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Abstract Previous approaches to thiterbi Alignmentproblem have
- . focussed on defining a graph over all possible alignments
Viterbi AlignmenandDecodingare two fundamen- where the connectivity is based on local modifications. The
tal search problems in Statistical Machine Trans-  pegt known algorithm fobecoding(both in terms of speed
lation. Both the problems are known to D&P- and translation quality) employs a greedy search algorithm.
hard and therefore, it is unlikely that there exists  qvever, these approaches can look at only polynomial num-
an optimal polynomial time algorithm for either of ber of alignments in polynomial time.

these search problems. In this paper we charac- |, this paper, we characterize exponentially large subspaces
terize exponen'tlallly large subspaces In the solution ¢ the solution space ofiterbi AlignmentandDecoding We
space ofviterbi Alignmentand Decoding Each propose polynomial time optimal dynamic programming al-
of these subspaces admits polynomial time opti- - g ithms to solveviterbi Alignmentand Decodingwhen the
mal $earch _algonthms. We propose a local search  gogrcpy space is restricted to a particular subspace. There are
heuristic using a neighbourhood relation on these o, onenially many such subspaces. So, we perform a local
subspaces. Experimental results show that our al- go5.0h on these subspaces under a suitable neighbourhood re-
gonthms prpduce better solut_|ons taking substan- lation. Though, there is no polynomial bound on the number
tially less time than the previously known algo- of iterations of the local search, experiments show that our
rithms for these problems. algorithms procduce better solutions in significantly less time
than the current algorithms.
1 Introduction We introduce the notion of aalignment generatom Sec-
tion[2. There aren! distinct alignment generators (where
is the length of the source language sentence). Each align-
ment generatorg;, wherel < i < m/!) is associated with an
exponentially large subspace of alignmentg)( The solu-
tion space oWiterbi AlignmentandDecodingcan be written

Statistical Machine Translation (SMT) is a data driven ap-
proach to Machine TranslatiofBrown et al, 1993, [Al-
Onaizaret al, 1999, [Bergeret al,, 199¢. Two of the fun-
damental problems in SMT af@rownet al, 1993:

a* = argmaz Pr (f,ale) (ViterbiAlignment) as the union of these subspaces. We next consider the graph
a induced on the set aofl;s by a neighbourhood relation and
(e*,a") = argmax Pr (f,ale) Pr (e) (Decoding) perform local search on this graph. The explicit mathematical

definition of 4; and the neighbourhood relation are presented

Viterbi Alignmenthas a lot of applications in Natural Lan- N Sectior] B. We present polynomial time optimal algorithms
guage ProcessinfWang and Waibel, 1998 [Marcu and f_or\ﬁterbl Allgn_menandDecpdlngoverap_arﬂculaﬂli (Sec-
Wong, 2002. While there exist simple polynomial time al- tion[4 and Sectiofy5 respectively). Experiments show that our
gorithms for computing th¥iterbi Alignmentor IBM Mod- search algorithms produce better solutions taking subtantially
els 1-2, only heuristics are known for Models 3-5. Recently,€ss time than current algorithms (Secfign 6).
[Udupa and Maji, 2005ashowed that the computation of
Viterbi Alignmeniis NP-Hard for IBM Models 3-5. 2 Preliminaries
Decodingalgorithm is an essential component of all SMT
systemgdWang and Waibel, 1997[Tillman and Ney, 2001
[Och et al, 2001, [Germannet al, 2009, [Udupaet al,
2004. The problem is known to bBNP-Hard for IBM Mod- ~ Definition 1 (Alignment) An alignment is a function
els 1I-5 when the language model is a bigram mdaight] a™ V. {1,...,m} — {0,1,...,1}.
1999. . L .
. . . . 1,...,m} is the set of source positions afd, 1, .../} is
UnlessP = NP, it is unlikely that there exist polynomial i{he set of} target positions. The target p(;@sittbl'rs kngwn
time algorithms for eitheliterbi Alignmentor Decoding - m 1) (m, 1)
Therefore, there is a lot of interest in finding fast heuristicsaS the null position. We denot&™ V(j) by ;™. The
to find acceptable solutions for the problems. fertility of the target positiont in alignmenta®™ 1 is ¢, =

IBM Models 1-5 assume that there is a hidagignmentbe-
tween the source and target sentences.



