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Abstract

Rating how well a routine activity is performed can
be valuable in a variety of domains. Making the rat-
ing inexpensive and credible is a key aspect of the
problem. We formalize the problem as MAP esti-
mation in HMMs where the incoming trace needs
repair. We present polynomial time algorithms
for computing minimal repairs with maximal like-
lihood for HMMs, Hidden Semi-Markov Models
(HSMMs) and a form of HMMs constrained with
a fragment of the temporal logic LTL. We present
some results to show the promise of our approach.

Introduction

matthai@cs.washington.edu

using the rating. For example, a professor grading anesthesi-
ology students performing an intubation may want to indicate
what her notion of good performance is. By transparency, we
mean that the system should be able to justify why it has as-
signed a particular rating. Ideally, the justification should be
constructivein that it should suggest how a low-rated perfor-
mance may be altered to obtain a high-rated one.

Our techniques for rating activity routines are designed to
satisfy the above requirements. To lower incremental cost,
we choose a representation that is easily learned: all activi-
ties to be rated in our system are modeled by variants of Hid-
den Markov Models (HMMs). We intend that these models,
especially given simple prior information, can be learned eas-
ily from training examples. More crucially, we formulate the
justification for a rating relative to this model generically as

the set of edits required on the trace generated by the rated ac-

Rating how well a person performs a routine activity is A ities: we therefor do not requir il identification and
broadly useful capability with many applications: professors es, we theretore do not require special identtication a

train medical students by rating their execution of estabIishe&mde"m-:l of errors anq their causes. A fundamental We%"'
procedures, caregivers assess the well-being of their war ss of these models is that they are first order, preventing

by rating how well they are able to perform activities of daily mgnmt I[l%mMCaiE:)Li/nrrr]]%gglr;avl\;;tlhmapr?{;?Sit[iigrgegﬁgt?gﬁi t\fl\éfn?;'f_]'
living, and managers and workflow experts identify poorly.ﬁr_n (a small fragment of the temporal logic LTL]) that al-

rform r resth lenecks in m. A o , .
performed procedures that cause bottlenecks in a syste '?]ows raters to explicitly state relevant constraints. Given these

though rating routin tivity i rtainl ful nven X
ough rating routine activity Is certainly useful, as conve _relevant and easy-to-construct models, we formulate rating as

tionally done it is also very expensive — each activity perfor o g . .
mance requires a dedicated human observer (often an expellt‘?.e likelihood of (pOSS|ny edlte<_:i) observat!on Sequences.
The core of this paper consists of efficient algorithms to

Many situations where gauging the performance of routineCom te maximum likelihood paths of minimally edited ver-
activities could be helpful are therefore either not rated at all pu XImum kel P ni y edited v

or rated in a cursory manner. Clearly, an opportunity existions of incoming observations with respect to various repre-

for automated techniques to reduce the cost of rating. In thigg?;ﬁt'%%Snfs(z{aa.‘gg\é'tﬁl\s/l’h'/lnsc'l#}'g%:"(’\)Ar!\t/lﬁﬁqgsgﬂe'\qﬁggdgzmc
paper, we explore methods for automatically rating perforp y con ! . : gon u y '
mances of routine activities. programming technique used to great effect by the well-

The basic classification task of rating, going from Obser_known Viterbi algorithm. A preliminary evaluation shows the

vations to scores, is amenable to a variety of standard an_romlse of our techniques.
proaches. Rating becomes challenging, however, if we wisté .

to make it bothincrementally inexpensivand credible We Overview

define an incrementally inexpensive rater to be a rater inn this section, we describe how we expect our system to
which the extra cost of rating a new activity is relatively low. be used, and we sketch how our system supports this usage
The main determinant of cost is whether rating a new activitymodel. In this paper, our goal is to develop a system that
requires a custom classifier to be developed from scratch, aates how well an elder performs day-to-day activities. Such
whether a generic classifier of some kind can be easily cusa system is of great interest to the eldercare industry. In the-
tomized to the task. A credible rater is one that is beth  ory, caregivers will assess the elders’ well-being by consult-
evantandtransparent By relevant, we mean that the classi- ing ratings summaries and credible explanations of perfor-
fication model for a particular rating task should reflect con-mance deficits. For example, the system may recognize that
straints on activity performance that are important to thosen elder is no longer able to prepare their daily bowl of soup,



and report why (e.g., can’t reach cabinet or difficulty holding Generating a rating and justification Given

spoon).

