
Theory of Alignment Generators
and

Applications to Statistical Machine Translation

Raghavendra Udupa U. Hemanta K. Maji
IBM India Research Laboratory, New Delhi

{uraghave, hemantkm }@in.ibm.com

Abstract

Viterbi AlignmentandDecodingare two fundamen-
tal search problems in Statistical Machine Trans-
lation. Both the problems are known to beNP-
hard and therefore, it is unlikely that there exists
an optimal polynomial time algorithm for either of
these search problems. In this paper we charac-
terize exponentially large subspaces in the solution
space ofViterbi Alignmentand Decoding. Each
of these subspaces admits polynomial time opti-
mal search algorithms. We propose a local search
heuristic using a neighbourhood relation on these
subspaces. Experimental results show that our al-
gorithms produce better solutions taking substan-
tially less time than the previously known algo-
rithms for these problems.

1 Introduction
Statistical Machine Translation (SMT) is a data driven ap-
proach to Machine Translation[Brown et al., 1993], [Al-
Onaizanet al., 1999], [Bergeret al., 1996]. Two of the fun-
damental problems in SMT are[Brownet al., 1993]:

a∗ = argmax
a

Pr (f ,a|e) (ViterbiAlignment)

(e∗,a∗) = argmax
e,a

Pr (f ,a|e) Pr (e) (Decoding)

Viterbi Alignmenthas a lot of applications in Natural Lan-
guage Processing[Wang and Waibel, 1998], [Marcu and
Wong, 2002]. While there exist simple polynomial time al-
gorithms for computing theViterbi Alignmentfor IBM Mod-
els 1-2, only heuristics are known for Models 3-5. Recently,
[Udupa and Maji, 2005a] showed that the computation of
Viterbi Alignmentis NP-Hard for IBM Models 3-5.
Decodingalgorithm is an essential component of all SMT
systems[Wang and Waibel, 1997], [Tillman and Ney, 2000],
[Och et al., 2001], [Germannet al., 2003], [Udupaet al.,
2004]. The problem is known to beNP-Hard for IBM Mod-
els 1-5 when the language model is a bigram model[Knight,
1999].
UnlessP = NP, it is unlikely that there exist polynomial
time algorithms for eitherViterbi Alignmentor Decoding.
Therefore, there is a lot of interest in finding fast heuristics
to find acceptable solutions for the problems.

Previous approaches to theViterbi Alignmentproblem have
focussed on defining a graph over all possible alignments
where the connectivity is based on local modifications. The
best known algorithm forDecoding(both in terms of speed
and translation quality) employs a greedy search algorithm.
However, these approaches can look at only polynomial num-
ber of alignments in polynomial time.
In this paper, we characterize exponentially large subspaces
of the solution space ofViterbi AlignmentandDecoding. We
propose polynomial time optimal dynamic programming al-
gorithms to solveViterbi AlignmentandDecodingwhen the
search space is restricted to a particular subspace. There are
exponentially many such subspaces. So, we perform a local
search on these subspaces under a suitable neighbourhood re-
lation. Though, there is no polynomial bound on the number
of iterations of the local search, experiments show that our
algorithms procduce better solutions in significantly less time
than the current algorithms.
We introduce the notion of analignment generatorin Sec-
tion 2. There arem! distinct alignment generators (wherem
is the length of the source language sentence). Each align-
ment generator (gi, where1 ≤ i ≤ m!) is associated with an
exponentially large subspace of alignments (Ai). The solu-
tion space ofViterbi AlignmentandDecodingcan be written
as the union of these subspaces. We next consider the graph
induced on the set ofAis by a neighbourhood relation and
perform local search on this graph. The explicit mathematical
definition ofAi and the neighbourhood relation are presented
in Section 3. We present polynomial time optimal algorithms
for Viterbi AlignmentandDecodingover a particularAi (Sec-
tion 4 and Section 5 respectively). Experiments show that our
search algorithms produce better solutions taking subtantially
less time than current algorithms (Section 6).