PR (a§m, ”,z’). If ; = 0, then the target position
is aninfertile position otherwise it is dertile position Let
{k,...,k+~—1} C{1,...,1} bethe longest range of con-
secutive infertile positions, wherg > 0. We say that align-
menta(™ 1 has arinfertility width of ~.

Representation of Alignments: Since all source positions
that are not connected to any of the target positions. ,
are assumed to be connected to the null positiynwe can

Lemma 1 If g™ andg/(™) are two generators theg/(™)
can be obtained frorg(™) by a series of swap operations.

Proof: Follows from the properties of permutationdl
We can apply a sequence 6fwap operators to modify
any given generatog™ to g(()m). The source position
o (1 < v <m)ing™ corresponds to the source position

in gg‘“). For brevity, we denote a sequengev;; ...v; by

represent an alignment, without loss of generality, as a s&}. The source sentence is represented;jByand the target

of tuples{(j,a;)|a; # 0}. Letm’ = m — ¢o. Thus, a
seguence representation of an alignment/hasuples. By

sentence is represented &y.

sorting the tuples in ascending order using the second field
as the key,a™ D can now be represented as a sequenc® Framework

(jl,ag»’ln’ l)) (jm/,a;mj l)) where theaél’” s are non-

decreasing with increasing Note that there arél + 1)™
possible alignments for a given,! > 0. Let a(™ 1)\(M)
be the alignmen{1,...,v} — {0,...,u} where all the tu-
ples (j, a§.m’ l)) such thatj > v or a;m’ " > u have been
removed.

Definition 2 (Generator) A generator is a bijectiog(™) :
{1,....,m} —={1,...,m}.

Representation of Generators: A generatorg(™) can be
represented as a sequence of tuglesl) ... (4, m). Note

that there aren! different possible generators for a given

m > 0. The identity functiong™)(j) = j is denoted by

gi™.

Definition 3 (g™ — a™ D) An alignmenta(™ 1 (with
tuple sequence(jl,ayl"’ l)) ...(jm/,ag-:,’ l))) is said to
be generated by a generatg™) (with tuple sequence
(k1,1)...(km,m)) if j1...5m IS @ subsequence of

1-.-km.

We now describe the common framework for solvWiterbi
Alignmentand Decoding The solution space fo¥iterbi

. . (m) .

Alignmentcan be written asjg ) A?l , and the solution
. . (m)

space oDecodingcan be approximated by, ) A, for

a large enough. The key idea is to find the optimal solution

in an exponentially large subspadecorresponding to a gen-
erator (4 = Af(;n) andA = A%fj) for Viterbi Alignmeniand

Decodingrespectively). Given an optimal search algorithm

for A, we use Lemm@]1 to augment the search space. Our

framework is as follows
1. Choose any generatgf™ as the initial generator.
2. Find the best solution for the problem.it

3. Pick a better generatgy’(™) via a swap operation on
(m)
g .

4. Repeat step® and 3 until the solution cannot be im-
proved further.

3.1 Algorithms

Note that the above definition does not take into account thejiterbi Alignment

infertility width of the alignment. Hence, we refine the above

definition.

Definition 4 (g™ - a(™: D) An alignmenta(™: D is said
to bevy-generated bg (™) if g™ — a(™. 1) and the infer-
tility width of a(™ U is at mosty.

Definition 5 (A%fr;))
= a1 )

Thus, for every generatg™) and integery > 0 there is
an associated family of aIignmemﬁfT) for a givenl € N.
Further,A%fin) =U AS .

