
The Complexity of Quantified Constraint Satisfaction Problems
under Structural Restrictions ∗

Georg Gottlob Gianluigi Greco Francesco Scarcello
Inst. für Informationssysteme Dip. di Matematica DEIS
Technische Universität Wien Universit̀a della Calabria Università della Calabria

A-1040 Vienna, Austria I-87030 Rende, Italy I-87030 Rende, Italy
gottlob@dbai.tuwien.ac.at ggreco@mat.unical.it scarcello@deis.unical.it

Abstract

We give a clear picture of the tractability/intracta-
bility frontier for quantified constraint satisfaction
problems (QCSPs) under structural restrictions. On
the negative side, we prove that checking QCSP
satisfiability remains PSPACE-hard for all known
structural properties more general than bounded
treewidth and for the incomparable hypergraph
acyclicity. Moreover, if the domain is not fixed, the
problem is PSPACE-hard even for tree-shaped con-
straint scopes. On the positive side, we identify rel-
evant tractable classes, including QCSPs with pre-
fix ∃∀ having bounded hypertree width, and QCSPs
with a bounded number of guards. The latter are
solvable in polynomial time without any bound on
domains or quantifier alternations.

1 Introduction
Quantified constraint satisfaction problems (QCSPs) are a
generalization of constraint satisfaction problems (CSPs),
where variables may be existentially and universally quanti-
fied, and nested quantifications are allowed. This framework
is clearly much more expressive than plain existential-CSP,
and may be fruitfully exploited for modeling a wide spectrum
of problems from several domains.

A QCSP instance (or quantified constraint formula)φ is
an expression of the formQ1V̄1 · · ·QmV̄m I, whereI is a
constraint network (denoted byCN (φ)), Qi is a quantifier in
{∃,∀} (with Qi �= Qi+1), and V̄i is a set of variables, for
1 ≤ i ≤ m. The string of quantifiersQ1 · · ·Qm is called
the prefix of φ. Recall that aconstraint network is a triple
I = (Var , Ū , C), whereVar is a finite set of variables,U is
the set of domainsU(V), for each variableV ∈ Var , and
C = {C1, C2, . . . , Cq} is a finite set of constraints. A con-
straintCi = (Si, ri) consists of a list of variablesSi called
constraint scope, and of a relationri, calledconstraint rela-
tion, providingCi’s allowed combinations of values for the
variables in its scope. Sometimes it is more comfortable to
denoteCi by its so called constraint atomri(Si). Then, the

∗This work was supported by the Austrian Science Fund (FWF)
project:Nr. P17222-N04 Complementary Approaches to Constraint
Satisfaction.

network I may be represented by the conjunction of all its
constraint atoms. For simplicity, we limit our attention here
to closed quantified constraint formulas, where all variables
occurring inI are quantified. However, all our results may be
easily extended to formulas with free variables.

As an example, consider the following quantified
constraint formulaφe: ∀S,X, Y, T,R,U, P ∃V,Z ∀W
a(S,X, T,R) ∧ b(S, Y, U, P) ∧ c(T,U, Z) ∧ d(W,X,Z) ∧
e(Y,Z) ∧ f(R,P, V) ∧ g(X,Y). This formula is a QCSP
instance, whose constraint networkCN (φe) is represented by
the constraint atoms occurring in the conjunction. The quan-
tifier prefix (short: prefix) ofφe is the string∀∃∀.

Not surprisingly, the increased expressive power of QCSPs
comes at a cost. Indeed, while deciding the satisfiability of
traditional (i.e., purely existential) CSPs is NP-complete, this
problem is PSPACE-complete[Borner et al., 2003], in the
general quantified setting. Hence, much effort has been spent
to identify tractable classes of QCSPs.

These approaches can be divided into two main groups:
techniques that identify tractable classes of QCSPs by ex-
ploiting particular properties of constraint relations, and tech-
niques that identify tractable classes by exploiting the struc-
ture of constraint scopes, usually known asstructural de-
composition methods. While several deep results have been
already achieved by techniques in the former group (see,
e.g., [Borner et al., 2003; Bulatovet al., 2000; Bunindet
al., 1995; Chen, 2004a; Creignouet al., 2001; Jeavonset
al., 1997]), only a few papers focused on structural de-
composition methods, though they were proven to be use-
ful in the non-quantified setting (see, e.g.,[Dechter, 2003;
Gottlobet al., 2000]).

Recall that the structure of constraint networkI is best rep-
resented by its associated hypergraphH(I) = (V,H), where
V = Var andH = {var(S) | C = (S, r) ∈ C}, andvar(S)
denotes the set of variables in the scopeS of constraintC.
Some graph-based techniques are based on theprimal graph
G(H(I)) = (V,E) of H(I), where two variables are con-
nected inE if they occur together in some hyperedge (i.e., in
the scope of some constraint).

