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Abstract

Multiagent models of the emergence of social con-
ventions have demonstrated that global conventions
can arise from local coordination processes without
a central authority. We further develop and extend
previous work to address how and under what con-
ditions emerging conventions are also socially effi-
cient, i.e. better for all agents than potential alter-
native conventions. We show with computational
experiments that the clustering coefficient of the
networks within which agents interact is an impor-
tant condition for efficiency. We also develop an
analytical approximation of the simulation model
that sheds some light to the original model be-
havior. Finally, we combine two decision mech-
anisms, local optimization and imitation, to study
the competition between efficient and attractive ac-
tions. Our main result is that in clustered networks
a society converges to an efficient convention and
is stable against invasion of sub-optimal conven-
tions under a much larger range of conditions than
in a non-clustered network. On the contrary, in
non-clustered networks the convention finally es-
tablished heavily depends on its initial support.

1 Introduction

Social conventions, according to [Ullmann-Margalit, 19771,
are a special type of norms related to coordination problems,
that is, those regularities of behavior which are a result of
being a solution of a recurrent coordination problem, which
with time, turn normative. The emergence and stabilization
of norms, including social conventions, is one of the fun-
damental problems of social sciences [Bendor and Swistak,
2001]. Intuitively, a social convention might be regarded as
any rule of behavior or a behavioral constraint [Walker and
Wooldridge, 1995]. A convention simplifies people’s deci-
sion making problem by dictating how to act in certain sit-
vations. Therefore, social conventions help to reduce com-
plexity and uncertainty, particularly when the environment is
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open and dynamic. From this perspective it is obvious that
mechanisms underlying the emergence of social conventions
are of great interest for Distributed Artificial Intelligence.

[Shoham and Tennenholtz, 1992] addressed the question
whether and how the emergence of conventions is possible
from decentralized, local interaction, as opposed to conven-
tions designed and enforced a priori by a central authority.
Shoham demonstrated that self-coordination based on a sim-
ple local optimization rule can emerge from initial disorder.
Following Shoham’s, many researchers have studied and im-
proved his seminal work, proposing other strategies rather
than HC R [Walker and Wooldridge, 1995], studying the time
needed before the convention is established [Kittock, 1993],
adding complex interaction patterns among agents [Delgado,
2002], and many others.

However, an important question remains open, when two
potential different conventions exist which one will be es-
tablished at the end? This question is not applicable to the
original work of [Shoham and Tennenholtz, 1992], since the
game was a pure coordination game, where no action pareto-
dominates the other. Nevertheless, the question applies to all
coordination games where one action is more efficient than
the other. The discussion in social sciences gives no clear
answer to why and under what conditions efficient conven-
tions may prevail. As [Bendor and Swistak, 2001] point
out, there are at least two conflicting positions in sociology,
the strong functionalism thesis and the rational choice view.
Strong functionalism claims that norms and conventions exist
because they are functional for the group, that is, they yield
optimal collective outcomes. According to this perspective,
the system should always end up in an efficient convention.
However, the functionalist approach has been criticized for its
lack of a microfoundation. Adherents of the rational choice
view on norms argue that individuals adopt norms only when
it serves their self-interest to do so. This includes the pos-
sibility that mechanisms such as social control may stabilize
conventions that are an individually efficient response to the
given constraints, but are socially inefficient.

In section 2 we describe our model. In section 3 we de-
scribe the experimental results and analyze the necessary con-
ditions to converge to the optimal convention. In section 4 we
analyze the time efficiency of the emergence of conventions.
In section 5 we integrate and analyze experimentally opti-
mization and imitation partially competing decision mecha-



nisms in the model. Finally, main results are summed up in
section 6.

2 Formal Model

We follow the conceptual framework introduced by [Shoham
and Tennenholtz, 1992], and the extension proposed by [Del-
gado, 2002] that introduced complex networks as the under-

lying topology. .