Swap Operation: Let g™ be a generator and

(1,1) o (ko k) - - (s K)o (Gm,m) be its tuple se-
guence. The result of av®pP operation on thekth and

g(m)

The algorithm for finding a good approximate so-
lution to Viterbi Alignment employs a subroutine
Viterbi_For_Generator to find the best solution in
the exponentially large subspace defined,mirln . The

implementation of this subroutine is discussed in Secfipn 4.

Algorithm 1 Viterbi Alignment
1 g(m) — g((]m).
2: while (true) do
3:  a*™ D = yiterbi For_Generator (g(m), fim, ell).
4:  Find an alignmena’(™ D with higher score by using
swap operations oa*(™ 1,

5. if (a/™ 1 =NIL) then

6: break .

7:  endif

8: g™ « Agenerator ofa/(™ 1,

k'th tuples in the sequence is another tuple sequenc%; end while

(1, 1) o (g k) oo (s K)o . (Gmsm). The new tuple
sequence defines a generagBf . The relationship between
any two generators is given by:

10: Outputa*(™: D




Decoding Theorem 1 If atm™1=s) ¢ Aﬁ(r?is such thatg,_, > 0 then
Our algorithm for Decoding employs a subroutine ’
Decode_For_Generator to find the best Eglution in the
exponentially large subspace defined H§ ., . The im-

plementation of this subroutine is discussed in Sedfion 5. proof: WLOG we assume that the generatogig”. We
provide a construction that has phases. In theth step, we

constructa(™ 1-s) |(M) from gl in the following manner:

it can be obtained frorg(()m) by a series 0SHRINK, MERGE
and (v, k)-GRow operations.

Algorithm 2 Decoding

1 g™ — gi™. o We constructa(™ 1-) ](U_l ., from gl and employ

2: while (true) do . ’ o (m, l—s)

3. (e}, a*(™ ) = Decode_For_Generator (g™, f"). a HRINK operation on the tuplév, v) if ay =0.
(v—-1)

4:  Find an alignmena’(™ D with higher score by using e We constructa(™ 1-s fromgy’~ " and employ

)’(U—Lu)

swap operations oa*(™ ! andej'. a MERGEoperation on the tuplev, v) if ¢, > 1.
5. if (a/(™ Y =NIL) then .
6 break . o If g, = 1: Letat™1=)| |~ define¢; = 0 for u —
7: e?d)if . 1 E<t<u-—land¢g,_ 1 > 0, where0 < k < ~.
8: g™ — Agenerator ob/™ 1, Constructa(™ 1-) from =Y and aopl
9: end while 2 o1, frOM 80 PP

(v, k)-GrRow to the(v, v) tuple. Note If (u—k—1) =
0, then consider the alignmentwhefg ..., v — 1} are
all aligned to the null position)

10: Outpute;!.

3.2 Theory of Generators As these are the only possibilities in théa phase, at the end

. . . of themth phase we get(™1-3), [ |
In this section, we prove some important results on generary o dynamic programs foviterbi Alignmentand Decoding
tors. are based on ideas in Lemirja 2 and Thedrem 1.

Structure Transformation Operations
We define a set of structure transformation operations off€mMma3
generators. The application of each of these operations on

()| - .
‘A% . ‘ is given by the coefficient af in

a generator modifies the structure of a generator and pro- ay —2 (a, —2) af —1 1 @

duces an alignment. Without loss of generé‘ﬂtyve assume T K oy —1

that the generator is the identity generagé?‘) and define v kst

the structural transformation operations on it. The tuple se-Wherea, =2+ 575 ™.

guence fOVgé"n)l)iS (1,1)...(m,m). Given an alignment Proof: Refer[Udupa and Maji, 2005b [
(j—l,i) gdli . ) . ‘g .

a e AZ°  with ¢; > 0, we explain the modifications (m) -

introduced by each of these operators to ftietuple. Theorem 2 ‘«45,* =(v+1) (%)
1. SHRINK: Extendal—1.1) ¢ Aié{i_l) to ald) ¢ Agt()? Proof: Substituter = 1 in EquatiorD. |

Decode_For_Generator finds the optimal solution over all

such that!/" = 0. (m)
. . ) —
possible alignments inl5 . in polynomial time.