Chen recently presented an interesting result about struc-
turally tractable QCSPs[Chen, 2004b]. He describes a
polynomial-time algorithm for classes of QCSPs having (pri-
mal graphs with) bounded treewidth, fixed domain, and fixed
prefix. In fact, the complexity of this algorithm depends

dramatically on the number of quantifier alternations and on
the size of the largest variable domain. As noted in[Chen,
2004b], the same result has been independently derived by
[Feder and Kolaitis, 2004], by exploiting Courcelle’s theo-
rem about monadic second order logic on bounded treewidth
structures.

Notice that there is no indication that these results are op-
timal, and in fact several interesting questions arose, and will
be the subject of this paper:

(1) Are QCSPs having bounded treewidth tractable if do-
mains are not fixed?

(2) May we extend this result to other structural notions,
possibly more general than bounded treewidth?

(3) Are there different kind of restrictions on quantified
constraint formulas that make QCSPs tractable?

The answers to these questions comprise both good news
and bad news. We prove strong hardness results, but we also
identify new tractable classes of QCSPs, having neither fixed
bound on domains nor fixed bound on quantifier alternations.
Our main contributions, shown in Figure 1, are the following:
� We prove that, without the fixed domain restriction, even
QCSP instances whose structure is a tree and whose prefix
is ∀∃ are co-NP-hard. Moreover, adding further alternations
we get complete problems for all levels of the polynomial
hierarchy. It follows that this problem is PSPACE-complete
if there are no bounds on the quantifier prefix.

� On the positive side, we prove that, if the prefix is∃∀ (or
some substring of it), then solving acyclic QCSPs is fea-
sible in LOGCFL and hence in polynomial time. More-
over, this tractability extends to all known generalizations
of acyclicity, and in particular to bounded hypertree-width
QCSPs[Gottlobet al., 2000].

� We prove that, for fixed domains, the tractability result
for bounded treewidth is almost optimal. Indeed, solving
QCSPs over the binary domain{0, 1} remains PSPACE-
complete even if the structure is an acyclic hypergraph,
whose incidence graph has bounded treewidth, and whose
primal graph has small (i.e., logarithmic) treewidth.

� All these results show that traditional structural techniques
do not help very much, but for some simple cases and with
limited quantification. Indeed, our hardness proofs show
that the presence of quantifiers radically alters the structural
properties of the constraint scopes. We thus realize that it is
worthwhile taking into account how they interact with the
scope structure, and in fact considering quantifiers as part
of the scope structure itself. Following this idea, we iden-
tify a different kind of restriction on quantified constraint
formulas that ensure tractability and that is incomparable
with the other structural classes. In particular, for any fixed
k, we define the classk-GQCSP ofk-guarded QCSPs, that
are solvable in polynomial time, without any restriction on
domains or quantifier alternations.

2 Quantified CSPs
Let I = (Var ,U , C) be a constraint network. An assignment
σ for a set of variables̄V ⊆ Var is a function mapping each
variableV ∈ V̄ onto its domainU(V) ∈ U . If V̄ = Var , σ
is saidcomplete, otherwise it is a partial assignment. We say
that a complete assignmentσ satisfiesI, denoted byσ |= I,

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

��
��
��
��

Figure 1: Structural restrictions and (in)tractable QCSPs.

if for each constraint(Si, ri) ∈ C, σ(Si) ∈ ri. An extension
of σ to a setV̄ ′ ⊃ V̄ is an assignmentσ′ for V̄ ′ such that
σ′(V) = σ(V) for eachV ∈ V̄ . We denote byext(σ, V̄ ′) the
set of all the extensions ofσ to V̄ ′. For the trivial assignment
σ∅ for the empty set of variables,ext(σ∅, V̄ ′) is clearly the
set of all assignments for̄V ′.

Let φ : Q1V̄1Q2V̄2Q3V̄3 . . . QmV̄m I be a QCSP instance,
and letσ0 be the trivial assignmentσ∅. A strategy for φ is
any functions such that, for each pairQi, σi−1, with 1 ≤ i ≤
m, s(Qi, σi−1) is either one assignment inext(σi−1, V̄i), if
Qi = ∃, or the whole set of possible extensionsext(σi−1, V̄i),
if Qi = ∀. A complete assignmentσm is derivable from a
strategys if there arem − 1 assignmentsσ1, . . . , σm−1 such
that σi ∈ s(Qi, σi−1), for any 1 ≤ i ≤ m. Then,s is a
solution for φ if all derivable assignments satisfyI. A QCSP
instance issatisfiable iff it has a solution.

It is worthwhile noting that, in the definition of QCSPs,
different variables have different domains, in general. This is
especially useful in the quantified setting. However, in the
literature, QCSPs are sometimes defined over a unique do-
mainU or, equivalently, with the same domainU(V) for each
variableV . We say that such QCSPs areuntyped, in contrast
to the general ones, calledtyped. The following proposition
shows that the two formalisms are in fact logically equivalent.
Proposition 2.1 For any QCSP instance φ, there exists an
untyped equivalent instance φ′. Moreover, if CN (φ) is a bi-
nary network, φ′ can be computed in polynomial time.