To end-users, our system represents activities as a set of
steps. Each step has a duration and a set of observed actions
performed, and is succeeded by other steps. For instance,

the con-
strained model\,C) and thresholdl,, the automated
rater is ready for use. The person to be rated generates
atraceY = yi,...,yn to be rated automatically. The

rater finds the constrained MAP likelihodg and path

the activity “making soup” for a particular elder may have
the following steps: “preheat water,” “open can,” “mix and
boil ingredients,” “serve,” and “clean up.” The step “open
can,” may have an average duration of 45 seconds and contain
the following actions: “use utensil drawer,” “use can opener,”
“use can,” and “use pantry door.”

For concreteness, we will assume in what follows that we
are using RFID-basefd] sensors that will directly sense the
action of using particular objects. Therefore, all of our actions
are of the form “use X” where X is some object. Inherently,
our system requires that actions are observable by sensors.aq described above. our rating system employs two key
Given an activity trace (i.e., a trace of actions that constitute$, 5, _standard pieces Of’ machinery.

a particular execution of an activity), our system provides a
rating (e.g.passor fail). If the grade is dail, the system pro- : O me .
vides an alternate sequence of actions as close to the original that is @ minimum edit distance from a given trafe
as possible that would have elicitegpassgrade (essentially whose likelihood is above a pre-specified threshiald

a constructive justification of the grade). In more detail, use 2. A method to compute the constrained MAP likelihood
of the system proceeds as follows: function CMAR M, T, C).

Learning the model A human demonstrator performs the ) _
routine in an exemplary fashion. The system collects3 Trace Repair for Hidden Markov Models

tracesYs,...,Y, of the routine. Each trac&; is a A Hidden Markov Model (HMM)X = (A, B, 7) is a com-

sequence of time-stamped observatigns, ..., yim, only used stochastic model for dynamic systdals We

of the demonstrator's actions. The traces are use&;rmally pose the trace repair problem as a variation of esti-

to learn a dynamic stochastic model (€ither an HMM ,5iin ‘the most likely state sequence given a sequence of ob-

or an HSMM) with parameters. The hidden states ggnations (classically solved via the Viterbi algorithm). An

$1,...,8y of the model correspond to the “activity MM is defined as follows. LeQa = {q1,....qn} be the

steps” above, and are labellgd. . ., [y with the names  giotas of the process being modeled, @@d’: {(’)1’ o)

of the step. the observation signals possibly generated by the process.
Adding global constraints Typically, the first-order model We use meta-variables, and y; to denote the states and

learned in the previous step cannot capture importanbbservations respectively at time A;; is the probabil-

higher-order correlations. For instance, in a successfuty p(s;+1 = ¢;|s: = ¢;) of transitioning from state,; at

soup-making routine, the stove, ifitis used, should eventime ¢ to ¢; at timet + 1 for any ¢; B;; is the probability

tually be turned off after it is turned on. The turning on p(y, = o;|s; = ¢;) of generating observation; when in

would happen in the “preheat water” step, but the turn-stateg; (we write B;,, for B;; such thaty, = o;). The initial

ing off may not happen until the end of the “serve” step. state distributionr; = p(so = g;).

