafter for characterizing the complexity of acycli®f some literal;, satisfying some clauss. If for all possible
and quasi-acyclic quantified CSPs. propagations from both branches, no gair/] of comple-



mentary literals meets at the topmost constraint of the neto, oof
work, then the values of Boolean variables encode a satisfyl:,oim'2

ing truth-value assignment far. We next describe the con-

straints inC that implement the above idea, where the indice

i and¢’ actually are values in the intervgl. .. n] and where

the indicesj, j/ are values ifl...m)|.

e The topmost constrain{Sy, S7), called evaluate, has
a constraint relation consisting of(l;,—}) | ! €
satLit(c;j)}. Note thatevaluate is satisfied only by assign-
ments where its variables take complementary literals.

e For any constraintSy, B;) between a variable-selectsf
and a Boolean variablB;, its constraint relation consists of
the tuples{(1;,1;)} U {(lyr, ;) | &' > 4}.

For space limitations we only provdardness for
here. For amyn > 1, consider thel’ -complete
roblem of deciding whether a quantified Boolean formula
=3V VVy - - - Vs, ~® is satisfiable, where is in CNF.
From this formula, we build in polynomial time the follow-
ing instance ofQCSR/(3V)™3, TREES, ANY): QC'(¥')
IB1VBsy - - - VBay,, C 3S I(®). From Lemma 3.3, it can be
seen easily that’ is satisfiable iffQC(¥’) is satisfiable.
Membership. The proof is by induction. First observe that,
given any instanc€) = 3V;VV,¢ of QCSR 3V, BHTW, ANY),
its complementary probler®“ (deciding whether for all as-
signmento to V; there exists an extension 1§ that does
not satisfy¢) is in LOGCFL and hence in polynomial time,

e For any constraint between a pair of adjacent variableby Theorem 3.2 and the fact that LOGCFL is closed under

v

selectors(Sy, S7, ) and for the constraintSy, B,,) with
i = n — 1, the constraint relation i§(l;/,l;/) | i >
UL L) |7 > i)

e For any constraintS;, C;) between a clause-selectsf
and a clause variablé‘j, its constraint relation consists of

the tuplesi{(J, 1) | B € satLit(c;)} U {(1 1) |l €

h>?

satLit(cj),l,j; € satLit(cjr), 5" > j}.

complementation. Then, we prove the basis of the induc-
tion, m = 1. The problemQCSRYVY3V, BHTW, ANY) is in

I = co-NP. Indeed, le = VvV;,3V,VV3¢ be any in-
stance of this problem. Then, its complement can be de-
cided in NP: guess an assignmento V; and check that
for all assignment’ € ext(o, V) there is a complete as-
signments” € ext(o’, V3) that does not satisfy all the con-
straints ing. From the observation above, this check is feasi-

e For any constraint between a pair of adjacent clauseble in polynomial time. MoreovelQ CSR3v3V, BHTW, ANY)

selectors(S¢, S5, ;) and for the constraintSs, Cy,) with
j = m — 1, the constraint relation consists of the tuples:

{05 | 1, € satLit(cp).g" > jyU{L1) | 1] €
satLit(c;), 1], € satLit(c;/),7 > j}.

If 1 is a truth-value assignment for all variablgsof @,
then, s, denotes the assignment such thatB;) = v; if
(Vi) = true, ando, (B;) = —w; if u(V;) = false.

Lemma 3.3 Let 1 be a truth-value assignment for all vari-
ables V of ¢ and o, the corresponding assignment for B.
Then, p is a satisfying assignment for @ if and only if there
exists an assignment ¢’ € ext(o,, C) such that, for every
0" € ext(o’, SV U S¢), 0" I~ I(®) holds.

After this lemma, we immediately get that, even for acyclic
binary constraint networks with just two quantifier alterna-
tions, solving a quantified CSP is intractable.

Theorem 3.4 QCSRV3, TREES, ANY) is co-NPhard.