Notice that going from typed to untyped instances may be
exponential for non-binary networks, as the former setting
allows more succinct and efficient representations.

We remark that all complexity results in this paper hold
for both settings. Indeed, we prove membership results and
provide algorithms for the general typed setting, and prove
hardness results by using either binary networks, or a unique
binary domain for all variables.

We say that a classS of hypergraphs has the bounded hy-
pertree width property, denoted byBHTW, if there is ak > 0
such that every hypergraph inS has hypertree width at most
k [Gottlob et al., 2000]. Similarly, we define the property
BTW, meaning bounded treewidth[Robertson and Seymous,
1986] of the primal graph (of the constraint hypergraph), and
the propertyBITW, meaning bounded treewidth of the inci-

dence graph. Moreover, we say that a classS of hypergraphs
has the small hypertree width property, denoted bySHTW, if
the hypertree width of every hypergraphH ∈ S is at most
log |H|. The small treewidth propertySTW of primal graphs
is defined similarly. We also consider the propertyACYCLIC
(resp.,TREES) of any class of acyclic hypergraphs (resp., pri-
mal graphs).

We study how the complexity of QCSPs change as a func-
tion of quantifier alternations and of constraint structures.
Moreover, we distinguish the case of arbitrary domains, de-
noted byANY, and of binary domains, denoted by{0, 1}.

Let Q̄ be a string of quantifier alternations,S a hyper-
graphs property, andD a domain property in{ANY, {0, 1}}.
Then, QCSP(Q̄,S,D) is the problem of deciding whether
an instanceφ ∈ class(Q̄,S,D) is satisfiable, where
class(Q̄,S,D) is any class of QCSP instances over domains
of kind D, with alternation prefixQ̄, and whose associated
hypergraphs have propertyS.

3 Structural methods do not help very much
3.1 Some tractable instances
From [Gottlob et al., 2000], we already know that
QCSP(∃, BHTW, ANY) is in polynomial time, and the same
holds for any structural restriction stronger than bounded
hypertree-width. Moreover, it is easy to see that
QCSP(∀, BHTW, ANY) is even easier. We next show that also
QCSP(∃∀, BHTW, ANY) is tractable.

Let φ be a QCSP instance,I = (Var ,U , C) the constraint
network ofφ, andȲ be a set of universally quantified vari-
ables. Letr(X̄, Ȳ ′) a constraint ofI over variable sets̄X
and Ȳ ′, whereȲ ′ is the set ofȲ variables occurring in the
scope ofr. Denote bycart(Ȳ ′) the relation containing all
combination of values from the domains of variables inȲ ′,
i.e.,cart(Ȳ ′) = ×Y ∈Ȳ ′U(Y).

Then, defineȲ-red(r) as the relation containing all and
only those tuplest of relation r such that, for any combi-
nationt′ of values for variables̄Y ′, t[X̄] · t′ ∈ r. Note that,
for the special casēY ′ = ∅, we getȲ-red(r) = r; for the
special casēX ′ = ∅, we simply require all combinations of
values forȲ ′, that is,Ȳ-red(r) = r, if r is preciselycart(Ȳ ′),
otherwise it is the empty relation.

Denote byȲ-red(φ) the QCSP obtained fromφ by replac-
ing each constraint relationr by Ȳ-red(r).
Lemma 3.1 For any QCSP φ and set of universally quanti-
fied variables Ȳ , Ȳ-red(φ) can be computed in logspace.

After the above lemma and exploiting the fact that no use-
ful assignment is lost with this transformation, we can show
the following.
Theorem 3.2 QCSP(∃∀, BHTW, ANY) is in polynomial time.
Moreover, it is LOGCFL-complete, and hence tractable and
parallelizable.

3.2 Encoding Boolean formulas as acyclic QCSPs
To any CNF formulaΦ = c1∧. . .∧cm over Boolean variables
V̄ = {V1, . . . , Vn}, we associate a binary acyclic constraint
networkI(Φ) = (Var ,U , C) . This constraint network will
be used hereafter for characterizing the complexity of acyclic
and quasi-acyclic quantified CSPs.

Figure 2: Constraint networkI(Φ̄) in Theorem 3.4. In the
right-bottom box, encodings of constraints in Theorem 3.7.

Consider the following CNF formula, that we use as a run-
ning example:̄Φ = (V1 ∨V2 ∨V3)∧ (V1 ∨¬V4)∧ (V1 ∨V6 ∨
V4) ∧ (V2 ∨ V6). Then, Figure 2 shows the constraint struc-
ture (i.e. the constraint hypergraph) ofI(Φ̄). Note that in this
case hypergraph and primal graph representations coincide,
asCN (Φ̄) contains only binary constraints.