. . (G-1) .. 3)
2. MERGE Extendal~1i) e A% toald e A%

.. 1 g(m>‘ _ m
such thahgj,z) —i Theorem 3 For a fixed!, ‘A%l =Q2m).

L (-1) : ii

3. (7, k)-GROW (0 < k < 7): Extendal—19) ¢ Aggz ' Prqof. Refer[Udupa gnd Maiji, ZOQE]b . [ |
o Githi) v Vlterbl,For,Generator( fl)nds the optimal solution over all

j,i+k g )t — . . . m) . .

tlo alitktl) g A%, | suchthat; =it+k+  possible alignments %, in polynomial time.

By removing the infertile positions at the end, we obtain the_Lemma 4 Let S = {ggm)7 " 7g1(\1m)} be a set of genera-

following result: _ g™

(. 1) e _ ~ tors. Define spaniS) = UIN::LAWL;, ;- Letp(.) be a poly-

Lemma?2 al™ Y ¢ A%l and has at least one fertile posi- omial. If1 > 2and N = O (p(m)), then there exists an

tion iff there exists such that) < s < ~, a(™ 1>\(W I_y €  alignmenta®™ Y such thata™ ) ¢ span(s).

(m)
Aff’l_s andg;_, > 0. Proof: Refer[Udupa and Maji, 2009b [
— This Lemma shows that by considering any polynomially
'by permuting the given generaig™ to the identity generator  large set of generators we can not obtain the optimal solu-
g tions to eitheiViterbi Alignmenior Decoding



4 Viterbi Alignment If u—%k—1=0,then

We now develop the algorithm for the subroutine m— oo L vl
Viterbi_For _Generator for IBM Model 3. Recall 83,k = ( “o ) Po™ Y0P ¥° H t (fpleo)
p=1

that this subroutine solves the following problem:

u—1
arm ) _ argmax Pr (f{n7a(m, 1)|e11) . xn(lley)t (folew)d (rylu,l,m) H n(0lep) .
a(m, 1)€A§fT) p=u—k

Our algorithm has a time complexity polynomialimandi. ~ We choose that operation which gives the best score. As a re-

Without loss of generality, we assume tadt) — g(()m). sult, B (u, v, g, ¢) NOW represents t_he best partial alignment
w(m, 1) so far andA (u, v, o, ) represents its score. We have,

Note thata*(™ |(m 1_s) (Where0 < s < yand¢;_, > 0)

can be obtained frongo using the structure transformation v (v, u)|.u
operations described in Sectipn|3.2. Therefore, we build the A(u,v,00,¢) = argmax  Pr (fl ay \el)

Viterbi alignment from left to right. We scan the tuple se- at Weas’)

quence from left to right inn phases and in any phase we Pu=w, Po=vo

determine the best structure transformation operation for thate determined (u, v, g, ¢) and B (u, v, pq, ¢), for all 0 <
phase. u<L,0<v<m0< e < pmaxandd < g < 7.
We consider all possible partial alignments betwégrand  To complete the scores of the alignments, we multiply each
ey, such thatg, = ¢ > 0 and ¢y = ¢o. Let A (u m, g, )by H]lgzu+1n(0\ep) forl —y <u<I.

B (u,v, o, ) be the best partial alignment betwehand | gt
el and A (u, v, g, @) be its sco@ Here, ¢y is the number

of French words aligned te in the partial alignment. (@, ¢o, ) = | argmaz. A (u,m, 0, ).
The key idea here is to computel (u,v, o, ¢) and 0 Zpo< m
B (u,v, o, @) recursively using Dynamic Programming. In 0 <¢ < poma

thevth phase (corresponding to the tuplev)), we consider
each of the structure transformation operation.

