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Abstract

There are vast amounts of free text on the inter-
net that are neither grammatical nor formally struc-
tured, such as item descriptions on Ebay or internet
classifieds like Craig’s list. These sources of data,
called “posts,” are full of useful information for
agents scouring the Semantic Web, but they lack the
semantic annotation to make them searchable. An-
notating these posts is difficult since the text gen-
erally exhibits little formal grammar and the struc-
ture of the posts varies. However, by leveraging
collections of known entities and their common at-
tributes, called “reference sets,” we can annotate
these posts despite their lack of grammar and struc-
ture. To use this reference data, we align a post
to a member of the reference set, and then exploit
this matched member during information extrac-
tion. We compare this extraction approach to more
traditional information extraction methods that rely
on structural and grammatical characteristics, and
we show that our approach outperforms traditional
methods on this type of data.

1 Introduction
The Semantic Web will revolutionize the use of the internet,
but the idea faces some major challenges. First, construc-
tion of the Semantic Web requires a lot of extra markup on
documents, but this work should not be forced upon every-
day users. Second, there is a lot of information that would be
more useful if it were annotated for the Semantic Web, but
the nature of the data makes it difficult to do so. Examples
of this type of data are the text of EBay posts, internet clas-
sifieds like Craig’s list, bulletin boards such as Bidding For
Travel,1 or even the summary text below the hyperlinks re-
turned after querying Google. We call each piece of text from
these sources a “post.” It would be beneficial to add semantic
annotation to such posts, like that shown in Figure 1, but the
annotation task should carry no burden to human users.

Information extraction (IE) can be used to extract and se-
mantically annotate pieces of some text. However, IE on

1www.biddingfortravel.com

Figure 1: A post from Bidding For Travel

posts is especially difficult because the data is neither struc-
tured enough to use wrapper technologies such as Stalker
[Musleaet al., 2001] nor grammatical enough to exploit Nat-
ural Language Processing (NLP) techniques such as those
used in Whisk[Soderland, 1999].

This lack of grammar and structure can be overcome by
adding knowledge to IE. This extra knowledge consists of
collections of known entities and their common attributes,
which we call “reference sets.” A reference set can be an
online set of reference documents, such as the CIA World
Fact Book. It can also be an online (or offline) database, such
as the Comics Price Guide.2 With the Semantic Web we en-
vision building reference sets from the numerous ontologies
that already exist. Continuing with our hotel example from
Figure 1, assume there is an ontology of U.S. hotels, and from
it we build a reference set with the following attributes: city,
state, star rating, hotel name, area name, etc.

To use reference sets for semantic annotation we exploit
the reference set to determine which, if any, of the attributes
appear in the post. To do this, we first determine which mem-
ber of the reference set best matches the post. We call this
the record linkage step. Then we exploit the attributes of this

2www.comicspriceguide.com



reference set member for the information extraction step by
identifying and labeling attributes from the post that match
those from the matching member of the reference set. We
annotate the post in this manner.

For instance, the circled hotel post in Figure 1 matches the
reference set member with the hotel name of “Holiday Inn
Select” and the hotel area of “University Center.” Using this
match we label the tokens “univ. ctr.” of the post as the “Hotel
Area,” since they match the hotel area attribute of the match-
ing reference set record. In this manner we annotate all of
the attributes in the post that match those of the reference set.
Figure 2 illustrates our approach on the example post from
Figure 1. For purposes of exposition, the reference set shown
only has 2 attributes: name and area.

Figure 2: Annotation Algorithm

In addition to annotating attributes in the post from the ref-
erence set, we also annotate attributes that are identifiable, but
not easily represented in reference sets. Examples of such at-
tributes include prices or dates. This is shown by the price of
Figure 1. Also, we include annotation for the attributes of the
matching reference member. (These are called “Refhotel...”
in Figure 1.) Since attribute values differ across posts, these
reference member attributes provide a set of normalized val-
ues for querying. Also, the reference set attributes provide
a simple visual validation to the user that the IE step iden-
tified things correctly. Lastly, by including attributes from
the matching reference member, we can provide values for
attributes that were not included in the post. In our exam-
ple post of Figure 1, the user did not include a star rating.
By including the reference set member’s attribute for this star
rating, we add useful annotation for information that was not
present initially.