The human rater explicitly adds a gkbf constraints on ) o

the sequence of hidden states or observations that sped-1  The Repaired MAP Path Estimation Problem

ify these required higher-order correlations. In this case\we now formulate the problem of MAP path estimation given

a possible constraint would be of the form use(“stovean observation sequence if we are allowed to first make a lim-

control knob”) £ use("stove control knob”), read as “a ited number of edits or “repairs” to the sequence. We begin

use of a stove control knob should eventually succeedegy formalizing the notion of an edit. We then state the re-

by a use of a stove control knob”. paired MAP path estimation problem and present a variation
Learning rating thresholds A human rater rates each trace of the Viterbi algorithm to solve it. _

Y; with a ratingr; € {pass, fail}. Let the con- Let YV be the set of lengtlV strings of observa-

strained MAP likelihoodof trace Y given A andc, tions over some finite alphabel’.  Then &V =

Iy = CMAP(M, Y, C), be the likelihood of the patly  ((b1,51), (b, si)) is alength-N k-edit vector o™,

with maximum a posteriori (MAP) likelihood givea ~ With b; boolean,s; strings overY’, andk = 3, ; n(bi +

andY that satisfies. We perform a simple thresholding 4,3

|s;|). For instanceg; = “cat” is a string inY3; e]” =
computation to calculate the likelihood threshélduch  ((false “BB” ), (false *" ), (trug “R”)) is an edit vector on
that, given the classification functidR(l) = if [ < L

Y3. Applyingan edit vectok to stringg,, = yi . . . ¥», Writ-
then fail else passR(ly,) = r; for as many of the/;  tene(y) results in a new string’ obtained as follows. For
as possible. Intuitivelyl. separates the passes from thel < i < n, let if e.b; is true, then replace; with §., else
fails. replacey; with y;e.s; (e.s; appended tay;). For example,

Sy = (51,91),- -, (8m, ym) for Y, and assigns it the
ratingr = R(ly). If r = fail, the rater attempts to
produce arepaired tracetraceY’ = yi,...,y,, such

that the edit distance betweéhandY” is as small as
possible, andy: > L. In other wordsY” is the closest
trace toT that passes. The rater offeras the rating for
the activity and, if appropriatei,gyt gy the set of edits

needed to transforry into Sy, as the justification for
the rating.

1. A method to compute the repaired observation tf&Ge



Initialization: t=0,k=1... K, 1<i<N

K added observations original observations
O"C V1 {bj\ ng Vmg \/l)/'m \I\YT 5t0k =1 5tik =0 wtik =-1
110 060000+ O ~Qo~@ lteration: 1 <t < TK+T,k =a;,a;+1,..., K
mz- Q OO--.OOO° O O O Uq,.‘ OO‘ (Veir )0tk = (arg)maﬁ kaTJHBZyuA
= N — —~ B 7,7,k St ktar+dre=
5 1Q ©0-000+0~0 4,00 O-@ ermination: ¢ — Ty — T £ T4 1
: B ermination: t =Ty, = + T+
- O (Yrie)drir = (@rg)max  driw 3in = ArgMaxdyx
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Backtracking: (¢,i, k) = ¥r,,:,, k; wWhilet > 0,
D36, 9t) = (g0, vie)  2)(t,0, k) < i

TIME STEP

Figure 1: Trellis fork-Edit Viterbi on HMMs
Table 1: Thek-Edit Viterbi Algorithm for HMMs

e1®(91) = “cBBaR”". A stringy’ is ak-editof anotherj if
there exists edit vectar*-" such that)’ = " (). _
We are now ready to specify the problem of MAP estima- e end result of the algorithm is a forward path (shown

tion with repairs: o in light grey in figure 1) through the trellis that, unlike in the
Definition 1. (Repaired MAP Path Estimation Problem conventional Viterbi algorithm, may jump between nodes in

no adds, we add a column€ T, = TK + T + 1). Rows
represent possible hidden states.