The set of variablesVar is the union of a set ofclause
variables C̄ = {Cj | 1 ≤ j ≤ m} corresponding to them
clauses ofΦ, of a setB̄ = {Bi | Vi ∈ V̄ }, corresponding
to then Boolean variables occurring inΦ, and of two sets
S̄c = {Sc

j , | 1 ≤ j ≤ m − 1} andS̄v = {Sv
i , | 1 ≤ i ≤ n −

1} of special variables, calledclause selectors andvariable
selectors, respectively.

For a variableVi of Φ, the domain ofI(Φ) contains literal
constantsvi and¬vi associated with its truth-values. More-
over, for any clausecj in whichVi occurs, the domain ofI(Φ)
contains a literal constant in{vj

i ,¬vj
i } encoding the truth

value forVi that makescj true. We denote byli (resp.,lji)
any of these (positive or negative) literals, and by¬li (resp.,
¬lji) its complement. Moreover, we denote bysatLit(cj) the
set of literals that makecj true. E.g., forc2 = (V1 ∨ ¬V4) in
Φ̄, satLit(c2) = {v2

1 ,¬v2
4}.

In more detail, the domains ofI(Φ) variables are the fol-
lowing: for any variableCj (corresponding to clausecj of
Φ), U(Cj) = satLit(cj); for any Boolean variableBi,
U(Bi) = {vi,¬vi}; for any clause-selectorSc

j , U(Sc
j) =⋃

j′≥j U(Cj′); finally, for any variable-selectorSv
i , U(Sv

i) =
⋃

i′≥i U(Bi′).
Intuitively, Boolean variables encode a truth-value assign-

ment toΦ, whereas any clause variableCj chooses some
literal in satLit(cj) that satisfies it. Any selector variable
may take a value coming from either variable connected to it.
Thus, any choice of all variable selectors corresponds to the
propagation of a literal valueli coming from some Boolean
variableBi in the left branch. Similarly, any choice of clause
selectors corresponds to the propagation in the right branch
of some literalljk satisfying some clausecj . If for all possible
propagations from both branches, no pairli,¬lji of comple-

mentary literals meets at the topmost constraint of the net-
work, then the values of Boolean variables encode a satisfy-
ing truth-value assignment forΦ. We next describe the con-
straints inC that implement the above idea, where the indices
i andi′ actually are values in the interval[1 . . . n] and where
the indicesj, j′ are values in[1 . . . m].
• The topmost constraint(Sv

1 , Sc
1), called evaluate, has

a constraint relation consisting of{(li,¬lji) | lji ∈
satLit(cj)}. Note thatevaluate is satisfied only by assign-
ments where its variables take complementary literals.

• For any constraint(Sv
i , Bi) between a variable-selectorSv

i
and a Boolean variableBi, its constraint relation consists of
the tuples:{(li, li)} ∪ {(li′ , li) | i′ > i}.

• For any constraint between a pair of adjacent variable-
selectors(Sv

i , Sv
i+1) and for the constraint(Sv

i , Bn) with
i = n − 1, the constraint relation is{(li′ , li′) | i′ >
i} ∪ {(li, li′) | i′ > i}.

• For any constraint(Sc
j , Cj) between a clause-selectorSc

j
and a clause variableCj , its constraint relation consists of

the tuples:{(ljh, ljh) | ljh ∈ satLit(cj)} ∪ {(lj′
k , ljh) | ljh ∈

satLit(cj), l
j′
k ∈ satLit(cj′), j′ > j}.

• For any constraint between a pair of adjacent clause-
selectors(Sc

j , S
c
j+1) and for the constraint(Sc

j , Cm) with
j = m − 1, the constraint relation consists of the tuples:
{(lj′

h , lj
′

h) | lj
′

h ∈ satLit(cj′), j′ > j} ∪ {(ljk, lj
′

h) | ljk ∈
satLit(cj), l

j′
h ∈ satLit(cj′), j′ > j}.

If µ is a truth-value assignment for all variablesV̄ of Φ,
then,σµ, denotes the assignment such thatσµ(Bi) = vi if
µ(Vi) = true, andσµ(Bi) = ¬vi if µ(Vi) = false.

Lemma 3.3 Let µ be a truth-value assignment for all vari-
ables V̄ of Φ and σµ the corresponding assignment for B̄.
Then, µ is a satisfying assignment for Φ if and only if there
exists an assignment σ′ ∈ ext(σµ, C̄) such that, for every
σ′′ ∈ ext(σ′, S̄v ∪ S̄c), σ′′ �|= I(Φ) holds.

After this lemma, we immediately get that, even for acyclic
binary constraint networks with just two quantifier alterna-
tions, solving a quantified CSP is intractable.