This paper describes our algorithm for semantic annotation
using reference sets. Section 2 describes the record linkage
step and Section 3 describes the extraction step. Section 4
presents experimental evaluation, and section 5 presents dis-
cussion of results. Section 6 presents related research, and
section 7 describes our conclusions.

2 Aligning Posts to a Reference Set
To correctly parse the attributes from the post, we need to
first decide what those attributes are. To aid in this process,
we match the post to a member of the reference set.

Since it is infeasible to compare the post to all members of
the reference set, we construct a set of candidate matches in a
process known as “blocking”. Many blocking methods have
been proposed in the record linkage community (see[Baxter
et al., 2003] for a recent survey of some), but the basic idea is
to cluster candidates together around a blocking key. In our
work, a candidate for a post is any member of the reference
set that shares some n-gram with that post. The choice of
algorithm here is independent of the overall alignment algo-
rithm.

Next we find the candidate that best matches the post. That
is, we must align one data source’s record (the post) to a
record from the other data source (the reference set candi-
dates). This alignment is called record linkage[Fellegi and
Sunter, 1969].

However, our record linkage problem differs and is not
well studied. Traditional record linkage matches a record
from one data source to a record from another data source
by relating their respective, decomposed attributes. Yet the
attributes of the posts are embedded within a single piece of
text. We must match this text to the reference set, which is
already decomposed into attributes and which does not have
the extraneous tokens present in the post. With this type of
matching traditional record linkage approaches do not apply.

Instead, we create a vector of scores,VRL, for each candi-
date.VRL is composed of similarity scores between the post
and each attribute of the reference set. We call these scores
RL scores. VRL also includesRL scoresbetween the post and
all of the attributes concatenated together. In the example ref-
erence set from Figure 2, the schema has 2 attributes<Hotel
Name, Hotel Area>. If we assume the current candidate is
<“Hyatt”, “PIT Airport” >. Then we defineVRL as:
VRL=<RL scores(post,“Hyatt”),

RL scores(post,“PIT Airport”),
RL scores(post,“Hyatt PIT Airport”)>

EachRL scores(post,attribute)is itself a vector, composed of
three other vectors:
RL scores(post,attribute)=<tokenscores(post,attribute),

edit scores(post,attribute),
other scores(post,attribute)>

The three vectors that composeRL scoresrepresent dif-
ferent similarity types. The vectortokenscoresis the set
of token level similarity scores between the post and the
attribute, including Jensen-Shannon distance (both with a
Dirichlet prior and a Jelenik-Mercer mixture model) and Jac-
card similarity. The vectoredit scoresconsists of the follow-
ing edit distance functions: Smith-Waterman distance, Lev-
enstein distance, Jaro-Winkler similarity and character level
Jaccard similarity. (All of the scores intokenscoresand
edit scoresare defined in[Cohenet al., 2003].) Lastly, the
vectorother scoresconsists of scores that did not fit into ei-
ther of the other categories, specifically the Soundex score be-
tween the post and the attribute and the Porter stemmer score
between the two.



UsingRL scoresof just the reference attributes themselves
gives a notion of the field similarity between the post and the
match candidate. TheRL scoresthat uses the concatenation
of the reference attributes gives an idea of the record level
match. Since the post is not yet broken into attributes, this
is how we determine these field and record level similarities.
We could use only the concatenated scores since all we desire
is a record level match. However, it is possible for differ-
ent records in the reference set to have the same record level
score, but different scores for the attributes. If one of these
records had a higher score on a more discriminative attribute,
we would like to capture that.

After all of the candidates are scored, we then rescore each
VRL. For each element ofVRL, the candidates with the max-
imum value at that index map this element to 1. The rest of
the candidates map this element to 0.