(RMAP)) Given observation sequencgr, HMM X\ = non-adjacent time slices. If the path jumps over the slice for
(A,B,m) and edit distanceK find observation sequence an original observatiog; (wherei is the position of the obser-
U = ¥1-..yr that is a K-edit of jr and pathdr» = vation in the input string)), we conclude thag; was deleted
51,..., 7 maximizingp(3-, 9y, ) over allT’, s andgy,.  from g, otherwise not. Further, if the path passes through

Before discussing our solution we define strifgas @ sequence of added nodes with no intervening original node
the (k,a)-edit of string 4,, if §’ = ek () for somee’“ n such thay; is the first original observation to the left of the se-

le*".s,] < a, and addmonally, knp if a = 0 and quence, and the observations at these nodeg;are ., y;, .
le#m.s,| > 0if a > 0. The (k,a)-edit of a string requires We conclude that the string, ...y;, was added at théth

its last character to be either preserved or replaced by at leaSpot in the incoming string. The forward path is the required
one character, with at moatcharacters added. Edits com- solutions”", and the string of observations along the path is
pose as followsd,,, = n — v ;a’ = 1if a # 0, 0 otherwise;  the edited string/”

(v,a)<p(n,a)if v <n anda < k, or if v = n anda < a): The algorithm uses three intermediate variabtes, d,.
Lemma 1. (Edit Composition)Let Y;*e¥ be the set of all andy;. Variablea, = 1if #¢ # 0 and0 otherwise;
(k, a)-edits of then-prefix of stringg overY. ThenY**d =  dr. = [t] — [r], represents the number of deletes skipping
{Gyly e YV, i € YU (v,a)<p(n,a), k + dyn + ' = k}. original observations between and ¢; y;; is the observa-

Table 1 specifies an algorithm (tieEdit Viterbi (KEV) :E'r?nt conS|dT:red when prpqesismg Stat‘?.t sllcett.t_ Notel_
algorithm) to solve RMAP. KEV iterates over tf¥ origi- at we only process original observations at ime slces

nal observation#n the incoming observation string. For each tlc; Kr o+ c}égﬁ;ot’éé;véré ‘al,jlllgéhgbgi%%% dSIX:(:?ﬁqvﬁ Sﬁteigef-
original observation, it iterates over possibilities for the prop ' P

added observationat that position, for a total oT' K + T ficient approach would be to consider for each statealue

iterations. At each iteratiohcorresponding to original ober- and iteratiort, every possple obse_rvabbee On asa qand|-
vation[t] = ¢ div (K + 1) + 1 and added observatiofit — date. In fact, we can consider a single observation instead of

T ‘ all |Og|. The key insight is that, when processing state
fikrgg/dr()é(t; é?\d}fn%\ﬁr? Zg?g;iégeghkglég%?\%ﬁ:; tsrlﬁr:gotit at an added slice, itis sufficient to consider adding as observable
is a(k, #t)-edit of y; . .. yy, over all such edit vectors; KEV the most likely observable in that state. 1S¢ andYyy be the

also records as, ;. the penultimate state and edit in this path, SetS Of all length& sequences of states and observables. Let

Following the chain of/;x’s back to the start state iteration ¥i = ?LQTEXB” Let 3¢ be the result of appending statéo

gives the MAP repaired path. sequence, and similarly forgy. Then, for allg; € Q 4:
The trellis of figure 1 illustrates KEV. Columns of the Ny SR
jLemma 2. max  p(8¢;,y) = Amax p(sqi,yyi)
5,9

trellis represent edits considered for inclusion into the fina 5,9/ €SN Y1
string. Large circles represent original observations and small
ones represent adds. For technical reasons (to allow skipping
the first original observation), we add a distinguished startmaxs1 Bs, y, ([ 11 <i< v o4, can A”Bjyj)(AsNZBlyl) =
stategy with new start probabilities, = 1, Ap; = m; and i A S

A;o = 0and add a columrt (= 0) processed in the initializa- sl
tion step. To allow skipping the last original observation with for the optimal observable to be added in statewve sety;;

This follows from the fact that mapl(sql,yyl)

sni n;awa = Ts1 ... Asyi¥i. Given this identity



to y; if ¢ is an “added” timeslice, and tg,) otherwise. Init., Term., Bactracking: See table 1.