2 Preliminaries
IBM Models 1-5 assume that there is a hiddenalignmentbe-
tween the source and target sentences.

Definition 1 (Alignment) An alignment is a function
a(m, l) : {1, . . . ,m} → {0, 1, . . . , l}.
{1, . . . ,m} is the set of source positions and{0, 1, . . . , l} is
the set of target positions. The target position0 is known
as the null position. We denotea(m, l)(j) by a

(m, l)
j . The

fertility of the target positioni in alignmenta(m, l) is φi =



∑m
j=1 δ

(
a
(m, l)
j , i

)
. If φi = 0, then the target positioni

is an infertile position, otherwise it is afertile position. Let
{k, . . . , k + γ − 1} ⊆ {1, . . . , l} be the longest range of con-
secutive infertile positions, whereγ ≥ 0. We say that align-
menta(m, l) has aninfertility width of γ.
Representation of Alignments: Since all source positions
that are not connected to any of the target positions1, . . . , l
are assumed to be connected to the null position (0), we can
represent an alignment, without loss of generality, as a set
of tuples{(j, aj) |aj 6= 0}. Let m′ = m − φ0. Thus, a
sequence representation of an alignment hasm′ tuples. By
sorting the tuples in ascending order using the second field
as the key,a(m, l) can now be represented as a sequence(
j1, a

(m, l)
j1

)
. . .

(
jm′ , a

(m, l)
jm′

)
where thea

(m, l)
jk

s are non-

decreasing with increasingk. Note that there are(l + 1)m

possible alignments for a givenm, l > 0. Let a(m, l)
∣∣
(v,u)

be the alignment{1, . . . , v} → {0, . . . , u} where all the tu-

ples
(
j, a

(m, l)
j

)
such thatj > v or a

(m, l)
j > u have been

removed.

Definition 2 (Generator) A generator is a bijectiong(m) :
{1, . . . ,m} → {1, . . . ,m}.

Representation of Generators: A generatorg(m) can be
represented as a sequence of tuples(j1, 1) . . . (jm,m). Note
that there arem! different possible generators for a given
m > 0. The identity functiong(m)(j) = j is denoted by
g(m)
0 .

Definition 3 (g(m) −→ a(m, l)) An alignmenta(m, l) (with

tuple sequence
(
j1, a

(m, l)
j1

)
. . .

(
jm′ , a

(m, l)
jm′

)
) is said to

be generated by a generatorg(m) (with tuple sequence
(k1, 1) . . . (km,m)) if j1 . . . jm′ is a subsequence of
k1 . . . km.

Note that the above definition does not take into account the
infertility width of the alignment. Hence, we refine the above
definition.

Definition 4 (g(m) γ−→ a(m, l)) An alignmenta(m, l) is said
to beγ-generated byg(m), if g(m) −→ a(m, l) and the infer-
tility width of a(m, l) is at mostγ.

Definition 5 (Ag(m)

γ, l )

Ag(m)

γ, l =
{
a(m, l) | g(m) γ−→ a(m, l)

}
Thus, for every generatorg(m) and integerγ ≥ 0 there is

an associated family of alignmentsAg(m)

γ, l for a givenl ∈ N.

Further,Ag(m)

γ,? = ∪l Ag(m)

γ, l .

Swap Operation: Let g(m) be a generator and
(j1, 1) . . . (jk, k) . . . (jk′ , k

′) . . . (jm,m) be its tuple se-
quence. The result of a SWAP operation on thekth and
k′th tuples in the sequence is another tuple sequence
(j1, 1) . . . (jk′ , k) . . . (jk, k′) . . . (jm,m). The new tuple
sequence defines a generatorg′(m). The relationship between
any two generators is given by:

Lemma 1 If g(m) andg′(m) are two generators theng′(m)

can be obtained fromg(m) by a series of swap operations.

Proof: Follows from the properties of permutations.
We can apply a sequence ofSwap operators to modify
any given generatorg(m) to g(m)

0 . The source position
rv (1 ≤ v ≤ m) in g(m) corresponds to the source positionv

in g(m)
0 . For brevity, we denote a sequencevi vi+1 . . . vj by

vj
i . The source sentence is represented byfm1 and the target

sentence is represented byel
1.