For example, assume we have 2 candidates, with the vec-
torsV1RL andV2RL:

V1RL = <.999,1.2,...,0.45,0.22>
V2RL = <.888,0.0,...,0.65,0.22>

After rescoring they become:

V1RL = <1,1,...,0,1>
V2RL = <0,0,...,1,1>

The rescoring helps to determine the best possible candidate
match for the post. Since there might be a few candidates
with similarly close values, and only one of them is a best
match, the rescoring separates out the best candidate as much
as possible.

After rescoring, we pass eachVRL to a Support Vector
Machine (SVM)[Joachims, 1999] trained to label them as
matches or non-matches. When the match for a post is found,
the attributes of the matching reference set member are added
as annotation to the post.

3 Extracting Data from Posts
To exploit the reference set for extraction we use the attributes
of the best match from the reference set as a basis for identi-
fying similar attributes in the post.

To begin the extraction process, we break the post into to-
kens. In our example from Figure 2, the post becomes the
set of tokens,{“$25”, “winning”, “bid”,... }. Each of these
tokens is then scored against each attribute of the record from
the reference set that was deemed the match. This scoring
consists of building a vector of scores which we callVIE .
Although similar toVRL, theVIE vector does not include the
vectortokenscoresbecause we are comparing single tokens
of the post. Instead, we include a vectorcommonscores. The
commonscoresvector includes user defined functions such
as regular expressions, which help identify the attributes that
are not present in the reference set, such as price or date. So,
VIE consists of the vectorcommonscoresand anIE scores
vector between each token and each attribute from the refer-
ence set.

OurRL scoresvector from the record linkage step,

RL scores(post,attribute)=<tokenscores(post,attribute),
edit scores(post,attribute),
other scores(post,attribute)>

becomes,

IE scores(token,attribute)=<edit scores(token,attribute),
other scores(token,attribute)>

So, using our example from Figure 2, we match the post to
the reference set member{“Holiday Inn Select”,“University
Center”}. So, if we generate the VIE for the post token
“univ.” it would look like:

VIE = <commonscores(“univ.”),
IE scores(“univ.”,“Holiday Inn Select”),
IE scores(“univ.”,“University Center”)>

Since eachVIE is not a member of a cluster where the winner
takes all, there is no binary rescoring.

EachVIE is then passed to a multiclass SVM[Tsochan-
taridiset al., 2004] trained to give it a class label, such as hotel
name, hotel area, or price. Intuitively, similar attribute types
should have a similarVIE . We expect that hotel names will
generally have high scores against the reference set attribute
of hotel names, and small scores against the other attributes,
and the vector will reflect this.

The SVM learns that any vector that does not look like
anything else should be labeled as “junk”, which can then be
ignored. This is an important idea because without the bene-
fits of a reference set this would be an extraordinarily difficult
task. If features such as capitalization and token location were
used, who is to say “Great Deal” is not a car name? Also,
many traditional IE systems that work in this unique domain
of ungrammatical, unstructured text, such as addresses and
bibliographies, assume that each token of the text must be
classified as something, an assumption that cannot be made
when users are entering text.

However, by treating each token in isolation there is a
chance that a junk token will be mislabeled. For example,
a junk token might have enough letters to be labeled as aho-
tel area. Then when we extract thehotel areafrom the post,
it will have a noisy token. Therefore, labeling each token in-
dividually gives an approximation of the data to be extracted.

To improve extraction, we can exploit the power of the ref-
erence set by comparing the whole extracted field to its ana-
logue reference set attribute. Thus, once all of the tokens from
a post are processed and we have whole attributes labeled, we
take each attribute and compare it to the corresponding one
from the reference set. Then we can remove the tokens that
introduce noise in the extracted attribute.