We are now ready to establish the soundness of the KEV lteration: 1 <t <TK+T, k=asa;+1,...,1
algorithm. LetS? be the set of length- sequence of states Y araymax .. VA D,
ending in state,;. LetY,"* be the set of length-strings of (Yrie) e 137(9%,),{,%” rinP (Ynkrts) Agi Difyon
observables that aKé, #t)-edits ofy; ... y.

Lemma 3. (¢11)01, = (arg)max p(§,9)
n,8€Sk gEY ik

Table 2: Thek-Edit Viterbi Algorithm for HSMMs

Proof sketch.Proof is by induction ort. We focus on the Table 2 specifies a variant of KEV to solve the problem,

inductive case fos. Fors, replace “max” with “argmax”. and figure 2 shows a trellis for this algorithm. The trellis is
Otie = MaxA;;Biy, 0:xVjrwSt(k+ar+dr) =k identical to that used by KEV (we represénadded nodes
T ' o with a single small circle), only its use is different. We fo-

= (by the inductive hypothesis)

max(A;;Biy,,  max  p(3,9))
)5k n,8€87%,9€Y, "

Givens,, s,,1 is independent of" 1, "

cus on howd,; is calculated. At each timestdp state:

and edit distancé;, as with KEV, we iterate over previous
timesteps, states and edit distaneeg andx. However, this
time instead of discarding the observations in the intervening

timesteps, we seek their sub-sequenge ;. We assume that
stept only ends a stay in statg that begins immediately after
the stay ing; that ended in step. If e, is the number of ed-
its in y.x-+; (@dded nodes included + original nodes ignored),
we requirex + a; + e,y = k. The problem of maximizing
) A the likelihood of the path ending &ét, ¢) then reduces to the
By, = P(Un+1 = Yitl3, 8041 = 0, 9) Y,y sei geyrin problem of findingy,.i.-+; Maximizingp(y,re; ) D

Substituting for4;; and B,,,, above, and using(4, B) =
p(A|B)p(B) twice, we have, withx + a; + d+) = k:

Aji = P(Sn+1 = Qi|§a Sp = Qj:g) vﬂ,_’gesn_hgeyﬂ'j“
= p(sn+1 =43, 9) Y ses9 gevii

Similarly, for y,,+1 givens,,41:

HYrkreil*
We find this maximum by iterating through duratiohi
D;; for eachl, we iterate through predecessdrs j, k) of
(t,7), finding a sequence,x,+ Of length! with the high-
est probability; we keep a running tally of the maximum
P(Yskrt:)Di. Finding yurr+; reduces to identifyingV 4
Lemma 2 ensures that maximizing ovgr; maximizes over added nodes (to include ig.;-+;) and No original nodes
all stringsgy. By lemma 1 maximizing over aljy with § € (to ignore), such thatvy, + No = k — k — a; (to satisfy
Y,73% maximizes ovey € Y;'¥,. Finally, Vicjensesiqd =  thek-edit criterion), andVa + (([t] — [r]) — No) = I (to
Vi<i<n.sesi & Modifying the previous equation to reflect satisfy the_ duration constraint). The two equations/fix N
these insigﬁé: andNy. Since all the added nodes have the same probability
¥ = p(64]q;), it doesn’t matter which particuldy 4 we pick.
On the other hand, we pick th€, original nodes with low-
est probability of observation for exclusion; this can be done
O by sorting the original nodes i@ (T'log T') time offline, with
. ] O(L) access during execution. Once the sequence of nodes
from the above lemma. Further, given that the trellis hasand transition probabilties together to @€f,...,.; ), a process
O(TKN) nodes, that at each node we compiie’) 6 and  that taked operations, sincy,-«| = | = O(L).
¢ values, and we consul(VK) preceding dat2a vglues to Given O(TNK) trellis nodes, computing (k) & and
do so, the complexity of KEV as a whole@(T'N*K*). values at each node, consultiég| D| N K) preceding values
i for each value, and spendiiig( L) for each preceding value
4 Trace Repair for HSMMs considered, the entire algorithm take3(TN2|D|LK?)
A Hidden Semi-Markov Model (HSMM)[3] A =  steps. Note that in the (fairly) common case thaand L
(A, B, D, ) is identical to an HMM except for theuration ~ are unbounded, this running time becom&§™ N2 K?).
distribution D. Where an HMM generates a single observa-
tion according taB on each visit to a statg the HSMM gen-