Proof. From a CNF Boolean formulé, we build in poly-
nomial time QC(®) = VvB,C 35S I(®), where I(®) is
the acyclic constraint network associated with From
Lemma 3.3, satisfying assignments fdrare in one-to-one
correspondence with assignments to the variableS and
C' such that all their complete extensions do not sati$fy).
Thus,® is not satisfiable iflC'(®) is satisfiable. O

3.3 Intractable acyclic instances

After having shown in the previous section the tractability for

3V and the intractability fox’3, we now settle the complexity
of acyclic QCSPs with arbitrary quantifier prefixes.
Theorem 3.5 For any natural number m > 1,
1. QCSR(V3)™V, BHTW, ANY) is 114 -complete, and
hardness holds for QCSR(V3)™, TREES, ANY), too;
2. QCSR(3v)™3V,BHTW, ANY) is XL -complete, and
hardness holds for QCSR(3V)™3, TREES, ANY), too.

is in ¥¥, as any instance of this problem may be solved
by a non-deterministic Turing machine with an oracle for
QCSRV3V, BHTW, ANY). The induction step is a simple adap-
tation of the above reasoning for any > 1. O
Coroallary 3.6 Thequantified constraint satisfaction problem

(on arbitrary domain) is PSPACEcomplete, even if restricted

on constraint networks whose structureis a tree.

3.4 Fixed domain helpsonly with fixed arity

We now show that hypergraph acyclicity does not help in
making easy the QCSP problem, even if we consider Boolean
domains only. The same holds even in case we additionally
require that the incidence graph has bounded treewidth, and
the primal graph has small (logarithmic) treewidth. This en-
tails that the problem remains intractable as long as we have
non-fixed arities, even for very simple constraint interactions.

Theorem 3.7 For any natural number m > 1,

e QCSR(V3)™, ACYCLIC NBITW N STW, {0,1})isIIy -
complete;

e QCSR(3V)™3, ACYCLIC N BITW N STW, {0,1}) is XL -
complete.

Proof. Let ® be a Boolean formula, anb(®) = (Var,U,C)

its associated acyclic constraint network. We consider the
network’(®) = (Var',{0,1},C’), defined as follows. For
each variableX € Var, Var’ contains|U (X)| distinct vari-
ablesXy, ..., Xiog |(x), With domainU’(X;) = {0,1} for
eachX;. For each constrain{ X,Y) in C, C’ contains a con-
straintr’ (X1, ..., Xiog |v(x)]» Y1, - Yiog [U(v)])» WhOSE CON-
straint relation is such that, for each tugle;,y;) in r, 7’
contains the tupléenc(z;), enc(y;)), where the string of bits
enc(z;) (resp. enc(y;)) is the binary encoding of domain
valuex; (resp.z;). The right-bottom box in Figure 2 shows
a portion of the constraint networK (®) associated to the
formula @ of our running example. Observe that the con-
straint network!’(®) is in ACYCLIC N BITW N STW. Indeed,



the hypergraph associatedf¢®) is acyclic, and the number Example4.2 Consider again QCSP instanggpresented in

of variables in each hyperedge is bounde®byg ¢, where  the Introduction, and the following equivalent instance, where
c is the size of largest domain over all the variabledir.  form(¢.) is rewritten as

Therefore, the treewidth of the primal graphisatmsizc. = VS, XY, T, R, U, P(a(S, X, T, R) A b(S,Y,U,P) A
Moreover, it is easy to check that the treewidth of the inci- AV f(R,P,V) AN3Z (g(X,Y) N (T,U,Z) A
dence graph of’(®) is 3. Finally, observe that there exists a YW AW, X,Z) N eY,Z)))

one-to-one correspondence between assignments to variablelsis is a 2-guarded constraint formula, i.e), € G3
in I(®) and inI’(®), and thus the result immediately follows The guard of formulay is guard(y) = {a(S,X,T,R
from Theorem 3.5. o b(S,Y,U,P)}. For the formulasyy = 3V f(R, P,V
o =37 (g(X,Y) A e(T,U,Z) N YW dW, X, Z) A
e(Y,Z) ) andys = VW d(W,X,Z), we have the fol-
lowing guards: guard(y1) = {f(R, P,V)}, guard(ys2) =
{9(X.Y),e(T, U, 2)}, andguard(s) = {d(W, X, Z)}. O