3 Framework

We now describe the common framework for solvingViterbi
Alignmentand Decoding. The solution space forViterbi

Alignmentcan be written as∪g(m) Ag(m)

l, l , and the solution

space ofDecodingcan be approximated by∪g(m) Ag(m)

γ,? for
a large enoughγ. The key idea is to find the optimal solution
in an exponentially large subspaceA corresponding to a gen-

erator (A = Ag(m)

l, l andA = Ag(m)

γ,? for Viterbi Alignmentand
Decodingrespectively). Given an optimal search algorithm
for A, we use Lemma 1 to augment the search space. Our
framework is as follows

1. Choose any generatorg(m) as the initial generator.

2. Find the best solution for the problem inA.

3. Pick a better generatorg′(m) via a swap operation on
g(m).

4. Repeat steps2 and 3 until the solution cannot be im-
proved further.

3.1 Algorithms

Viterbi Alignment

The algorithm for finding a good approximate so-
lution to Viterbi Alignment employs a subroutine
Viterbi For Generator to find the best solution in
the exponentially large subspace defined byAg(m)

γ, l . The
implementation of this subroutine is discussed in Section 4.

Algorithm 1 Viterbi Alignment

1: g(m) ← g(m)
0 .

2: while (true) do
3: a∗(m, l) = Viterbi For Generator

(
g(m), fm1 , el

1

)
.

4: Find an alignmenta′(m, l) with higher score by using
swap operations ona∗(m, l).

5: if
(
a′(m, l) = NIL

)
then

6: break .
7: end if
8: g(m) ← A generator ofa′(m, l).
9: end while

10: Outputa∗(m, l)



Decoding
Our algorithm for Decoding employs a subroutine
Decode For Generator to find the best solution in the
exponentially large subspace defined byAg(m)

γ,? . The im-
plementation of this subroutine is discussed in Section 5.

Algorithm 2 Decoding

1: g(m) ← g(m)
0 .

2: while (true) do
3:

〈
e∗l1 ,a∗(m, l)

〉
= Decode For Generator

(
g(m), fm1

)
.

4: Find an alignmenta′(m, l) with higher score by using
swap operations ona∗(m, l) ande∗l1 .

5: if
(
a′(m, l) = NIL

)
then

6: break .
7: end if
8: g(m) ← A generator ofa′(m, l).
9: end while

10: Outpute∗l1 .

3.2 Theory of Generators
In this section, we prove some important results on genera-
tors.

Structure Transformation Operations
We define a set of structure transformation operations on
generators. The application of each of these operations on
a generator modifies the structure of a generator and pro-
duces an alignment. Without loss of generality1, we assume
that the generator is the identity generatorg(m)

0 and define
the structural transformation operations on it. The tuple se-
quence forg(m)

0 is (1, 1) . . . (m,m). Given an alignment

a(j−1,i) ∈ Ag
(j−1)
0

γ,i with φi > 0, we explain the modifications
introduced by each of these operators to thejth tuple.

1. SHRINK: Extenda(j−1,i) ∈ Ag
(j−1)
0

γ,i to a(j,i) ∈ Ag
(j)
0

γ,i

such thata(j,i)
j = 0.

2. MERGE: Extenda(j−1,i) ∈ Ag
(j−1)
0

γ,i to a(j,i) ∈ Ag
(j)
0

γ,i

such thata(j,i)
j = i.

3. (γ, k)-GROW (0 ≤ k ≤ γ): Extenda(j−1,i) ∈ Ag
(j−1)
0

γ,i

toa(j,i+k+1) ∈ Ag
(j)
0

γ,i+k+1 such thata(j,i+k+1)
j = i+k+

1.

By removing the infertile positions at the end, we obtain the
following result:

Lemma 2 a(m, l) ∈ Ag
(m)
0

γ, l and has at least one fertile posi-

tion iff there existss such that0 ≤ s ≤ γ, a(m, l)
∣∣
(m, l−s)

∈

Ag
(m)
0

γ, l−s andφl−s > 0.

1by permuting the given generatorg(m) to the identity generator
g

(m)
0

Theorem 1 If a(m,l−s) ∈ Ag(m)

γ, l−s such thatφl−s > 0 then

it can be obtained fromg(m)
0 by a series ofSHRINK, MERGE

and(γ, k)-GROW operations.