2.1 The Coordination Game

A set of N agents must choose to play one of two possible ac-
tions: either A or B. Accordingly to its current action, or state,
an agent interact with its neighbors receiving an outcome de-
fined in payoff matrix G.

Agent j
A B
A (X,X) (u,V)
Agent ¢
B Lo [ Gy

Figure 1: Payoff Matrix of the Game G

The payoff matrix G defines a 2-person 2-choice symmet-
ric coordination game provided that x > v and y > u.
The condition on the entries of G makes clear that to play
the same action is the best choice. It is trivial to demon-
strate that the game G has two nash-equilibrium, both agents
playing either A or B. Most previous work focused in the
study of pure coordination games: where x = y = +1,v =
u = —1 [Walker and Wooldridge, 1995; Kittock, 1993;
Shoham and Tennenholtz, 1997; Delgado, 2002]. In our ap-
proach we move beyond this work and allow for coordina-
tion games with equilibrium differing in social efficiency (i.e.
T > ).

For simplicity we assume that coordination on action A is
at least as profitable as coordination on action B: =z > y.
Thus, game G is defined as follows: v = u = —1,y = +1,
and x = « provided that « > 1. When a > 1, coordina-
tion in B is a sub-optimal solution since there exists a pareto-
efficient solution that pareto-dominates B, which is, coordi-
nation in action A.

2.2 Action Selection Rule and Dynamics

Our MAS is composed of IV agents that interact only with its
neighbors in the social network, playing the game G once per
interaction. Every agent, say the kth, has memory M, that
records the M last interactions of agent k. The value of the
position ¢ of the memory M}, is the tuple (a}, pj,, t"), where
a} stands for the action played by k, p, stands for the payoff
received after playing action at, and ¢* denotes the time the
interaction took place. The initial action of the agents is set
randomly with a probability r 5, which is the density of agents
playing action B in the beginning.

Following [Shoham and Tennenholtz, 1992] we will use
the Highest Cumulative Reward (HC R) action selection rule.
Intuitively HCR says: if the accumulated payoff obtained
from playing A is bigger than that from playing B then keep
on A, otherwise change to action B. The HCR rule is very

appropriate since it provides: 1) Locality: the selection func-
tion only depends on the agent’s personal history. No global
knowledge of the system is required, not even the payoff ma-
trix of the game. 2) Adaptability: the agent learns from its
experience without assuming cognitive capabilities. These
characteristics are very important in MAS.

The dynamics of the system are as follows. At each time
step t, an agent k is randomly activated. Once the agent is
activated, it plays the game G with an agent randomly cho-
sen from k’s neighborhood, say agent {. The result of the
interaction is stored into agent k’s memory M}, removing
the oldest entry if necessary. Finally, agent k£ must decide
whether to change its action or not. To do so it uses the
Highest Cumulative Reward rule. Agent k will compute the
payoft received for using action S on the last M activations:
P§ = 3,.4i s Di» Where S = {A|B}. Agent k will switch
to action S if ng > PE. Agent [ also carries out the mem-
ory storage and the action updating while the rest of agents
remain still. The system ends once all agents play either ac-

tion A or B, which means, that a convention on either A or
B have been established.

2.3 Underlying Topology

To model qualitatively different interaction structures, we
use several graph models that recently have been shown to
have profoundly different effects on cooperation and diffu-
sion dynamics in MAS [Watts and Strogatz, 1998; Albert and
Barabdsi, 2002; Delgado, 2002]. The chosen graphs are: a)