Theorem 3.4 QCSP(∀∃, TREES, ANY) is co-NP-hard.
Proof. From a CNF Boolean formulaΦ, we build in poly-
nomial time QC(Φ) = ∀B̄, C̄ ∃S̄ I(Φ), where I(Φ) is
the acyclic constraint network associated withΦ. From
Lemma 3.3, satisfying assignments forΦ are in one-to-one
correspondence with assignments to the variables inB̄ and
C̄ such that all their complete extensions do not satisfyI(Φ).
Thus,Φ is not satisfiable iffQC(Φ) is satisfiable. �

3.3 Intractable acyclic instances
After having shown in the previous section the tractability for
∃∀ and the intractability for∀∃, we now settle the complexity
of acyclic QCSPs with arbitrary quantifier prefixes.
Theorem 3.5 For any natural number m ≥ 1,

1. QCSP((∀∃)m∀, BHTW, ANY) is ΠP
2m−1-complete, and

hardness holds for QCSP((∀∃)m, TREES, ANY), too;
2. QCSP((∃∀)m∃∀, BHTW, ANY) is ΣP

2m-complete, and
hardness holds for QCSP((∃∀)m∃, TREES, ANY), too.

Proof. For space limitations we only proveHardness for
Point 2, here. For anym ≥ 1, consider theΣP

2m-complete
problem of deciding whether a quantified Boolean formula
Ψ′ = ∃V1∀V2 · · · ∀V2m¬Φ is satisfiable, whereΦ is in CNF.
From this formula, we build in polynomial time the follow-
ing instance ofQCSP((∃∀)m∃, TREES, ANY): QC(Ψ′) =
∃B1∀B2 · · · ∀B2m, C̄ ∃S̄ I(Φ). From Lemma 3.3, it can be
seen easily thatΨ′ is satisfiable iffQC(Ψ′) is satisfiable.

Membership. The proof is by induction. First observe that,
given any instanceQ = ∃V̄1∀V̄2φ of QCSP(∃∀, BHTW, ANY),
its complementary problemQc (deciding whether for all as-
signmentσ to V̄1 there exists an extension tōV2 that does
not satisfyφ) is in LOGCFL and hence in polynomial time,
by Theorem 3.2 and the fact that LOGCFL is closed under
complementation. Then, we prove the basis of the induc-
tion, m = 1. The problemQCSP(∀∃∀, BHTW, ANY) is in
ΠP

1 = co-NP. Indeed, letQ = ∀V̄1∃V̄2∀V̄3φ be any in-
stance of this problem. Then, its complement can be de-
cided in NP: guess an assignmentσ to V̄1 and check that
for all assignmentσ′ ∈ ext(σ, V̄2) there is a complete as-
signmentσ′′ ∈ ext(σ′, V̄3) that does not satisfy all the con-
straints inφ. From the observation above, this check is feasi-
ble in polynomial time. Moreover,QCSP(∃∀∃∀, BHTW, ANY)
is in ΣP

2 , as any instance of this problem may be solved
by a non-deterministic Turing machine with an oracle for
QCSP(∀∃∀, BHTW, ANY). The induction step is a simple adap-
tation of the above reasoning for anym > 1. �

Corollary 3.6 The quantified constraint satisfaction problem
(on arbitrary domain) is PSPACE-complete, even if restricted
on constraint networks whose structure is a tree.

3.4 Fixed domain helps only with fixed arity
We now show that hypergraph acyclicity does not help in
making easy the QCSP problem, even if we consider Boolean
domains only. The same holds even in case we additionally
require that the incidence graph has bounded treewidth, and
the primal graph has small (logarithmic) treewidth. This en-
tails that the problem remains intractable as long as we have
non-fixed arities, even for very simple constraint interactions.

Theorem 3.7 For any natural number m ≥ 1,
• QCSP((∀∃)m, ACYCLIC ∩ BITW ∩ STW, {0, 1}) is ΠP

2m−1-
complete;
• QCSP((∃∀)m∃, ACYCLIC ∩ BITW ∩ STW, {0, 1}) is ΣP

2m-
complete.
Proof. Let Φ be a Boolean formula, andI(Φ) = (Var ,U , C)
its associated acyclic constraint network. We consider the
networkI ′(Φ) = (Var ′, {0, 1}, C′), defined as follows. For
each variableX ∈ Var , Var ′ contains|U(X)| distinct vari-
ablesX1, ...,Xlog |U(X)|, with domainU ′(Xi) = {0, 1} for
eachXi. For each constraintr(X,Y) in C, C′ contains a con-
straintr′(X1, ...,Xlog |U(X)|, Y1, ..., Ylog |U(Y)|), whose con-
straint relation is such that, for each tuple(xi, yj) in r, r′
contains the tuple(enc(xi), enc(yj)), where the string of bits
enc(xi) (resp. enc(yj)) is the binary encoding of domain
valuexi (resp.xj). The right-bottom box in Figure 2 shows
a portion of the constraint networkI ′(Φ̄) associated to the
formula Φ̄ of our running example. Observe that the con-
straint networkI ′(Φ) is in ACYCLIC ∩ BITW ∩ STW. Indeed,

the hypergraph associated toI ′(Φ) is acyclic, and the number
of variables in each hyperedge is bounded by2 log c, where
c is the size of largest domain over all the variables inVar .
Therefore, the treewidth of the primal graph is at most2 log c.
Moreover, it is easy to check that the treewidth of the inci-
dence graph ofI ′(Φ) is 3. Finally, observe that there exists a
one-to-one correspondence between assignments to variables
in I(Φ) and inI ′(Φ), and thus the result immediately follows
from Theorem 3.5. �

Corollary 3.8 The quantified constraint satisfaction problem
is PSPACE-complete, even if restricted on Boolean constraint
networks whose structure is in ACYCLIC ∩ BITW ∩ STW.