Proof: WLOG we assume that the generator isg(m)
0 . We

provide a construction that hasm phases. In thevth step, we
constructa(m, l−s)

∣∣
(v,u)

from g(v)
0 in the following manner:

• We constructa(m, l−s)
∣∣
(v−1,u)

fromg(v−1)
0 and employ

a SHRINK operation on the tuple(v, v) if a
(m, l−s)
v = 0.

• We constructa(m, l−s)
∣∣
(v−1,u)

fromg(v−1)
0 and employ

a MERGEoperation on the tuple(v, v) if φu > 1.

• If φu = 1: Let a(m, l−s)
∣∣
(v,u)

defineφt = 0 for u −
k ≤ t ≤ u − 1 andφu−k−1 > 0, where0 ≤ k ≤ γ.
Constructa(m, l−s)

∣∣
v−1,u−k−1

from g(v−1)
0 and apply

(γ, k)-GROW to the(v, v) tuple. (Note: If (u−k−1) =
0, then consider the alignment where{1, . . . , v − 1} are
all aligned to the null position)

As these are the only possibilities in thevth phase, at the end
of themth phase we geta(m,l−s).
The dynamic programs forViterbi AlignmentandDecoding
are based on ideas in Lemma 2 and Theorem 1.

Lemma 3
∣∣∣Ag(m)

γ, l

∣∣∣ is given by the coefficient ofxl in(
αγ − 2

x

) [
(αγ − 2)

(
αm

γ − 1
αγ − 1

)
+ 1

]
(1)

, whereαγ = 2 +
∑γ

k=0 xk+1.

Proof: Refer[Udupa and Maji, 2005b]

Theorem 2
∣∣∣Ag(m)

γ,?

∣∣∣ = (γ + 1)
(

(γ+1)(γ+3)m+1
γ+2

)
Proof: Substitutex = 1 in Equation 1

Decode For Generator finds the optimal solution over all

possible alignments inAg(m)

γ,? in polynomial time.

Theorem 3 For a fixedl,
∣∣∣Ag(m)

γ, l

∣∣∣ = Ω(2m).

Proof: Refer[Udupa and Maji, 2005b]
Viterbi For Generator finds the optimal solution over all

possible alignments inAg(m)

γ, l in polynomial time.

Lemma 4 Let S =
{
g(m)
1 , . . . ,g(m)

N

}
be a set of genera-

tors. Define span(S) = ∪N
i=1A

g
(m)
i

γ=l, l. Let p(.) be a poly-
nomial. If l ≥ 2 and N = O (p(m)), then there exists an
alignmenta(m, l) such thata(m, l) 6∈ span(S).

Proof: Refer[Udupa and Maji, 2005b]
This Lemma shows that by considering any polynomially
large set of generators we can not obtain the optimal solu-
tions to eitherViterbi Alignmentor Decoding.



4 Viterbi Alignment
We now develop the algorithm for the subroutine
Viterbi For Generator for IBM Model 3. Recall
that this subroutine solves the following problem:

a∗(m, l) = argmax

a(m, l)∈Ag(m)
γ, l

Pr
(
fm1 ,a(m, l)|el

1

)
.

Our algorithm has a time complexity polynomial inm andl.
Without loss of generality, we assume thatg(m) = g(m)

0 .
Note thata∗(m, l)

∣∣
(m, l−s)

(where0 ≤ s ≤ γ andφl−s > 0)
can be obtained fromg0 using the structure transformation
operations described in Section 3.2. Therefore, we build the
Viterbi alignment from left to right. We scan the tuple se-
quence from left to right inm phases and in any phase we
determine the best structure transformation operation for that
phase.
We consider all possible partial alignments betweenfv1 and
eu
1 , such thatφu = ϕ > 0 and φ0 = ϕ0. Let

B (u, v, ϕ0, ϕ) be the best partial alignment betweenfv1 and
eu
1 andA (u, v, ϕ0, ϕ) be its score2. Here,ϕ0 is the number

of French words aligned toe0 in the partial alignment.
The key idea here is to computeA (u, v, ϕ0, ϕ) and
B (u, v, ϕ0, ϕ) recursively using Dynamic Programming. In
thevth phase (corresponding to the tuple(v, v)), we consider
each of the structure transformation operation.