Random graphs: RJ<\],€>, where NV is the number of nodes, and
(k) is the average connectivity, that is, the average size of
node’s neighborhood. Random graphs have a clustering co-
efficient that tends to zero. The average path length grows
logarithmically in function of N, the number of nodes. b)
Regular graphs: C%, regular graphs display an extremely
high clustering coefficient, while its average path length and
diameter grows linearly. Which means, for big graphs the
average path length is very long, which does not agree with
empirically studied networks. However, regular graphs dis-
play the close-knit property due to its high clustering coef-
ficient, which does agree with empirical studies. c) Small-

world graphs: ng,mm , these are highly-clustered graphs (like
regular graphs) with small average path length (like random
graphs). This is the small-world property. We chose the
[Watts and Strogatz, 1998] model as model of small-world
graphs, where p is the rewiring probability. d) Scale-free

graphs: S]<\],€>’ﬂ, these are graphs with a connectivity distri-
bution P(k) of the form P (k) o< k~7. The connectivity de-
gree, the number of neighbors of a node, decays as a potential
law. This favors the so-called fat-fail phenomena; few nodes
with an extreme high connectivity. We chose the [Barabdsi
and Albert, 1999] model as a model of scale-free graph.
Recent studies on empirical networks show that neither
regular nor random graphs appear in nature. Noticing this,
[Delgado, 2002] studied the effect of complex networks
(small-world and scale-free networks) on the emergence of
coordination and found that this class of networks were as
efficient as the complete graph in terms of time to reach a
convention, O(NlogN) compared to O(N?) from regular
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Figure 2: Ratio of conventions to action B. The z-axis is the initial
density of agents playing action B: rp, ranging from .05 to .95. The
y-axis is the ratio of B-conventions, that is, the number of replica-
tions that ended up in all agents playing B over the total number of
replications (20). In sub-figure a) there is no efficient convention,
a = 1. In sub-figure b) and c) all agents playing action A is the
efficient convention, ov = % and o = 2 respectively.

graphs, already shown by [Kittock, 1993]. It is important to
stress that many empirical social networks such as the collab-
oration network among actors, the co-authorship network of
researchers on mathematics, the researchers on neuroscience
and many others are classified as scale-free networks. How-
ever, for these empirical social networks the clustering coeffi-
cient found is very high: 0.79, 0.59, 0.76 respectively. Let us
show the clustering coefficient of graphs we will use in the
experiments: C}9,=0.666, Wig00~0'=0.492, Siie™ %=
0.0433 and Ry, =0.0081. Notice that empirical social net-
works are much more clustered than the scale-free networks
yield by the [Barabdsi and Albert, 1999] model. But we still
use this model since scale-free models are focused in repro-
ducing the connectivity degree rather than clustering. This
fact must be kept in mind when analyzing the results and con-
clusions. For a comprehensive survey in complex networks
see [Albert and Barabadsi, 2002].

3 HCR-Model Experimental Results

We use a graph classification based on the clustering coeffi-
cient, regular and small-world graphs will be called highly-
clustered graphs, and scale-free and random graphs will be
called low-clustered graphs. For the sake of clarity we did
not include results on random graphs in the figures, since they
behave like scale-free graphs.

Let us stress which are the key manipulations in the param-
eters of our model. We systematically variate the proportion
of agents who initially adopt the convention B (rpg), the ef-
ficiency gap a between the two conventions, and finally, the
type of network, in particular its clustering coefficient, that
defines the agent’s neighborhood.

Another thing to mention before getting into the details is
that there are two clear phases: 1) all the replications converg-
ing to A, and 2) all the replications converging to B. There
is as well a space between these two phases where the sys-
tem converges, with some replications to A and some to B,
which we call transitional space, that is wider or narrower de-
pending on the underlying topology and «. There is a critical
point % that sets the boundaries between the two phases; and
the transitional space may be defined with an ¢, such that the
resultis: rp - e.

Now, let us comment the results of the experiments on the
HCR model. It is helpful to first consider the case where
both conventions are equally efficient (aw = 1), which is the
case of a pure coordination game. The results for this case
are displayed in sub-figure 2.a. When the initial number of
agents playing B is less than the half of the population, that
is, rp < %, the system ends up establishing the convention
on B. And, whenrg > % the convention on A is established.
The subfigure shows in particular that this result is widely
independent of the network topology. It also shows that the
transitional space is very narrow except for the regular graphs.