To do this, we first get two baseline scores between the
extracted attribute and the reference set attribute. One is a
Jaccard similarity, which demonstrates token level similarity.
However, since there are many misspellings and such, we also
need an edit-distance based similarity metric. For this we use
the Jaro-Winkler metric. These baselines give us an idea of
how accurately we performed on the approximate extraction.
Using our post from Figure 2, assume the phrase “holiday
inn sel. univ. ctr.” was “holiday inn sel.in univ. ctr.”. In
this case, we might extract “holiday inn sel. in” as thehotel
name. In isolation, the token “in” could be the “inn” of a hotel
name. Comparing this extracted hotel name to the reference
attribute, “Holiday Inn Select,” we get a Jaccard similarity of
0.4 and a Jaro-Winkler score of 0.87.



Next, we go through the extracted attribute, removing one
token at a time and calculating the new Jaccard and Jaro-
Winkler similarities. If both of these new scores are higher
than the baseline, then that token is a candidate for removal.
Once all of the tokens are processed in this way, the candi-
date for removal that has the highest scores is removed, and
we repeat the whole process. The process ends when there
are no more tokens that yield improved scores when they are
removed. In our example, we find that “in” is a removal can-
didate since it yields a Jaccard score of 0.5 and a Jaro-Winkler
score of 0.92. Since it has the highest scores after the itera-
tion, it is removed. Then we see that removing any of the
remaining tokens does not provide improved scores, so the
process ends.

Aside from increasing the accuracy of extraction, this ap-
proach has the added benefit of disambiguation. For instance,
a token might be both ahotel nameand ahotel area, but not
both at the same time? As an example, “airport” could be part
of a hotel nameor ahotel area. In this case, we could label
it as both, and the above approach would remove the token
from the attribute that it is not. However, our implementation
currently assigns only one label per token, so we did not test
this disambiguation technique.

Thus, the whole extraction process takes a token of the text,
creates theVIE and passes this to the SVM which generates a
label for the token. Then each field is cleaned up and we add
the annotation to the post. This produces the output shown at
the end of Figure 2.

4 Results
To validate our approach, we implemented our algorithm in
a system named Phoebus and tested the technique in two do-
mains: hotel postings and comic books.

In the hotel domain, we attempt to parse the hotel name,
hotel area, star rating of the hotel, price and dates booked
from the Bidding For Travel website. This site is a forum
where users share successful bids for Priceline. We lim-
ited our experiment to posts about hotels in Sacramento, San
Diego and Pittsburgh. As a reference set, we use the Bidding
For Travel hotel guides. These guides are special posts that
list all of the hotels that have ever been posted about in a given
area. These posts provide the hotel name, hotel area and the
star rating, which are used as the reference set attributes.

The comic domain uses posts from EBay about comic
books for sale searched by keyword “Incredible Hulk” and
“Fantastic Four”. Our goal is to parse the title, issue number,
price, condition, publisher, publication year and the descrip-
tion from each post. (Note: the description is a few word
description commonly associated with a comic book, such as
1st appearance the Rhino.) As a reference set for this do-
main, we used the Comics Price Guide3 for lists of all of the
Incredible Hulk and Fantastic Four comics, as well as a list
of all possible comic book conditions. In this case, the ref-
erence set included the attributes title, issue number, descrip-
tion, condition and publisher.

Experimentally, we split the posts in each domain into 2
folds, one for training and one for testing, where the train-

3http://www.comicspriceguide.com/

ing fold was 30% of the total posts, and the testing fold was
the remaining 70%. We ran 10 trials and report the average
results for these 10 trials.

4.1 Alignment Results
Our approach hinges on exploiting reference sets, so the
alignment step should perform well. We report the results of
the alignment step in Table 1. According to the usual record
linkage statistics we define:

Precision =
#CorrectMatches

#TotalMatchesMade

Recall =
#CorrectMatches

#PossibleMatches

F −Measure =
2 ∗ Precision ∗Recall

Precison + Recall

We compare our record linkage approach to WHIRL[Co-
hen, 2000]. WHIRL is record linkage system that does soft
joins across tables by computing vector-based cosine similar-
ities between the attributes. All other record linkage systems
require matching based on decomposed fields, so WHIRL
served as a benchmark because it does not have this require-
ment. As input to WHIRL, one table was the test set of posts
(70% of the posts) and the other table was the reference set
with the attributes concatenated together. As in our record
linkage step, using the concatenation of attributes can best
mirror finding a record level match. This was also done be-
cause joining across each reference set attribute separately
leaves no way to combine the matches for these queries. For
example, would we only count the reference set members that
score highest for every attribute as matches?