Ovite = max

.,P(Sn+1 = qis 8, Ynt+1 = Yit, J)
ijv'{-,nvgesi-,:gey;]h

5tik = max p(‘§7 :g) = max p(§7 .7;)

n,3€SL |, 0€Y n,8€8; geY ik

. ; o wo| s + Vet yr Yeaa v Vs
erated independent observations frakhon each visit, where <, O OViQ OVO y‘o
lis drawn according td,; = p(I|s). The added flexibility is o I v Q éy - Q/,—g- ©

N P . . . T Kkt ik
useful when modeling human activities, since the duration of j O OOQOOOQOOO

stay in a state is restricted to be geometric (and therefore bi-
ased to small values) in HMMs. In what follows, we assume
that D is over a finite set (of sizgD|) of durations, where the
longest duration id steps.

The RMAP problem is: given HSMMA, B, D, ), obser- Rl

vationsg” and limit K, find argmax p(3,9)- Figure 2: Trellis for KEV on HSMMs
t,5€QY, ,§€0L ,§ k-edit of T

N O CaﬂkoOOOoOqOo



5 Trace Repair for Constrained HMMs

We define atemporally constrained HMM (TCHMMas
A = (A,B,C,7m), where C is a temporal constraint
of the form ¢1Ep€...E¢c).  The ¢; are proposi-
tional boolean formulas over state labélsand observa-
tions y: ¢ = statdl)|obgy)|p A ¢|-¢. Path suffix
s; ... s and observationg; . . . yr satisfy the constraint suf-
fix Cj = ¢]¢W if for any £k > j, ¢j(8k,yk) im-
plies that (sxt1...s7, yk+1-..yr) satisfy C;yq1, written
(Skt1---ST,Yk+1---yr) F C;. Intuitively if one for-
mula in the constraint sequence is true w.r.t.

der later in the sequences. The constragtate(COOK)A
obs(oil))& (state(WASH) obs(soap)could, for instance cap-

ture the constraint that if oil is used in the cooking step o
making dinner, soap should be used in the eventual requirettho

washing step.

The RMAP problem may now be reformulated as given

TCHMM with constraintsC, observationg;” and limit K,
find SY = argmax @(3,9) such thatSY F C.

t,5€Qt, ,§EOL, ,§ k-edit of g7

the hea
of the state/observation sequences, then the formulas th
follow must also eventually be true in their specified or-

ments compare a regular HMM and a time-sensitive HSMM,
and a regular HSMM with an HSMM that has temporal logic
constraints, respectively.

First, we compare the output of HMMs versus HSMMs on
three activity traces from different activity models (see the
top row of Figure 3). Each activity trace was intentionally
made incorrect: for making tea, the preparation step was hur-
ried; for making a sandwich, not enough ingredients were
collected; and for grooming, brushing teeth and combing hair
were performed too rapidly. In the top row of Figure 3, we
@Iotted the maximum likelihood values at each step of the
g{;tivity traces (where a “step” is considered to be a state tran-
sition). HMMs fail to detect any problem, exhibiting high
likelihood. However, HSMM likelihoods plummet, due to
sensitivity to the amount of time spent in each state. The

{KEDIT trace correctly adds the proper number of observa-

ns to each state, resulting in a high likelihood.