1. SHRINK: If ϕ0 > 0, the SHRINK operation extends
B (u, v − 1, ϕ0 − 1, φ) and the score of the resulting
partial alignment is

s1 = cA (u, v − 1, ϕ0 − 1, ϕ)

wherec = t (fv|NULL) p1
p20

(m−2ϕ0+1)(m−2ϕ0+2)
(m−ϕ0+1)ϕ0

.

2. MERGE: If ϕ > 0, the MERGE operation extends
B (u, v − 1, ϕ0, ϕ− 1) and the score of the resulting
partial alignment is

s2 = cA (u, v − 1, ϕ0, ϕ− 1)

wherec = n(ϕ|eu)φ
n(ϕ−1|eu)t (fv|eu) d (rv|u, l,m).

3. (γ, k)-GROW: Let

ϕ′ = argmax
k

B (u− k − 1, v − 1, ϕ0, k) .

(γ, k)-GROW extendsB (u− k − 1, v − 1, ϕ0, ϕ
′) if

ϕ = 1. If u − k − 1 > 0, the score of the resulting
partial alignment is

s3,k = cA (u− k − 1, v − 1, ϕ0, ϕ
′)

where

c = n (1|eu) t (fv|eu) d (rv|u, l,m)
u−1∏

p=u−k

n (0|ep) .

2A naive implementation of the tableB(∗, ∗, ∗, ∗) takesO (m)
size for each element. It can instead be implemented as a table of
decisions and a pointer to the alignment that was extended to obtain
it. This makes the size of each entryO (1).

If u− k − 1 = 0, then

s3,k =
(

m− ϕ0

ϕ0

)
p0

m−2ϕ0p1
ϕ0

v−1∏
p=1

t (fp|e0)

× n (1|eu) t (fv|eu) d (rv|u, l,m)
u−1∏

p=u−k

n (0|ep) .

We choose that operation which gives the best score. As a re-
sult,B (u, v, ϕ0, ϕ) now represents the best partial alignment
so far andA (u, v, ϕ0, ϕ) represents its score. We have,

A (u, v, ϕ0, ϕ) = argmax
a(v, u)∈Ag(v)

γ, u

φu=ϕ, φ0=ϕ0

Pr
(
fv1 ,a(v, u)|eu

1

)

We determineA (u, v, ϕ0, ϕ) andB (u, v, ϕ0, ϕ), for all 0 ≤
u ≤ l, 0 ≤ v ≤ m, 0 < ϕ ≤ ϕmax and0 ≤ ϕ0 ≤ m

2 .
To complete the scores of the alignments, we multiply each
A (u, m,ϕ0, ϕ) by

∏l
p=u+1 n (0|ep) for l − γ ≤ u ≤ l.

Let

(û, ϕ̂0, ϕ̂) = argmax
l−γ ≤ u ≤ l
0 ≤ ϕ0 ≤ m

2
0 < ϕ ≤ ϕmax

A (u, m,ϕ0, ϕ) .

The Viterbi Alignment is, therefore,B (û, m, ϕ̂0, ϕ̂).

4.1 Time Complexity
The algorithm computesB (u, v, ϕ0, ϕ) andA (u, v, ϕ0, ϕ)
and therefore, there areO

(
lm2ϕmax

)
entries that need to be

computed. Note that each of these entries is computed incre-
mentally by a structure transformation operation.
• SHRINK operation requiresO (1) time.

• MERGEoperation requiresO (1) time.

• (γ, k)-GROW (0 ≤ k ≤ γ) operation requiresO (ϕmax)
time for finding the best alignment and anotherO (1)
time to update the score3.

Each iteration takesO (γϕmax) time. Computation of the
tablesA and B takesO

(
lm2γϕ2

max

)
time. The final step

of finding the Viterbi alignment from the table entries takes
O (mγϕmax) time4. Thus, the algorithm takesO

(
lm2γϕmax

)
time. In practice,γ andϕmax are constants. The time com-
plexity of our algorithm isO

(
lm2

)
.

4.2 Space Complexity
There areO

(
lm2ϕmax

)
entries in each of the two tables.