This pattern changes when convention differ in efficiency.
Sub-figures 2.b and 2.c show the case where the payoff for ac-
tion A exceeds the payoff for B (o« > 1). To understand the
results, consider an example. Let % of the population follow
the action B, and i follow the action A. In this case, although
B is the initially chosen action for most of the agents, coor-
dination in A is more efficient since it yields a better payoff.
Thus, which will be the final convention agreed by the whole
population? The answer depends on 1) how much better off,
more efficient, is the action A over B, denoted by . And
2) the underlying topology. If @ = % (sub-figure 2.b) the
final convention will be B when the underlying topology cor-
responds to a random or scale-free graph, A when having a
regular graph, and can be both when having a small-world
graph. By increasing the efficiency of coordination on A to
a = 2 (sub-figure 2.c) both small-world and regular graph
converge to convention A, whereas random and scale-free
graph still converge to convention B. The explanation behind
the result is striking, low-clustered graphs seems very sensi-
tive to the initial population density, whereas highly-clustered
graphs behave in the opposite way, they are more sensitive to
the efficiency of a particular action.

The conclusion derived from these results can be summed
up as follows: low-clustered agent communities where a con-
vention already exists will not be infected by a set of agents
who play a new action, even though it is more efficient. Con-
versely, highly-clustered agent communites can be infected
by a new action if the new action is more efficient, replac-
ing the current convention for the convention on the efficient
action.

Therefore, highly-clustered agent communities are more
innovative, or adaptive, since a new action can be spread and
finally established as a convention. The drawback would be
that this community would be unstable due to its receptive-
ness to new action, and in the transient time needed to reach a
stable new convention no coordination will exist. In contrast,
low-clustered agent communities are very stable since the in-
fection with a new convention is unlikely to happen, but on
the other hand they are reluctant to adopt new actions even
though they are more efficient, thus, becoming very conser-
vative and static communities. We must remark that studies
on empirical social networks have shown that these networks
are very clustered [Albert and Barabdsi, 2002].

We do not provide a proof of the system’s convergence.
Nevertheless, throughout all the simulation runs, with their
corresponding replications, the system has always converged
to a convention with an upper bound of O(N?3).
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Figure 3: Time to converge to a convention, the value is the mean
over 20 replications. The x-axis is the initial density of agents play-
ing action B: rp, ranging from .05 to .95. The y—axis is the number
of interactions (steps) before reaching a convention. Note the loga-
rithmic scale. In the left sub-figure both conventions, A or B. In the
right sub-figure A is the optimal convention since o« = 2.

On figure 3 (left), « is set to 1, therefore both conventions
are equally efficient. It can we observed that the regular graph
takes much longer to converge than the rest of graphs, which
is completely consistent with the findings of [Kittock, 1993]
and [Delgado, 2002]. Notice the existence of peaks in rp =
% in all the graphs except regular. These peaks are close to the

critical point 15 = % where the transition takes place. This
is a typical behavior, when the system is close to a transition
boundary it takes longer to converge [Yeomans, 1992]. The
regular graph, however, is a particular case since it shows a
plateau rather than a peak. This is due to its wide transitional
state, in which different replications of the same setting can
converge to different conventions.