4 Guarded formulas and tractable CSPs Note that the above definition df-guardedness is con-

In this section, we describe a wide class of quantified cong—%enial o the specific syntax of quantified CSPs and differs

Coroallary 3.8 Thequantified constraint satisfaction problem
is PSPACEcomplete, even if restricted on Boolean constraint
networ ks whose structureisin ACYCLIC N BITW N STW.

straint formulas that are tractable, even if there is no constal ?g:jter:atlggfg—)gulirc:ﬁg fs';z;%gjrzr ngrmlri]grfsk%? Sie 1%%%(3 d
bound on domain sizes or quantifier alternations. Recall th ' : 9

. . agmentG F of first order logic or of thé:-guarded fragment
any QCSP instancé may be represented by a logical expres- : :
sion, as shown in Section 1 for QC3P. Technically, let us GF of first order logic[Gottiob et al., 2003, the guards

. ’ ) of an existentially quantified subformuta are added con-
denote the pure logical formula ¢f(without the encoding of . . : N
relations dgmainsg etc.) Wrm(g)F 9 junctively to ¢ (guard(y) A v), just as forG;. However,

! o the guards of a universal formulaare addedn form of an
Following[Kolaiis et al., 2000, we denote b0, the implication: guard(vy) — 1. This is much more natural,

fragment of first order sentences where arbitrary quantifica-. : .
tions and conjunctions are allowed, but where negations an?nce these logics have negation and guardedness needs to be

disjunctions are forbidden. They observed that the existentie{ g:lreocftlg gLe;?jg/de?olﬁ&du?;gi—f](zt('?—,rss}\ Zo(r}_/eﬁ(airsnlpclg,iggltlaynega—
fragr:nentHFOAﬁ of F(f)“f has tg? sameB ex;l)lres_swe povl\(/.eroequivalent tovY (g(Y) — —(Y)). Since the logidOx +
as the constraint satisfaction problems. By allowing any kind ¢ . R ; M

P ; : constraint formulas has conjunction)(as unique binary
of quantifiers, this observation may be clearly extended to th L . . : .
connection between genefd, ;. formulas and quantified %onnectlve, it is syntactically impossible to express an im

constraint formulas. Notice that, in this more general Set_phcatlon guard() — 4 in FO, . (in fact, this is also se-

ting, there are different equivalent logical representation Ofnanncally impossible). On the other hand, since negation

: missing inFO . ., no problems involving “wrong guards”
the same instance. For example, one may use parentheseséS [ 9 A+ P 9 99

distinguishing subformulas and delimiting quantifier scopes n gns&a through.neggtlona/vfhenhusmt? thednz;l_turglf(but non-
In this section, we represent QCSPsHYy . , formulas that ngnf?o) guards introduced for the above defined fragments
are not necessarily in the traditional prenex form. Notice, k.2 £ A+

; For thek-guarded fragmentz F}, of first order logic (i.e.,
however, that eacRO ,  formula can be easily transformed ) . o
into an equivalent prenex formula. for the standard:-guarded fragment) the following tractabil

ity result was shown ifiGottlobet al., 2003:

4.1 Thefragment k-GQCSPof k-guarded QCSPs Proposition 4.3 The combined complexity of evaluat-
We show that, for each constaht a simple and appealing "9 & G formula ¢ over a st of finite relations D is in
fragment ofFO,._, is decidable in polynomial time. Since O] < [D).

we have no bound on the number of variables in a formula, Let us now show that also the clagsGQCSP ofk-
we assume w.l.0.g. that each variable is quantified over onlguarded QCSPs is tractable, notwithstanding the “nonstan-
once, i.e., quantified variables are not reused. In the followelard” guards for universally quantified subformulas.