We ran a similarity join across these tables, which pro-
duced a list of matches, ordered by descending similarity
score. For each post that had matches from the join, the refer-
ence set member with the highest similarity score was called
its match. These results are also reported in Table 1. Since
Phoebus is able to represent both an attribute level and record
level similarity in its score, using more than just token based
cosine similarity, it outperformed WHIRL.

Prec. Recall F-measure
Hotel

Phoebus 93.60 91.79 92.68
WHIRL 83.52 83.61 83.13
Comic

Phoebus 93.24 84.48 88.64
WHIRL 73.89 81.63 77.57

Table 1: Record linkage results

4.2 Extraction Results
We also performed experiments to validate our approach to
extraction. Specifically, we compare our technique to two
other IE methods as baselines.

One baseline is Simple Tagger from the MALLET[Mc-
Callum, 2002] suite of text processing tools. Simple Tagger



is an implementation of Conditional Random Fields (CRF).
CRFs have been effectively used in IE. As an example, one
algorithm combines information extraction and coreference
resolution using CRFs[Wellneret al., 2004].

We also present our results versus Amilcare[Ciravegna,
2001], which uses shallow Natural Language Processing for
information extraction. It has been empirically shown that
Amilcare does much better in extraction versus other sym-
bolic systems[Ciravegna, 2001]. It presents a good bench-
mark versus NLP based systems, which we expect will not
do well on our domains. For the tests, we supplied our refer-
ence data as gazetteers to Amilcare.

Our IE technique includes scores that we deemed “com-
mon” scores, which are used to help identify attributes not
in the reference set. We make these clear for each domain,
since they are the only domain specific scores we include. For
the hotel domain, our common scores arematchPriceRegex
and matchDateRegex, which give a positive score if a to-
ken matches a price or date regular expression, and 0 oth-
erwise. For the comic domain, we usematchPriceRegexand
matchYearRegex.

We present our results using Precision, Recall and F-
Measure as defined above. Tables 2 and 3 show the results of
correctly labeling the tokens within the posts with the correct
attribute label for the Hotel and Comic domains, respectively.
Attributes in italics are attributes that exist in the reference
set. The column Freq shows the average number of tokens
that have the associated label.

Table 4 shows the results reported for all possible tokens,
which is a weighted average, since some attribute types are
more frequent than others. Also included in Table 4 are “field
level” summary results. Field level results regard a piece of
extracted information as correctly labeled only if all of the
tokens that should be present are, and there are no extraneous
tokens. In this sense, it is a harsh, all or nothing metric, but it
is a good measure of how useful a technique would really be.

We tested the F-Measures for statistical significance using
a two-tailed paired t-test withα=0.05. In Table 2 the only
F-Measure difference that was not significant was theStarat-
tribute between Phoebus and Simple Tagger. In Table 3 the
F-Measures for Price were not significant between Phoebus
and Simple Tagger and between Phoebus and Amilcare. In
Table 4 all differences in F-Measure proved statistically sig-
nificant.

Phoebus outperforms the other systems on almost all at-
tributes, and for all summary results. There were 3 attributes
where Phoebus was outperformed, and two of these warrant
remarks. (We ignore hotel name since it was so similar.) On
Comic titles, Phoebus had a much lower recall because it was
unable to extract parts of titles that were not in the reference
set. Consider the post, “The incredible hulk and Wolverine
#1 Wendigo”. In this post, Phoebus extracts “The incredible
hulk,” but the actual title is “The incredible hulk and Wolver-
ine.” In this case, the limited reference set hindered Phoebus,
but this could be corrected by including more reference set
data, such as other comic book price guides.