Assumingγ andϕmax to be constants, the space complexity
of Viterbi For Generator isO

(
lm2

)
.

IBM Models 4 and 5 Extending this procedure for IBM
Models 4 and 5 is easy and we leave it to the reader to fig-
ure out the modifications.

3Note: The product
Qu−1

p=u−k n (0|ep) can be calculated incre-
mentally for eachk, so that at each iteration only one multiplication
needs to be done. Similarly, the score

Qv−1
p=1 t (fp|NULL) can be

calculated incrementally over the loop onv.
4The factor

Ql
u+1 n (0|ep) can be calculated incrementally over

the loop ofu. So, it takesO (1) time in each iteration.



5 Decoding
The algorithm for the subroutineDecode For Generator
is similar in spirit to the algorithm for
Viterbi For Generator. We provide the details for
IBM Model 4 as it is the most popular choice forDecoding.
We assume that the language model is a trigram model.
VE is the target language vocabulary andIE ⊂ VE is the
set of infertile words. Our algorithm employs Dynamic
Programming and computes the following:(

e∗L1 ,a∗(m,L)
)

= argmax
a(m,L)∈Ag(m)

γ,? , eL
1

Pr
(
fm1 ,a(m,L)|eL

1

)
Let Hv

1 (e′′, e′, ϕ0, ϕ, ρ) be the set of all partial hypotheses
which are translations offv1 and havee′′e′ as their last two
words (ρ is the center of cept associated withe′ andϕ > 0
is the fertility of e′). Observe that the scores of all par-
tial hypothesis inHv

1 (e′′, e′, ϕ0, ϕ, ρ) are incremented by the
same amount thereafter if the partial hypotheses are extended
with the same sequence of operations. Therefore, for every
Hv

1 (v, e′′, e′, ϕ0, ϕ, ρ) it suffices to work only on the best
partial hypothesis in it.
The initial partial hypothesis ish0 (., ., 0, 0, 0) with a score of
p0m. Initially, the hypothesis setH has only one hypothe-
sis,h0 (., ., 0, 0, 0). We scan the tuple sequence ofg(m)

0 left
to right in m phases and build the translation left to right.
In the vth phase, we extend each partial hypothesis inH
by employing the structure transformation operations. Let
hv−1

1 (e′′, e′, ϕ0, ϕ, ρ) be the partial hypothesis which is be-
ing extended.
• SHRINK: We create a new partial hypothesis

hv
1 (e′′, e′, ϕ0 + 1, ϕ, ρ) whose score is the score of

hv−1
1 (e′′, e′, ϕ0, ϕ, ρ) times

t (fv|NULL)
p1
p02

(m− 2ϕ0 − 1) (m− 2ϕ0)
(m− ϕ0) (ϕ0 + 1)

.

We put the new hypothesis in to
Hv

1 (e′′, e′, ϕ0 + 1, ϕ, ρ).
• MERGE: We create a new partial hypothesis

hv
1 (e′′, e′, ϕ0, ϕ + 1, ρ) whose score is the score

of hv−1
1 (e′′, e′, ϕ0, ϕ, ρ) times

n (ϕ + 1|e′)
n (ϕ|e′)

t (fv|e′)
dnew

dold
.

Here,dold is the distortion probability score of the last
tableau before expansion,dnew is the distortion prob-
ability of the expanded hypothesis afterrv is inserted
into the tableau andρ′ is the new center of the cept
associated withe′. We put the new hypothesis into
Hv

1 (e′′, e′, ϕ0, ϕ + 1, ρ′).

• (γ, k)-GROW: We choosek words
(
e(1), . . . , e(k)

)
from

IE and one word
(
e(k+1)

)
from VE . We create a

new partial hypothesishv
1

(
e′, e(1), ϕ0, 1, rv

)
if k = 0,

hv
1

(
e(k), e(k+1), ϕ0, 1, rv

)
otherwise. The score of this

hypothesis is the score ofhv−1
1 (e′′, e′, ϕ0, ϕ, ρ) times

n (1|ek+1) t (fv|ek+1)d (rv − ρ|A (e′) ,B (fv))
k∏

p=1

n (0|ep)

We put the new hypothesis in to
Hv

1

(
ek+1, ek, ϕ0, 1, rv

)
.