Second, we compare the output of HSMMs with and with-

out temporal logic constraints (TLCs) (see the bottom row of

Figure 3). Again, we intentionally chose incorrect sequences
for the three activities: for making tea, the stove is turned on
but never turned off; for preparing a sandwich, the refriger-

Our solution for RMAP estimation is restricted to formulas ator door is opened and never closed; and for grooming, the
of the form ::— statel)|¢ |~ (we disallow dependences Sink water is turned on and never turned back off. In the top
on observables). A small modification to the KEV algorithm "o of Figure 3, we plotted the maximum likelhood values at
enables polynomial time solution of this problem. We use theééach step of the activity traces. Regular HSMMs fail to detect

same trellis as in KEV. For each timestgpstate: and edit
distancek, we also now maintain an additiongl-vector. An

any problem, reporting high likelihood. HSMMs with TLCs
report low likelihood, because they are only allowed to con-

elements, ., With 0 < m < |C| represents the likelihood of Sider state-transitions which satisfy all constraints. In these

the MAP path ending at statein time slicet with (k, #¢)
edits that still requires constraint suffi¥,,,,; to be satis-

traces, constraints are broken and alternate, low-likelihood,
paths must be considered. The KEDIT trace correctly adds

fied (excep,:xo, which has no outstanding constraints to bethe necessary steps (i.e., turn off stove, shut refrigerator, and
satisfied). This likelihood can be computed compositionallyturn off sink), resulting in high likelihood.

from d.j.,, with 7 < ¢ and (k, p) pointwise < (k,m) in
O(TN?K3|C|?P) steps, where formulag; can be evaluated
in O(P) steps (whereP is the size of the formulas).

Even MAP estimation (without trace perturbation) for
TCHMM's has apparently neither been formulated nor solve

previously, although it is potentially quite powerful.
stance, the constrained inference work of Culettaal. [2]

is a special case of TCHMM-edit MAP estimation (with
k = 0, andC = statdqo)Estatdq;)). MAP estimation is a
special case of RMAP estimation with = 0. Our variant

How does the rating change ag increases?The k-edits
Viterbi algorithm provides advice for up t& edits. Ideally,
we desire a trace that is above the likelihood threshold with
the minimum number of edits. One method is to incremen-

dally increasek until the threshold is exceeded. For this rea-
For in- SON, we are interested in how the likelihood changek ias

creases.
In this experiment we rag-edits Viterbi for HSMMs on

an empty trace of the “making tea” activity. In Figure 4 we

plotted the overall likelihood of each trace as the number of

of KEV above therefore performs MAP estimation. Interest-Possible edits was increased. The dashed line is a threshold
ingly with & = 0, we can allow the more general version Showing the likelihood of an acceptable “good” trace. Ob-
of formulass and still retain the fast running time. It is open Viously, the original empty sequence had low likelihood. As
how general’ can be while remaining tractable. For instance,” Was increased from one to three, the algorithm was forced
our constraints can be viewed as a fragment of Linear Temto assemble partl_ally complete activity traces which had even
poral Logic (LTL)[1]. Itis interesting to consider larger frag- lower overall likelihood. Whert = 4 the algorithm formed a

ments as candidates.