On figure 3 (right) the convention A is more efficient that
convention B, since playing action A yields payoff « = 2,
when playing action B yields a payoff 1. In this case the
plateau of the regular graph does not appear because its tran-
sitional space narrowed as shown in figure 2.c. Thus, we
see only the peaks in rp where the transition takes place
ry = {.6,.85,.90} for scale-free, small-world, and regu-
lar graphs respectively, which correspond to the transitions
observed in figure 2.c. Again, we observe that the conver-
gence is more inefficient in time when the initial r 5 is close
to r5. It is important to remark that the regular graph has
improved its efficiency in reaching the convention, that is, it
is more efficient than the small-world graph when oo = 2. As
was shown by [Young, 19991, convergence to a risk-dominant
equilibrium, which in our case corresponds to the pareto-
efficient one, is surprisingly rapid provided a close-knit (clus-
tered) graph. The scale-free graph is always the most efficient
graph in terms of convergence no matter o, however, scale-
free graphs do not allow convergence to the efficient conven-
tion unless the initial number of agents playing A is very big,
40% compared to the 15% needed with a small-world graph,
with « set to 2).

4 Analytical Model

First of all, we replace the role of past interactions stored
in agent ¢’s memory (M;) by the current state of agent i’s
neighbors; notice that in our model we set the memory size
to the average connectivity, M = (k). Instead of apply-

ing the HC R-rule over M, we will transform it as follows:
Let us take kg as the number of neighbors in the same state
as agent 4, and k< the number of neighbors in the opposite
state. Therefore, the update is performed if k¢ > ¢ks, where
¢ is the payoff yield by the payoff matrix G when playing
(S,S). Therefore, the switch from playing A to play B is
done when kp > aky, since G(A, A) = «. Similarly, the
switch from playing B to play A is done when k4 > kp,
since G(B, B) = 1. The probability of updating the state is
defined by equation 1, we decided to introduce some stochas-
ticity to compensate the fact that now the update is calculated
by the current state of the neighbors instead of by the interac-
tions, as the H C R-rule does.

1

-
5(¢_(¢+1)E%

/ 5,¢(l€§) = (D
1+e

We will use what in physics is called a mean-field argu-
ment [Pastor-Satorras and Vespignani, 2001]. Let Ng(t)
be the number of agents playing action B at time ¢, and
p(t) = NAT(t) be the density of agents playing B. A first
approach is to assume the following homogeneity condition:
for every agent with k neighbors, the number of neighbors
in state B is kp(t) ~ kp(t). This condition is completely
fulfilled for random graphs, and approximately fulfilled for
scale-free and small-world graphs (when p — 1). Neverthe-
less, this homogeneity condition is not fulfilled for regular and
for small-world graphs for low values of p. What breaks the
homogeneity is the clustering coefficient, for low-clustered
graphs this condition holds since the global density of agents
in state .S corresponds to the proportion of neighbors in state
S. Intuitively, the clustering coefficient can be defined as the
probability that a node 7 and a node j have a link provided
that node [ has a link to both ¢ and j. Thus, when cluster-
ing tends to O the node’s neighborhood is a good sample of
the graph. However, when clustering coefficient is high the
node’s neighborhood is not a sample of the graph, since its
neighbors form a clique, a close-knit group. Therefore, we
propose a new homogeneity condition that takes clustering
(cc) into account. Let us define cc as the clustering coeffi-
cient, provided that cc is the probability of agent I’s neighbors
being also neighbors, (1 — cc)k is the number of neighbors
which are not in the {’s clique, and to whom the previous ho-
mogeneity condition holds. Therefore, for an agent playing
A with k neighbors, the number of neighbors in the opposite
state (B) is ka =~ (1 — cc)kp(t), which is the cc-biased-
homogeneity condition.

Now we can write an equation for the evolution of p(¢).
First, notice that the variation of p(t) after a small time
interval At is proportional to At, that is, p(t + At) =
p(t) + 8’5—(:)At + O(At?). Then, we can neglect the O(At?)
term (since we perform a continuum approximation At — 0)
and compute the variation of p(¢) as the balance between the
agents switching from action A to B and the agents switching
from action B to A. On one hand, the fraction of agents in
A (that is, 1 — p(t)) that change to state B in a time interval
At is the product (1 — p(t))f(p(t))At, provided At is small
enough; on the other hand, the fraction of agents that switch
from action B to A in At is p(¢)A(1 — p(t))At, also for small