ing, we denote byfree(1)) the free variables of a logical for- | emma 4.4 Thereis an algorithm TRANSFORM which for
mulaz). each QCSP ¢ € k-GQCSPcomputes a pair (D, ¢*) where
Definition 4.1 The classk-GQCSP ofk-guardedQCSPs D isafinite database and ¢* € G F}, such that ¢ is satisfied
consists of those QCSPs instangeshose formulgorm(¢)  iff D = ¢*. The TRANSFORM algorithm runsin logspace.
belongs to the fragmeidi;, of FO,  defined as followsG};,  Proof. Let ¢ € k-GQCSP, and leR be the set of con-

is the smallest subset 800, , such that: straint relations ofCN(¢). Consider a subformula’ =
e every atom belongs t6'; VY (guard(y) Av) of form(¢), wherevY is a maximal pre-
o if 1 andg, € G}, theng, A g2 € G, fix of universally quantified variables, and whereard(vy)
e letay,...,a; be atoms, wheré < k, and lety) be a for-  is a conjunction ofn atomsr;(Y;, X;), with1 <i <m < k,

mula inGj. If the free variablegree(y)) C var(a;) U---U  whereY; are the variables in its scope includediinand X;
var(a;), then, for each tuple of variablgsand each quanti- its other variables, hencE; N Y = (. Forl < i < m, we
fier @ € {3,V}, the formulay’ : Qy(ar A -+ A ag A ) denote byr; | the relation obtained from the constraint rela-
belongs toG}. The set of atomga,...,«;} is referred to  tion r; by keeping allY;-columns and projecting out alt;

as the guard of’ and is denoted byuard(y’). 0 columns,i.e.r;| = [[y 7.



Assume that for someé < i < m, r;| is not equal to the define the fragment-GQCSP just ask-GQCSP inDef-
Cartesian productart(Y;) of Y; domains. That isy;| does inition 4.1 with the following addition:If the free variables
not consist of precisely all possible combinations of constantgree()) C var(aq) U -- - U var(a;), then, for each tuple of
for all Y variables occurring im;. Then one tuple of such  variables y the formula ¢ : Vg(((cn A -+ A a;) — )
constants is not im; | and thus the atom;(Y;, X;) cannot  belongsto G;.
be satisfied for the substitutidr} = a. Sincer; occurs posi- After the results in Section 4.1, it is easy to see that,
tively in ¢, ¢ cannot be satisfied. The key observation is thudor each fixedk, the satisfiability of any QCSP in the class
that, whenevep is satisfied, forl < i < m, r;| must be k-GQCSP can be checked in polynomial time. Moreover,
equal tocart(Y;). Algorithm TRANSFORM starts by check- we are able to show thatGQCSP is strictly more expres-
ing whether this is true. From Lemma 3.1, this check can besive thank-GQCSP(for space reasons, we defer the proof to
implemented to run in logspace: just compdteed(r; |),  the full paper).
and check that it is not empty. If this test fails for at least
one guard relation;, then TRANSFORM outputs the for- REferences
mulafalse. Otherwise, lety,, be a new constraint atom with [Andrekaet al., 1999 H. Andreka, J. van Benthem, and |. Nemeti.
constraint scop&’, whose relation is the join of the | rela- Modal languages and bounded fragments of predicate logic.
tions. Now, consider the set of free variabl€s= free(1). Journal of Philosophical Logic, 27(3):217-274, 1998.
If X # 0, sinces is ak-guarded formula, there are at most [Borneret al., 2003 F. Borner, A. Bulatov, A. Krokhin, and P.

: - ] Jeavons. Quantified Constraints: Algorithms and Complebity.
k atoms ing that coverX. Let g, be a new constraint atom Proc. of CSL"03, pp. 58-70, 2003.

with constraint scop&’, whose relation is the projection over [Bulatovet al., 2004 A. Bulatov, A. Krokhin, and P. Jeavons. Con-
X of the join of these guard atoms. Moreover,ddie a new straint satisfaction problems and finite algebrs.Proc. of

constraint atom with constraint scopeu Y, whose relation ICALP’ 00, pp. 272—282.
is the join ofg,, and gy (or justgy, if X is empty). Note  [Bunindetal., 1999 H.K. Buning, M. Karpinski, and A. Flogel.
that, sincek is fixed, TRANSFORM may compute from Resolution for Quantified Boolean Formuldsformation and

its input ¢ in logspace. Then, TRANSFORM replaces our  Computation 117(1):12-18, 1995.

subformulay)’ = VY (guard(y) A1) by the equivalent sub-  [Chen, 2004k H. Chen. Collapsibility and Consistency in Quanti-
formulay” = VY (9 — guard(y)) A ¢). Note that this fied Constraint Satisfactiorin Proc. of AAAI’04, pp. 155-160,
transformation does not change the set of free variables, as 2004 3 _ S
free(y') = free(y"). Thus, the set of atoms that cover theselChen, 2004b H. Chen. Quantified Constraint Satisfaction and
variables and acts as the guardydfin form(¢) will be the Bounded Treewidthin Proc. of ECAI’04, pp. 161-165, 2004.
guard ofy” in the new formula. [Creignouet al., 2001 N. Creignou, S. Khanna, and M. Sudan.