6 Evaluation
How does model choice affect advicePhek-edit Viterbi al-

complete trace and met the threshold./Ascreased further,
the algorithm tweaked the sequence for a slightly higher like-
lihood. The most likely possible path was reached at 6.
Afterwards, we see an “odd-even” effect as the algorithm is
forced to add new (less likely) observations, and then oppor-

gorithm dispenses advice based on the parameters of its actitunistically delete other observations. For> 9, the likeli-

ity models. The credibility of this advice will suffer from any hood drops as the algorithm performs too many modifications
differences between these models and the reality they reprée the trace and is unable to reach the optimal solution.

sent. In order to illustrate this point, we conducted two exper- How intuitive is the advice? We now examine the advice
iments over three different activity models. The two experi-dispensed by:-edits Viterbi in several scenarios. We ran the



Making Tea Preparing Sandwich Grooming
50 60 100
o
! 40
0 * ~ - 50
; 20 (C BB
: T e T
g 50 B " " K 5
3 KEDIT S o Ao oo * oo 8 a9 KEDIT
£ . 8- HSMM £ £ 50 | ~B-HSMM
= 100 ok HMM = -20 = % HMM
-100
-40 KEDIT | o
-150 -8 HSMM 150 i T e R |
-B0F | HMM | S g ) el
B R ) n- al .
200 ‘ 80 - 200 ‘ ey
e 2 3 4 e 2 3 4 5 8 7 “o 2 4 8 8 10 12
# Steps # Steps # Steps
50 5 50 o 200
S FrR— oo el ) .
e e 0 o
o 5 200
g 8 KEDIT g KEDIT 3 ,,D,,KED'T
3 ; 5 HSMM+TLC 2 Pt RSMIMEIEC g ~» -8 v
3 e HSMM 5 100 - HSMM 3 g
= = = -600 )
i} % 3 3
-50 -150
-800 g
S - )
o} \ -200 . .m -1000
o R - R 250 . T ‘ ‘ 1300 R - - - N
1 2 3 4 5 6 7 1 2 3 4 5 6 0 2 4 6 3 10 12
# Steps # Steps # Steps

Figure 3: One activity per column; top row compares HMMs to HSMMs, bottom to TCHMMs

algorithm on activity traces that had the following problems:
restarted the activity, got two steps out of order, performed
a step too quickly, and missed or sped through several non- .
consecutive steps. All traces are from the “making tea” activ- ‘ *
ity and likelihoods are reported using the optimal number of i k
edits (i.e. k value).

The beginning steps of the next trace were performed
twice (i.e., a “start” and a “restart”). The algorithm finds
the maximum likelihood solution by deleting extra observa-
tions. However, the algorithm did not delete the entire start
or restart, but decided to “pick and choose” among the two,
keeping the best observations of both. In contrast, our in-
tuition would be to advise the user to keep either the start
or the restart. Similarly, in a trace in which two steps were
performed out of order, the algorithm deletes one of the mis-
ordered steps and inserts new steps in the correct position.
We found this to be less intuitive than simply telling the userited too briefly. In other words, the algorithm advises the user
to switch the two steps to the correct order. to at least visit each step of the activity before it advises how

In the next trace, one step was performed too quickly: thdo perfect each step. This “top-down” approach fits with our
“preparation step” only generated one observation, when iintuition of how advice should be given.
should have generated at least two. The algorithm suggested
new observations that corrected the amount of time is spent
in the state. However, the algorithm will always suggest the7
most likely observation from the state, because this maxi-
mizes the overall likelihood. At first glance, we found this

suggestion strategy to be non-intuitive (although mathematiin this paper, we describe the credible activity rating prob-
cally optimal), however, it became a non-issue for models ifem. We introduced thg-edits Viterbi algorithm and showed
which observations were spread across multiple states.  that given model parameters and an activity trace it can pro-
In the last trace several non-contiguous steps were missadde optimally repaired traces with from zero kaedits. We
entirely or performed too quickly. Ag increased, the algo- improved the algorithm by incorporating high-level temporal
rithm first chose to insert states that had been missed entireliggic constraints. Finally, we evaluated the strengths and lim-
and then to add more observations to states that had been vigtions of the algorithm on data from three activity models.
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Figure 4: The likelihood of KEDIT traces asincreases.
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