The Comic description is the other attribute where Simple
Tagger outperformed Phoebus. Simple Tagger learned that
for the most part, there is an internal structure to descrip-

Hotel
Prec. Recall F-Measure Freq

Area Phoebus 89.25 87.5 88.28 809.7
Simple Tagger 92.28 81.24 86.39
Amilcare 74.20 78.16 76.04

Date Phoebus 87.45 90.62 88.99 751.9
Simple Tagger 70.23 81.58 75.47
Amilcare 93.27 81.74 86.94

Name Phoebus 94.23 91.85 93.02 1873.9
Simple Tagger 93.28 93.82 93.54
Amilcare 83.61 90.49 86.90

Price Phoebus 98.68 92.58 95.53 850.1
Simple Tagger 75.93 85.93 80.61
Amilcare 89.66 82.68 85.86

Star Phoebus 97.94 96.61 97.84 766.4
Simple Tagger 97.16 97.52 97.34
Amilcare 96.50 92.26 94.27

Table 2: Extraction results: Hotel domain

Comic
Prec. Recall F-Measure Freq

Condition Phoebus 91.80 84.56 88.01 410.3
Simple Tagger 78.11 77.76 77.80
Amilcare 79.18 67.74 72.80

Descript. Phoebus 69.21 51.50 59.00 504.0
Simple Tagger 62.25 79.85 69.86
Amilcare 55.14 58.46 56.39

Issue Phoebus 93.73 86.18 89.79 669.9
Simple Tagger 86.97 85.99 86.43
Amilcare 88.58 77.68 82.67

Price Phoebus 80.00 60.27 68.46 10.7
Simple Tagger 84.44 44.24 55.77
Amilcare 60.0 34.75 43.54

Publisher Phoebus 83.81 95.08 89.07 61.1
Simple Tagger 88.54 78.31 82.83
Amilcare 90.82 70.48 79.73

Title Phoebus 97.06 89.90 93.34 1191.1
Simple Tagger 97.54 96.63 97.07
Amilcare 96.32 93.77 94.98

Year Phoebus 98.81 77.60 84.92 120.9
Simple Tagger 87.07 51.05 64.24
Amilcare 86.82 72.47 78.79

Table 3: Extraction results: Comic domain

tions, such that they are almost never broken up in the middle.
For instance, many descriptions go from the token “1st” to a
few words after, with nothing interrupting them in the mid-
dle. Simple Tagger, then, would label all of these tokens as
a description. However, lots of times it labeled too many.
This way, it had a very high recall for description, by labeling
so much data, but it suffered in other categories by labeling
things such as conditions as descriptions too.

Phoebus had the highest level of precision for Comic de-
scriptions, but it had a very low recall because it ignored many
of the description tokens. Part of this problem stemmed from
classifying tokens individually. Since many of the description
tokens were difficult to classify from a single token perspec-
tive, they were ignored as junk.

5 Discussion
One drawback when using supervised learning systems is the
cost to label training data. However, our entire algorithm gen-



Hotel
Token level Field level

Prec. Recall F-Mes. Prec. Recall F-Mes.
Phoebus 93.60 91.79 92.68 87.44 85.59 86.51
Simple Tagger 86.49 89.13 87.79 79.19 77.23 78.20
Amilcare 86.12 86.14 86.11 85.04 78.94 81.88

Comic
Token level Field level

Prec. Recall F-Mes. Prec. Recall F-Mes.
Phoebus 93.24 84.48 88.64 81.73 80.84 81.28
Simple Tagger 84.41 86.04 85.43 78.05 74.02 75.98
Amilcare 87.66 81.22 84.29 90.40 72.56 80.50

Table 4: Summary extraction results

eralizes well and can perform well with little training data.
Table 5 presents summary, token level results for extraction.
Here we trained Phoebus on 10% of the posts, and then tested
on the other 90%. In both domains, the results are similar to
those of the experimental set up, which used 30% of the data
for training.