. . . Complexity Classifications of Boolean Constraint Satisfaction
After having done this for all universal guarded subformu- Problems S AM Monographs on Discrete Mathematics and Ap-

las, TRANSFORM has generated a formygltac GF}. Let plications, 7, 2001.

D the database consisting of all constraint relationS®f¢)  [pechter, 2008 R. DechterConstraint Processing. Morgan Kaut-
plus all relations likey computed for modifying the universal man, 2003.

quantifications. It can be seen thiais satisfiable iffD = ¢*.  [Feder and Kolaitis, 2004T. Feder and P.G. Kolaitis. Closures and
Moreover, the entire algorithm runs in logspace. O dichotomies for quantified constraints. Manuscript, 2004.

. N [Gottlobet al., 2000 G. Gottlob, N. Leone, and F. Scarcello. A
Theorem 4.5 For each fixed £, the satisfiability of any QCSP Comparison of Structural CSP Decomposition Methdtsifi-

in the class k-GQC SPcan be checked in polynomial time. cial Intelligence, 124(2): 243—282, 2000.

Proof. Follows from Lemma 4.4 and Proposition 4.3. O [Gottlobet al., 2001 G. Gottlob, N. Leone, and F. Scarcello. The

. complexity of acyclic conjunctive querieSACM, 48(3):431—
4.2 Extendingthe k-GQCSPfragment 498, 2001.

When looking at the fragmenit-GQCSP, and evemore [Gottlobet al., 2003 G. Gottlob, N. Leone, and F. Scarcello. Rob-

; ; ; ' s bers, marshals, and guards: game theoretic and logical character-
generally, at QCSPs in which universal quantifiers appear, .- > . ity
we observe that the expressive power of universal quantifi- izations of hypertree widthlCSS, 66(4):775-808, 2003.

T . Gradel, 1999 E. Gradel. On the restraining power of guardsur-
cation is rather poor. In fact, as already observed in thé nal of Symbolic Logic, 64:1719—1742, 1999.

proof Of. Lemma .4'43 a subjormula:Yr(Y, X) can only [Jeavonst al., 1997 P. Jeavons, D. Cohen, and M. Gyssens. Clo-
be true if the projection oveY” of r is equal to the carte- sure Properties of ConstrainACM, 44(4):527-548, 1997.

sian productcart(Y’) representing the set @l tuples that  [kqjaitis et al., 2004 Ph. G. Kolaitis and M. Y. Vardi. Conjunctive-
can be composed from all possible domain elements from Query Containment and Constraint SatisfactiodCSS,

the respective domains. This is a rather stringent condi- 61(2):302—-332, 2000.

tion. On the other hand, by standatehuards of the form [Mamoulis and Stergiou, 2004N. Mamoulis and K. Stergiou. Al-
(ri Arg A -+ A1) — b, we can express some other in-  gorithms for Quantified Constraint Satisfaction Problerrs.
teresting properties. For example by standard guards, one Proc. of CP'04, pp. 752-756.

may express ainclusion dependency stating that part of one [Robertson and Seymous, 198B8l. Robertson and P.D. Seymour.
constraint relation must be contained in another constraint re- Graph Minors II. Algorithmic aspects of tree widtBournal of
lation. To add expressive power, we thus suggest to allowy Algorithms, 7:309-322, 1986. , o
the use of standard guards together with conjunctively spec Schaefer, 1978 T.J. Schaef’er. The Complexity of Satisfiability
fied guards (for universally quantified subformulas). We thus Problemsin Proc of. STOC'78, pp. 216-226, 1978.