Table 1: Fixed points p* of the Analytical Model: those are the crit-
ical point such that % = 0. In brackets the critical points observed
experimentally with the HC R model (r3) (figure 2). The param-
eters that model the graph are the clustering coefficient cc, and the
average connectivity (k) set to 10.

p* () a=1 a=3 a=2
cc=0.666 || 0.5(0.5) 0.831(0.90) A(0.95)
cc=0.492 | 0.5(0.5) 0.68(0.7)  0.827(0.85)
cc=0.0433 || 0.5(0.5) 0.566 (0.55) 0.614 (0.60)
cc=0.0081 || 0.5(0.5) 0.560(0.55) 0.607 (0.60)

At. Thus after At — 0, the mean-field equation for p(¢) can
be written as

Ip(t)
o0 = L= pOfp(1) — p(OAL = p(t)) @)
After substitution of fz, to which the cc-biased-
homogeneity condition has been applied. And setting 5 = (k)

and ¢ = (.5, S) the equation reads

ot 1+ elk)(a=(a+)(I-ce)p) 1 4 e(k)(1-2(1—cc)(1=p))
3

We want to study the stable fixed points of 3 since these
will give us information on the final state of the system. Thus

we must find the solutions of % = 0. As we can see in
4, stable fixed points are p* ~ 0, and p* ~ 1 (these have
been computed numerically) and the unstable fixed-point lies
in (0,1). In table 1 we display the unstable fixed points of
the density equation, which are possible critical points of the
HCR model provided our assumptions (see above) are cor-
rect. Furthermore, in table 1 we find a comparison between
the analytical unstable fixed points and those critical points
coming from the simulation of the HC'R model. Notice that
the plausibility of the simplifying assumptions behind our an-
alytical model is supported by the agreement between analyt-
ical and experimental results (remind that rp was sampled
with a resolution of .05).

Figure 4 shows the variation in p, A%, for different «
and cc. We can see the effect of o enlarging the basin of
attraction of convention A. On the other hand cc has the ef-
fect of reducing the amount of variation due to the effects
of the cc-biased-homogeneity condition. Consequently, the
time elapsed to reach a convention will be longer, and fluc-
tuations in initial conditions will have a bigger impact. As a
matter of fact, the experimental results on the HC R model
show us these two consequences apply for highly-clustered
graphs such as the regular graph. The convergence time is
much higher compared to non-clustered graphs. And the tran-
sitional space, where the system can converge either in B or
in A for the same initial parameters, is wider.

5 The Role of Imitation

In this section we will modify the model based of the HC R-
rule introducing an imitation propensity % g, which is the prob-
ability that, after a dyadic interaction where at least one agent

-6~ a=1, cc=1E-5

Figure 4: Study of
the fixed points of
the density equation
3. p is the den-
sity of agents play-
ing B. Cluster-
ing coefficient is set
to cc = {1E —
05,0.1,0.5}, « is
setto {1, 2}

was playing action S, both agents end up playing action B
regardless of the HC'R action updating rule. By introducing
an imitation propensity we model the effect of having an at-
tractive action which more likely to be chosen. Imitation is
considered as the key factor of the adoption of norms, and by
extension, conventions. How does the existence of an attrac-
tive action affect the final convention reached by the agents?
And what if the attractive action happens to be sub-optimal?
In our model coordination on action A is most efficient solu-
tion (if a > 1), however, action B (if ¢z > 0) might become
a better replicator since it can be adopted by imitation as well
as adopted by the learning process (H C R-rule).