1. SHRINK: If o > 0, the SIRINK operation extends 4-1 Time Complexity
B(u,v—1,90—1,¢) and the score of the resulting The algorithm compute® (u, v, v, ¢) and A (u, v, ¢o, )

The Viterbi Alignment is, therefore3 (i, m, $o, @).

partial alignment is and therefore, there ar@ (lmzsﬁmax) entries that need to be
computed. Note that each of these entries is computed incre-
s1=cA(u,v = 1,00 —1,¢) mentally by a structure transformation operation.
wherec = t (f,|NULL) % (m_2(ﬁt;l(ﬁ;§fo+2)- e SHRINK operation require® (1) time.

. MERGEoOperation require® (1) time.
2. MERGE If ¢ > 0, the MERGE operation extends * P a (1)

B(u,v— 1,00, — 1) and the score of the resulting ® (7,%)-GROW (0 < k < ~) operation require® (¢max)

partial alignment is time for finding the best alignment and anoti@(1)
time to update the scdfle
s2 = cA(u,v — 1,00, — 1) Each iteration take®) (y¢max) time. Computation of the

N .
wherec = 2eL)d g (£ 10y 4 (1l | m). tablesA and B takesO (Im?yp},,) time. The final step

n(p—1Ifew) of finding the Viterbi alignment from the table entries takes
3. (v, k)-GRow: Let O (m7ymax) timg] Thus, the algorithm take (Im>y¢max)
time. In practice;y andmax are constants. The time com-
¢ = argmax B(u—k—1,v—1,00,k). plexity of our algorithm isO (1m?).

(v, k)-GROW extendsB (u— k — 1,0 — 1,9,') if 42 Space Complexity

o =1. Ifu—k—1 > 0, the score of the resulting There areO (Im*¢max) entries in each of the two tables.

partial alignment is Assumingy and¢max to be constants, the space complexity
of Viterbi_For_Generator is O (lmz).

S3.k :CA(U—]C_ 17U_ 179907SOI)
IBM Models 4 and 5 Extending this procedure for IBM
Models 4 and 5 is easy and we leave it to the reader to fig-

u—l ure out the modifications.
c=n(le.)t (folew)d(rolulm) [T n0le). Syom Tre

p=u—~k

where

*Note: The produc{],~,_, n(0le,) can be calculated incre-
mentally for eaclk, so that at each iteration only one multiplication

needs to be done. Similarly, the scdif’_] t (f,|NULL) can be

2A naive implementation of the tablB(x, *, x, *) takesO (m) : D=1
size for each element. It can instead be implemented as a table §flculated incrementally over the loop on
decisions and a pointer to the alignment that was extended to obtain “The factorT]' ., n (0|e,) can be calculated incrementally over
it. This makes the size of each ent®y(1). the loop ofu. So, it takesD (1) time in each iteration.



5 Decoding We put the new hypothesis in to

The algorithm for the subroutinBecode For_Generator HY ("4, e, 00, 1,7).

is similar in spirit to the algorithm for At the end of the phase, we retain only the best hypothesis
Viterbi For Generator. ~We provide the details for for eachHY (e”,¢’, ¢o, ¢, p). After m phases, we append at
IBM Model 4 as it is the most popular choice fDecoding  mosty infertile words to all hypotheses . The hypothesis
We assume that the language model is a trigram modelwith the best score it is the output of the algorithm.