Prec. Recall F-measure
Hotel (30%) 93.60 91.79 92.68
Hotel (10%) 93.66 90.93 92.27
Comic (30%) 93.24 84.48 88.64
Comic (10%) 91.41 83.63 87.34

Table 5: Phoebus: Trained on 10% of the data

Since we return the reference set attributes as annotation,
we need to examine whether or not this annotation is valid.
To do this, we need a way to link the results from performing
record linkage to extraction results. Note we can consider the
fact that a correct match during record linkage is the same
as correctly identifying those attributes from the reference set
in the post, at the field level. In our ongoing example from
Figure 2, when we match the post to the reference member
with a hotel name of “Holiday Inn Select”, it is like extracting
this hotel name from the post. Thus, we can consider our
record linkage results to be field level extraction results for
the attributes in the reference set.

Using the reference set attributes as annotation has some
interesting implications. For instance, the attributes from
the reference set provide a normalized platform of values for
querying the data. Also, returning reference set attributes for
types not found in the post provides information that might
have been missing previously. As an example, a post might
leave out the star rating. Yet, now we have one from the ref-
erence set record upon which to query. Another interesting
implication arises as a solution for the cases where extraction
is hard. None of the systems extracted the comic description
well. However, by including the reference set description,
we consider the record linkage results as how effectively we
extracted (and thus labeled), a description. This yields an im-
provement of over 20% for precision, and almost 10% for
recall.

It may seem that using the reference set attributes for an-
notation solves the problem, but this is not the case. For one
thing, we want to see the actual values entered for different
attributes. Also, there are cases when the extraction results

outperform the record linkage results as seen with the hotel
name and star rating. This happens because even if a post is
matched to an incorrect member of the reference set, that in-
correct member is most likely very close to the correct match,
and so it can be used to correctly extract much of the infor-
mation. For example, there might be hotels with the same star
rating and hotel name, but with a different area. If this area
is not included in the post or included in a convoluted way
the record linkage step might not get a correct match. How-
ever, the reference set member could still be used to extract
the hotel name and star rating.

Lastly, the more discriminative information that we can
pass to the SVM, the better it will perform. Assume that all
we wanted to do is extract price and date from hotel posts, and
we would get the rest of the annotation from the reference set.
We would still want to train the SVM to extract the attributes
of the reference set, because it would then know that by clas-
sifying a certain piece of information as a certain attribute, it
is not another piece of information. That is to say, it is just
as important to recognize what a token is not. For example,
consider a reference set hotel named “The $41 Inn”. Then
when post matches this reference set member, and we see the
token “$41”, we know that it is most likely a hotel name. If
we did not train to extract all of the attributes, this would be
classified as a price, since the SVM has no notion of a hotel
name.

Extraction on all of the attributes also helps the system to
classify (and ignore) tokens that are “junk”. Labeling some-
thing as junk is much more descriptive if it is labeled junk out
of many possible class labels that could share lexical charac-
teristics. This helps to improve the extraction results on items
that are not in the reference set, and we see this in our results.

On the topic of reference sets, it is important to note that
the algorithm is not tied to a single reference set. The algo-
rithm extends to include multiple reference sets by iterating
the process for each reference set used.

Consider the following two cases. If we want to extract
conference names and cities but we only use one reference
set, it would have to contain the power set of cities crossed
with conference names. However, if we have two reference
sets, one for each attribute, we can run the algorithm once
with the conference name data, and once with a reference set
of cities.

The next interesting case happens when a post contains
more than one of the same attribute. For example, we want to
extract two cities from some post. If we use one reference set,
then it would include the cross product of all cities. However,
we can use a single reference set of city names if we slightly
modify the algorithm. We make a first pass with the city ref-
erence set. During this pass, the record linkage match will
either be one of the cities that matches best, or a tie between
them. In the case of a tie, we just choose the first match. Us-
ing this reference city we then extract the city from the post,
and remove it from the post. Then we simply run the process
again, which will catch the second city, using the same, sin-
gle reference set. This could be repeated as many times as
needed.