4 Guarded formulas and tractable CSPs
In this section, we describe a wide class of quantified con-
straint formulas that are tractable, even if there is no constant
bound on domain sizes or quantifier alternations. Recall that
any QCSP instanceφ may be represented by a logical expres-
sion, as shown in Section 1 for QCSPφe. Technically, let us
denote the pure logical formula ofφ (without the encoding of
relations, domains, etc.) byform(φ).

Following [Kolaitis et al., 2000], we denote byFO∧,+ the
fragment of first order sentences where arbitrary quantifica-
tions and conjunctions are allowed, but where negations and
disjunctions are forbidden. They observed that the existential
fragment∃FO∧,+ of FO∧,+ has the same expressive power
as the constraint satisfaction problems. By allowing any kind
of quantifiers, this observation may be clearly extended to the
connection between generalFO∧,+ formulas and quantified
constraint formulas. Notice that, in this more general set-
ting, there are different equivalent logical representation of
the same instance. For example, one may use parentheses for
distinguishing subformulas and delimiting quantifier scopes.
In this section, we represent QCSPs byFO∧,+ formulas that
are not necessarily in the traditional prenex form. Notice,
however, that eachFO∧,+ formula can be easily transformed
into an equivalent prenex formula.

4.1 The fragment k-GQCSPof k-guarded QCSPs
We show that, for each constantk, a simple and appealing
fragment ofFO∧,+ is decidable in polynomial time. Since
we have no bound on the number of variables in a formula,
we assume w.l.o.g. that each variable is quantified over only
once, i.e., quantified variables are not reused. In the follow-
ing, we denote byfree(ψ) the free variables of a logical for-
mulaψ.

Definition 4.1 The classk-GQCSP ofk-guardedQCSPs
consists of those QCSPs instancesφ whose formulaform(φ)
belongs to the fragmentG∗

k of FO∧,+ defined as follows.G∗
k

is the smallest subset ofFO∧,+ such that:
• every atom belongs toG∗

k;
• if φ1 andφ2 ∈ G∗

k, thenφ1 ∧ φ2 ∈ G∗
k;

• let α1, . . . , αi be atoms, wherei ≤ k, and letψ be a for-
mula inG∗

k. If the free variablesfree(ψ) ⊆ var(α1) ∪ · · · ∪
var(αi), then, for each tuple of variables̄y and each quanti-
fier Q ∈ {∃,∀}, the formulaψ′ : Qȳ(α1 ∧ · · · ∧ αi ∧ ψ)
belongs toG∗

k. The set of atoms{α1, . . . , αi} is referred to
as the guard ofψ′ and is denoted byguard(ψ′). �

Example 4.2 Consider again QCSP instanceφe presented in
the Introduction, and the following equivalent instance, where
form(φe) is rewritten as
ψ = ∀S,X, Y, T,R,U, P (a(S,X, T,R) ∧ b(S, Y, U, P) ∧

∃V f(R,P, V) ∧ ∃Z (g(X,Y) ∧ c(T,U, Z) ∧
∀W d(W,X,Z) ∧ e(Y,Z)))

This is a 2-guarded constraint formula, i.e.,ψ ∈ G∗
2.

The guard of formulaψ is guard(ψ) = {a(S,X, T,R),
b(S, Y, U, P)}. For the formulasψ1 = ∃V f(R,P, V),
ψ2 = ∃Z (g(X,Y) ∧ c(T,U, Z) ∧ ∀W d(W,X,Z) ∧
e(Y,Z)) and ψ3 = ∀W d(W,X,Z), we have the fol-
lowing guards:guard(ψ1) = {f(R,P, V)}, guard(ψ2) =
{g(X,Y), c(T,U, Z)}, andguard(ψ3) = {d(W,X,Z)}. �

Note that the above definition ofk-guardedness is con-
genial to the specific syntax of quantified CSPs and differs
from that ofk-guarded first order logic[Andrekaet al., 1998;
Grädel, 1999]. In the standard formalisms of the guarded
fragmentGF of first order logic or of thek-guarded fragment
GFk of first order logic[Gottlob et al., 2003], the guards
of an existentially quantified subformulaψ are added con-
junctively to ψ (guard(ψ) ∧ ψ), just as forG∗

k. However,
the guards of a universal formulaψ are addedin form of an
implication: guard(ψ) → ψ. This is much more natural,
since these logics have negation and guardedness needs to be
correctly preserved under negations. For example, the nega-
tion of a guarded formula¬∃Ȳ (g(Ȳ) ∧ ψ(Ȳ)) is logically
equivalent to∀Ȳ (g(Ȳ) → ¬ψ(Ȳ)). Since the logicFO∧,+

of constraint formulas has conjunction (∧) as unique binary
connective, it is syntactically impossible to express an im-
plication guard(ψ) → ψ in FO∧,+ (in fact, this is also se-
mantically impossible). On the other hand, since negation
is missing inFO∧,+, no problems involving “wrong guards”
can arise through negation when using the natural (but non-
standard) guards introduced for the above defined fragments
G∗

k of FO∧,+.
For thek-guarded fragmentGFk of first order logic (i.e.,

for the standardk-guarded fragment) the following tractabil-
ity result was shown in[Gottlobet al., 2003]:
Proposition 4.3 The combined complexity of evaluat-
ing a GFk formula φ over a set of finite relations D is in
O(|φ| × |D|k).

Let us now show that also the classk-GQCSP ofk-
guarded QCSPs is tractable, notwithstanding the “nonstan-
dard” guards for universally quantified subformulas.
Lemma 4.4 There is an algorithm TRANSFORM which for
each QCSP φ ∈ k-GQCSPcomputes a pair (D,φ∗) where
D is a finite database and φ∗ ∈ GFk, such that φ is satisfied
iff D |= φ∗. The TRANSFORM algorithm runs in logspace.

Proof. Let φ ∈ k-GQCSP, and letR be the set of con-
straint relations ofCN (φ). Consider a subformulaψ′ =
∀Ȳ (guard(ψ)∧ψ) of form(φ), where∀Ȳ is a maximal pre-
fix of universally quantified variables, and whereguard(ψ)
is a conjunction ofm atomsri(Ȳi, X̄i), with 1 ≤ i ≤ m ≤ k,
whereȲi are the variables in its scope included inȲ , andX̄i

its other variables, hencēXi ∩ Ȳ = ∅. For 1 ≤ i ≤ m, we
denote byri↓ the relation obtained from the constraint rela-
tion ri by keeping allȲi-columns and projecting out all̄Xi

columns, i.e.,ri↓ :=
∏

Ȳi
ri.

Assume that for some1 ≤ i ≤ m, ri↓ is not equal to the
Cartesian productcart(Ȳi) of Ȳi domains. That is,ri↓ does
not consist of precisely all possible combinations of constants
for all Ȳ variables occurring inri. Then one tuplēa of such
constants is not inri ↓ and thus the atomri(Ȳi, X̄i) cannot
be satisfied for the substitution̄Yi = ā. Sinceri occurs posi-
tively in φ, φ cannot be satisfied. The key observation is thus
that, wheneverφ is satisfied, for1 ≤ i ≤ m, ri ↓ must be
equal tocart(Ȳi). Algorithm TRANSFORM starts by check-
ing whether this is true. From Lemma 3.1, this check can be
implemented to run in logspace: just computeȲ-red(ri ↓),
and check that it is not empty. If this test fails for at least
one guard relationri, then TRANSFORM outputs the for-
mula false. Otherwise, letgψ be a new constraint atom with
constraint scopēY , whose relation is the join of theri↓ rela-
tions. Now, consider the set of free variablesX̄ = free(ψ′).
If X̄ �= ∅, sinceφ is ak-guarded formula, there are at most
k atoms inφ that coverX̄. Let gψ′ be a new constraint atom
with constraint scopēX, whose relation is the projection over
X̄ of the join of these guard atoms. Moreover, letg be a new
constraint atom with constraint scopēX ∪ Ȳ , whose relation
is the join ofgψ andgψ′ (or just gψ, if X̄ is empty). Note
that, sincek is fixed, TRANSFORM may computeg from
its input φ in logspace. Then, TRANSFORM replaces our
subformulaψ′ = ∀Ȳ (guard(ψ)∧ψ) by the equivalent sub-
formula ψ′′ = ∀Ȳ (g → guard(ψ) ∧ ψ). Note that this
transformation does not change the set of free variables, as
free(ψ′) = free(ψ′′). Thus, the set of atoms that cover these
variables and acts as the guard ofψ′ in form(φ) will be the
guard ofψ′′ in the new formula.