Vg Is the target language vocabulary eéhd C Vg is the

set of infertile words. Our algorithm employs Dynamic 5.1 Time Complexity

Programming and computes the following: At the beginning of vth phase, there are at most
(e§L7a*(m7L)) — argmax  Pr (f{l"7a(va)‘e%) O<|VE|2v2<pmaX) distinct partial hypotheses. It takes
atm L) e s oL O1) + O(emax) + O(Ze|" |Ve| emax) time to extend

Let HY (¢, ¢, w0, . p) be the set of all partial hypotheses & hypothesis.  Therefore, the algorithm takes totally
which are translations dfy and have:"¢’ as their last two O (|VE|3 |Zg|” m?’gaﬁ]ax) time. Now, sincgVg/|, |Z|, ¢max
words ( is the center of cept associated withandy > 0 314+ are assumed to be constant, the time complexity of the
is the fertility of ¢’). Observe that the scores of all par- algorithm isO (m3).
tial hypothesis irHY (e”, ¢, o, , p) are incremented by the
same amount thereafter if the partial hypotheses are extendg2  Space Complexity
with the same sequence of operations. Therefore, for every ) )
HY (v,e”, €, 0, ¢, p) it suffices to work only on the best Ineach phase, we neéH(|VE| m2<ﬁmax) space. Assuming
partial hypothesisinit. _ [Ve| and ¢max to be constant, the space complexity is
The initial partial hypothesis ig, (., .,0,0,0) with ascore of (m2).
po™™. Initially, the hypothesis set{ has only one hypothe-
sis, ho (.,.,0,0,0). We scan the tuple sequencegﬁ,f“) left Extending this procedure for IBM Models 3 and 5 is easy.
to right in m phases and build the translation left to right.
In the vth phase, we extend each partial hypothesigtin g Experiments and Results
by employing the structure transformation operations. Let .
K1 (", ¢, g0, ¢, p) be the partial hypothesis which is be- 6.1 Decoding
ing extended. We trained the models using the GIZA++ td@ich, 2001 for
e SHRINK: We create a new partial hypothesis the translation direction French to English. For the current set
RY (e, ¢, o + 1,0, p) whose score is the score of Of experiments, we set = 1 andymax = 10. To compare

K=Y (e” €', o, o, p) times our results with those of a state of the art decoder, we used the
Greedy decodefMarcu and Och, 2004 Our test data con-
t (f,|NULL) P1 (m—2p0 —1) (m —2¢0) _ sisted of a corpus of French sentences with sentence length in
Po? (M — o) (po+ 1) the range)6 — 10, 11 — 15, ..., 56 — 60. Each sentence class
We put  the new  hypothesis in  to hadl00 French sentences. In Table 1, we compare the mean
HY (¢”, ¢, 00+ 1,0, p). logscores (negative logarithm of the probability) of each of

the length classes. Lower logscore indicates better probabil-
ity score. We observe that the scores for our algorithm are
(20%) better than the scores for Greedy algorithm. In the
same table, we report the average time required for decoding
for each sentence class. Our algorithm is much faster than the
Greedy algorithm for most length classes. This demonstrates
the power of our algorithm to search an exponentially large
subspace in polynomial time.

We compare the NIST and BLEU scores of our solutions with
the Greedy solutions. Our NIST scores a#§; better while

our BLEU scores aré6% better than those of the Greedy
solutions.

e MERGE We create a new partial hypothesis
hy (e, e, 00,0+ 1,p) whose score is the score
of K=t (e, €, o, @, p) times

/
n(p+ 1/|€ )t (fu|€/) dnew.
n(ple’) dold
Here,dyq is the distortion probability score of the last
tableau before expansiodye, is the distortion prob-
ability of the expanded hypothesis after is inserted
into the tableau ang’ is the new center of the cept
associated withe’.  We put the new hypothesis into
H‘ll (6//7 6/7 Yo, + 1, p/)'
e (7,k)-GRow: We choosé words (e, ..., e®) from 6.2 Viterbi Alignment
Zr and one word(e(’““)) from Vg. We create a We compare our results with those of local search algorithm
new partial hypothesia? (¢’ e, go,1,7,) if k = 0,  Of GIZA++ [Och, 200]. We sety = 4 andpmax = 10.
hY (e(k)’e(kﬂ)’(po, 1’%) otherwise. The score of this The |_n|t|aI generator for our algqnthm is obtained from the
. 1 _ solution of the local search algorithm.
hypothesis is the score 6™~ (¢”, ¢/, o, ¢, p) times In Table[3, we report the mean logscores of the alignments
k (for each length class) found by our algorithm and the local
n (1lexs1) € (folexr1)d (ro — plA ('), B(£.)) [ | n (0le,)search algorithm. Our scores are absfit better than those
p=1 of the local search algorithm.