The effect of ip heavily depends on the clustering of the
underlying topology. For instance, when « = 2 and ip = 4
the clustered communities adopts the attractive convention
(B) over the efficient one (A) regardless of the initial den-
sity (rp), while non-clustered communities will still adopt
A provided rg < .25. Therefore, it might be derived that
non-clustered communites are more resilient against attrac-
tive conventions in favor of efficient conventions. This re-
sult would seem to contradict the previous claim, that clus-
tered communites are better off in converging to the efficient
convention. However, when ip is small enough, for exam-
ple when ¢ = .1 the opposite effect is observed, clustered
communities keep on converging to the efficient convention
regardless of the initial density of agents. This two-fold be-
havior is perfectly clear in the case of the regular graph (left
column of figure 5). There is a threshold 77 under which the
system ends up in the efficient convention, and over which
the system ends up in the attractive convention. For example
i = .2 when o = 2 and the underlying topology is the reg-
ular graph. Notice, that this threshold is not found in the case
of the small-world graph whose clustering coefficient is high,
although not so high as the case of the regular graph. How-
ever, even without the threshold we observe a similar behav-
ior than in the regular graph although more progressive. If we
compare it against the behavior of low-clustered graphs, we
find again that the system is more resilient to the attractive
action invasion for low values of 7 5. For high values, on the
contrary, the system is very receptive to an invasion of agents
playing the attractive action. We must state that the model is
interesting for small values of i, for high values of i the
dichotomy of the agent to choose between the efficient or the
attractive action dissapear and becomes an epidemic spread
model [Pastor-Satorras and Vespignani, 2001].
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Figure 5: Effect of imitation propensity (i) on the ratio of conven-
tions on action B. ¢ ranges from [.().975} in a .0275 resolution,
ranges from [.05.95] in a .05 resolution. The sub-figures within the
figures are for the sake of clarity: setting the parameter ¢p we ob-
serve the evolution of B-conventions depending on 7 g, which cor-
respond to the way the previous results were shown (when ig = 0).

6 Concluding Remarks

Our research aimed to identify conditions under which local
interactions in a multi agent community can give rise to an
efficient convention. We have shown that the key factor is the
clustering of the underlying agent’s social network. When
communities are highly-clustered the system converges to
the pareto-efficient action even though the initial population
choosing that action was clearly a minority. This suggests
that the efficient convention is a stable convention because
it cannot be invaded by a set of agents playing another sub-
optimal action. However, a sub-optimal convention can be re-
placed by a set of agent playing an action that yields a better
payoff. Accordingly, when the clustering coefficient is high
the system always converges to the most efficient convention
and this convention is stable. On the other hand when clus-
tering tends to zero the adopted convention depends solely
on the density of agents following an action. If the majority
of agents play the sub-optimal action the inefficient conven-
tion will be established, and it will be stable. To back up our
findings, we provided an analytical approximation that repro-
duces the results observed in our model based in the HC R-
rule. To do so, we had to introduce a new homogeneity condi-
tion which let us work in clustered graphs, where the classical
mean-field homogeneity condition is not met.

In accordance with the strong functionalism thesis from
classical sociology, we found that in certain graphs the agent
system was capable to find and maintain the optimum in the
stable state. However, this only applies to highly-clustered
communities, which resemble many empirical social net-
works. At the same time, our model also corresponds in two
respects to the view that rational choice theorists in sociology
take on social norms. First, we have shown that global effi-

ciency arises from individual goal oriented actions. Second,
we found that under certain conditions optimizing individual
actions fail to generate socially efficient outcomes, a prob-
lem that is central to the contemporary discussion about the
emergence of conventions and norms.

To conclude, our results seem to correspond more with a
rational choice on norms than with the strong functionalism
thesis. We have shown that socially optimal conventions can
arise from individual optimization, but there is no guarantee
that this happens. In this sense, our model matches well the
ample evidence of examples of suboptimal conventions, for
example in market processes. We believe that a part of the
explanation for this may lie in the competition between opti-
mizing and imitation that we have addressed with our model.
We have shown that imitation processes make it possible for
a sub-optimal yet attractive action to overthrow the efficient
action, and become stable, provided that its attractiveness is
high enough to be worthy of imitation.
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