After having done this for all universal guarded subformu-
las, TRANSFORM has generated a formulaφ∗ ∈ GFk. Let
D the database consisting of all constraint relations ofCN (φ)
plus all relations likeg computed for modifying the universal
quantifications. It can be seen thatφ is satisfiable iffD |= φ∗.
Moreover, the entire algorithm runs in logspace. �

Theorem 4.5 For each fixed k, the satisfiability of any QCSP
in the class k-GQCSPcan be checked in polynomial time.
Proof. Follows from Lemma 4.4 and Proposition 4.3. �

4.2 Extending the k-GQCSPfragment
When looking at the fragmentk-GQCSP, and evenmore
generally, at QCSPs in which universal quantifiers appear,
we observe that the expressive power of universal quantifi-
cation is rather poor. In fact, as already observed in the
proof of Lemma 4.4, a subformula∀Ȳ r(Ȳ , X̄) can only
be true if the projection over̄Y of r is equal to the carte-
sian productcart(Ȳ) representing the set ofall tuples that
can be composed from all possible domain elements from
the respective domains. This is a rather stringent condi-
tion. On the other hand, by standardk-guards of the form
(r1 ∧ r2 ∧ · · · ∧ rm) → ψ, we can express some other in-
teresting properties. For example by standard guards, one
may express aninclusion dependency stating that part of one
constraint relation must be contained in another constraint re-
lation. To add expressive power, we thus suggest to allow
the use of standard guards together with conjunctively speci-
fied guards (for universally quantified subformulas). We thus

define the fragmentk-GQCSP+ just ask-GQCSP inDef-
inition 4.1 with the following addition:If the free variables
free(ψ) ⊆ var(α1) ∪ · · · ∪ var(αi), then, for each tuple of
variables ȳ the formula ψ′ : ∀ȳ(((α1 ∧ · · · ∧ αi) → ψ)
belongs to G∗

k.
After the results in Section 4.1, it is easy to see that,

for each fixedk, the satisfiability of any QCSP in the class
k-GQCSP+ can be checked in polynomial time. Moreover,
we are able to show thatk-GQCSP+ is strictly more expres-
sive thank-GQCSP(for space reasons, we defer the proof to
the full paper).

References
[Andrekaet al., 1998] H. Andreka, J. van Benthem, and I. Nemeti.

Modal languages and bounded fragments of predicate logic.
Journal of Philosophical Logic, 27(3):217–274, 1998.

[Borneret al., 2003] F. Borner, A. Bulatov, A. Krokhin, and P.
Jeavons. Quantified Constraints: Algorithms and Complexity.In
Proc. of CSL’03, pp. 58–70, 2003.

[Bulatovet al., 2000] A. Bulatov, A. Krokhin, and P. Jeavons. Con-
straint satisfaction problems and finite algebras.In Proc. of
ICALP’00, pp. 272–282.

[Bunindet al., 1995] H.K. Buning, M. Karpinski, and A. Flogel.
Resolution for Quantified Boolean Formulas.Information and
Computation 117(1):12–18, 1995.

[Chen, 2004a] H. Chen. Collapsibility and Consistency in Quanti-
fied Constraint Satisfaction.In Proc. of AAAI’04, pp. 155–160,
2004.

[Chen, 2004b] H. Chen. Quantified Constraint Satisfaction and
Bounded Treewidth.In Proc. of ECAI’04, pp. 161–165, 2004.

[Creignouet al., 2001] N. Creignou, S. Khanna, and M. Sudan.
Complexity Classifications of Boolean Constraint Satisfaction
Problems.SIAM Monographs on Discrete Mathematics and Ap-
plications, 7, 2001.

[Dechter, 2003] R. Dechter.Constraint Processing. Morgan Kauf-
man, 2003.

[Feder and Kolaitis, 2004] T. Feder and P.G. Kolaitis. Closures and
dichotomies for quantified constraints. Manuscript, 2004.

[Gottlobet al., 2000] G. Gottlob, N. Leone, and F. Scarcello. A
Comparison of Structural CSP Decomposition Methods.Artifi-
cial Intelligence, 124(2): 243–282, 2000.

[Gottlobet al., 2001] G. Gottlob, N. Leone, and F. Scarcello. The
complexity of acyclic conjunctive queries.JACM, 48(3):431–
498, 2001.

[Gottlobet al., 2003] G. Gottlob, N. Leone, and F. Scarcello. Rob-
bers, marshals, and guards: game theoretic and logical character-
izations of hypertree width.JCSS, 66(4):775–808, 2003.

[Grädel, 1999] E. Gr̈adel. On the restraining power of guards.Jour-
nal of Symbolic Logic, 64:1719–1742, 1999.

[Jeavonset al., 1997] P. Jeavons, D. Cohen, and M. Gyssens. Clo-
sure Properties of Constraints.JACM, 44(4):527–548, 1997.

[Kolaitis et al., 2000] Ph. G. Kolaitis and M. Y. Vardi. Conjunctive-
Query Containment and Constraint Satisfaction.JCSS,
61(2):302–332, 2000.

[Mamoulis and Stergiou, 2004] N. Mamoulis and K. Stergiou. Al-
gorithms for Quantified Constraint Satisfaction Problems.In
Proc. of CP’04, pp. 752–756.

[Robertson and Seymous, 1986] N. Robertson and P.D. Seymour.
Graph Minors II. Algorithmic aspects of tree width.Journal of
Algorithms, 7:309–322, 1986.

[Schaefer, 1978] T.J. Schaefer. The Complexity of Satisfiability
ProblemsIn Proc of. STOC’78, pp. 216–226, 1978.