Time (sec.) Score Class| Our | Greedy
Class|| Our | Greedy| Our | Greedy 06-10 | 017.51| 017.76
06-10 || 000.18| 000.08 || 025.31| 028.09 11-15| 026.77| 027.49
11-15 || 000.89| 000.40 || 036.35| 041.36 16-20 | 037.63| 038.98
16-20 || 001.86| 001.47 || 048.49| 054.52 21-25] 046.96| 048.61
21-25 003.74| 003.82 || 061.90| 072.29 26-30 | 057.31| 059.74
26-30 || 005.41| 008.21 || 073.62| 086.04 31-35| 068.46| 071.46
31-35] 007.70| 016.62 || 087.40| 101.98 36-40 | 079.83| 083.59
36-40 || 011.23| 029.09 || 098.84| 116.62 41-45| 090.04| 094.24
41-45| 013.29| 048.19 | 112.06| 133.10 46-50 | 102.24| 107.74
46-50 || 016.83| 074.03 | 122.88| 146.28 51-55] 112.65| 119.40
51-55 || 020.22| 112.82 | 135.31| 160.75 56-60 | 122.15| 129.46
56-60 || 024.21| 168.64 || 146.21| 175.53

Table 3: Viterbi Alignment Logscores
Table 1: Mean Time and Mean logscores

[Marcu and Och, 2004D. Marcu and F. Och. Greedy de-

BLEU NIST coder for statistical machine translatiomttp://www.
Class|| Our | Greedy|| Our | Greedy isi.edu/licensed-sw/rewrite-decoder |
06-10 || 0.3285| 0.2696 || 4.6922| 4.2705 2004.
11-1 .2942 2701 .0521| 4.72
S 0.29 0.2701 ] 5.05 36 [Marcu and Wong, 2002D. Marcu and W. Wong. A phrase-
16-20 || 0.3335| 0.2867 || 5.6887| 5.1301 based. ioint probabilit del for statistical hine t
5195 1 09816 0.2328 || 5 4845 4 8847 ased, joint probability model for statistical machine trans-

lation. In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing (EMNLP)
pages 133-139. Philadelphia, 2002.

26-30| 0.3261| 0.3014 | 5.6388| 5.0480
31-35| 0.2666| 0.2330 || 5.2857| 4.6997
36-40 || 0.3347| 0.2988 | 5.8144| 5.1785

21-45 1 0.3303| 0.2812 I 6.0273| 5.1311 [Ochet al, 2001 F. Och, N. Ueffing, and H. Ney. An ef-

26-50 [ 0.3620| 0.3092 || 6.2733| 5.2489 ficient a* search algorithm for statistical machine trans-

51-55 | 0.3686| 0.3032 || 6.5108| 5.4288 lation. In Proceedings of the ACL 2001 Workshop on

56-60 [ 0.3627 0.3030 || 6.4538 5.4089 Data-Driven Methods in Machine Translatippages 55—
62. Toulouse, France, 2001.

Table 2: BLEU and NIST Scores [Och, 2001 F. Och. Giza++. |http://www-i6.

Informatik.rwth-aachen.de/Colleagues/
och/software/GIZA++.html , 2001.

7 Conclusions [Tillman and Ney, 200p C. Tillman and H. Ney. Word re-
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