6 Related Work

Our work is motivated by the goal that the cost of annotat-
ing documents for the Semantic Web should be free, that
is, automatic and invisible to users[Hendler, 2001]. Many
researchers have followed this path, attempting to automati-
cally mark up documents for the Semantic Web, as we pro-
pose here[Vargas-Veraet al., 2002; Handschuhet al., 2002;
Cimianoet al., 2004; Dingliet al., 2003]. However, these sys-
tems rely on lexical information, such as part-of-speech tag-
ging or shallow Natural Language Processing to do their ex-
traction/annotation (e.g. Amilcare[Ciravegna, 2001]). This
is not an option when the data is ungrammatical, like our post
data. In a similar vein, there are systems such as ADEL[Ler-
manet al., 2004] which rely on the structure to identify and
annotate records in web pages. Again, the failure of our data
to exhibit structure makes this approach inappropriate. So,
while there is a fair amount of work in automatic labeling,
there is not much emphasis on techniques that could do this
on text that is unstructured and ungrammatical.

While the idea of record linkage is not new[Fellegi and
Sunter, 1969] and is well studied even now[Bilenko and
Mooney, 2003], most of the focus for this work matches one
set of records to another set of records based on their decom-
posed attributes. There is little work on matching data sets
where one record is a single string composed of the other data
set’s attributes to match on, as in our case. The WHIRL sys-
tem[Cohen, 2000] allows for record linkage without decom-
posed attributes, but as shown in Section 4.1 we outperform
WHIRL by exploiting a larger set of features to represent both
a field and record level similarity.

Using the reference set’s attributes as normalized values is
similar to the idea of data cleaning. However, most of the
data cleaning algorithms assume that there are tuple-to-tuple
transformations[Lee et al., 1999; Chaudhuriet al., 2003].
That is, there is some function that maps the attributes of one
tuple to the attributes of another. This approach would not
work on our data, where all of the attributes are embedded
within the post, which maps to a set of attributes from the
reference set.

Information extraction can semantically annotate data,
which is why we chose to compare our technique to other IE
approaches, such as the Simple Tagger Conditional Random
Field [McCallum, 2002]. Other IE approaches, such as Data-
mold [Borkaret al., 2001] and CRAM[Agichtein and Ganti,
2004], segment whole records (like bibliographies) into at-
tributes. However, both of these systems require that every
token of a record receive a label, which is not possible with
posts that are filled with irrelevant tokens. CRAM is also
similar in its use of reference sets for extraction. However,
they assume that the reference set members already match the
data for extraction, while we do this record linkage automat-
ically. Another IE approach similar to ours performs named
entity recognition using a dictionary component[Cohen and
Sarawagi, 2004]. However, this technique requires that entire
segments have the same class label, while our technique can
handle the case where an attribute is broken up in the middle
by another attribute, say a hotel name interrupted by a hotel
area.

7 Conclusion
In this paper we presented an algorithm for semantically an-
notating text that is ungrammatical and unstructured. This
technique provides much more utility to data sources that are
full of information, but cannot support structured queries. Us-
ing this approach, Ebay agents could monitor the auctions
looking for the best deals, or a user could find the average
price of a four star hotel in San Diego. This approach to se-
mantic annotation is necessary as we transition into the Se-
mantic Web, where information needs annotation for software
systems to use it, but users are unwilling to provide the re-
quired annotation.

In the future, we we would like to link this technique
with a mediator[Thakkaret al., 2004] framework for auto-
matically acquiring reference sets. This is similar to auto-
matically incorporating secondary sources for record linkage
[Michalowskiet al., 2005]. How to automatically formulate
a query to retrieve the correct domain reference set is a di-
rection of future research. Also, our current implementation
only gives one class label per token. Ideally we would give
a token all possible labels, and then remove the extraneous
tokens when we clean up the attributes, as described in Sec-
tion 3.
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