At the end of the phase, we retain only the best hypothesis
for eachHv

1 (e′′, e′, ϕ0, ϕ, ρ). After m phases, we append at
mostγ infertile words to all hypotheses inH. The hypothesis
with the best score inH is the output of the algorithm.

5.1 Time Complexity
At the beginning of vth phase, there are at most

O
(
|VE |2 v2ϕmax

)
distinct partial hypotheses. It takes

O (1) + O (ϕmax) + O (|IE |γ |VE |ϕmax) time to extend
a hypothesis. Therefore, the algorithm takes totally

O
(
|VE |3 |IE |γ m3ϕ2

max

)
time. Now, since|VE |, |IE |, ϕmax

andγ are assumed to be constant, the time complexity of the
algorithm isO

(
m3

)
.

5.2 Space Complexity

In each phase, we needO
(
|VE |2 m2ϕmax

)
space. Assuming

|VE | and ϕmax to be constant, the space complexity is
O

(
m2

)
.

Extending this procedure for IBM Models 3 and 5 is easy.

6 Experiments and Results
6.1 Decoding
We trained the models using the GIZA++ tool[Och, 2001] for
the translation direction French to English. For the current set
of experiments, we setγ = 1 andϕmax = 10. To compare
our results with those of a state of the art decoder, we used the
Greedy decoder[Marcu and Och, 2004]. Our test data con-
sisted of a corpus of French sentences with sentence length in
the range06−10, 11−15, . . . , 56−60. Each sentence class
had100 French sentences. In Table 1, we compare the mean
logscores (negative logarithm of the probability) of each of
the length classes. Lower logscore indicates better probabil-
ity score. We observe that the scores for our algorithm are
(20%) better than the scores for Greedy algorithm. In the
same table, we report the average time required for decoding
for each sentence class. Our algorithm is much faster than the
Greedy algorithm for most length classes. This demonstrates
the power of our algorithm to search an exponentially large
subspace in polynomial time.
We compare the NIST and BLEU scores of our solutions with
the Greedy solutions. Our NIST scores are14% better while
our BLEU scores are16% better than those of the Greedy
solutions.

6.2 Viterbi Alignment
We compare our results with those of local search algorithm
of GIZA++ [Och, 2001]. We setγ = 4 and ϕmax = 10.
The initial generator for our algorithm is obtained from the
solution of the local search algorithm.
In Table 3, we report the mean logscores of the alignments
(for each length class) found by our algorithm and the local
search algorithm. Our scores are about5% better than those
of the local search algorithm.



Time (sec.) Score
Class Our Greedy Our Greedy
06-10 000.18 000.08 025.31 028.09
11-15 000.89 000.40 036.35 041.36
16-20 001.86 001.47 048.49 054.52
21-25 003.74 003.82 061.90 072.29
26-30 005.41 008.21 073.62 086.04
31-35 007.70 016.62 087.40 101.98
36-40 011.23 029.09 098.84 116.62
41-45 013.29 048.19 112.06 133.10
46-50 016.83 074.03 122.88 146.28
51-55 020.22 112.82 135.31 160.75
56-60 024.21 168.64 146.21 175.53

Table 1: Mean Time and Mean logscores

BLEU NIST
Class Our Greedy Our Greedy
06-10 0.3285 0.2696 4.6922 4.2705
11-15 0.2942 0.2701 5.0521 4.7236
16-20 0.3335 0.2867 5.6887 5.1301
21-25 0.2816 0.2328 5.4845 4.8847
26-30 0.3261 0.3014 5.6388 5.0480
31-35 0.2666 0.2330 5.2857 4.6997
36-40 0.3347 0.2988 5.8144 5.1785
41-45 0.3303 0.2812 6.0273 5.1311
46-50 0.3620 0.3092 6.2733 5.2489
51-55 0.3686 0.3032 6.5108 5.4288
56-60 0.3627 0.3030 6.4538 5.4089

Table 2: BLEU and NIST Scores

7 Conclusions
It would be interesting to see if the theory of alignment gener-
ators can be applied successfully for other problems in NLP.
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