
Learning to Understand Web Site Update Requests

William W. Cohen
Center for Automated
Learning & Discovery

Carnegie Mellon University
wcohen@cs.cmu.edu

Einat Minkov
Language Technologies Institute

Carnegie Mellon University
einat@cs.cmu.edu

Anthony Tomasic
Institute for Software Research

Carnegie Mellon University
tomasic@cs.cmu.edu

Abstract

Although Natural Language Processing (NLP) for
requestsfor information has been well-studied,
there has been little prior work on understand-
ing requests to update information. In this pa-
per, we propose an intelligent system that can
process natural language website update requests
semi-automatically. In particular, this system can
analyze requests, posted via email, to update the
factual content of individual tuples in a database-
backed website. Users’ messages are processed us-
ing a scheme decomposing their requests into a se-
quence of entity recognition and text classification
tasks. Using a corpus generated by human-subject
experiments, we experimentally evaluate the per-
formance of this system, as well as its robustness
in handling request types not seen in training, or
user-specific language styles not seen in training.

1 Introduction
In this paper, we present a natural language system that
helps a webmaster maintain the web site for an organiza-
tion. Specifically, we describe a system for understanding
certain natural-language requests to change the factual con-
tent on a website. We will assume that the website is based
on a database, and focus on requests to update specific facts
in this database.

To motivate this, we note that although NLP for requests to
deliver information(i.e., question-answering) has been well-
studied, there has been little prior work on NLP for requests
to updateinformation. However, NLP for update requests
is an attractive research problem, in part because a user can
more easily detect an imperfectly-processed utterance.

As a concrete example of update requests, we consider
here requests for web-site updates. Such a system would be
practically useful, as many organizations maintain a single
large database-backed web site that includes information that
can be contributed or corrected by many individuals. Since
individual users, each of whom may only contribute a few
database changes a year, may be reluctant to learn how to in-
terface with the database to make their occasional updates,in
many orginazations users submit update requests via email in
natural language to a human webmaster. Frequently, there is

Add the following contact to the Staff list.
Arthur Scott ascott@ardra.com Rm 7992 281 1914
On the events page, delete row "December 23 Assembly
for Automotive Engineers Conference Room A21"
On the people page under Tommy Lee delete 281 2000
Please delete Kevin Smith’s phone number - thanx, Martha
Change Mike Roberts to Michael Roberts.

Figure 1: Example update requests (edited slightly for space
and readability)

a waiting period before the human webmaster can incorporate
corrections, leading to long processing times, and a web site
that is not up to date.

In this paper, we describe an intelligent system that can
process website update requests semi-automatically. First,
natural language processing is used to analyze an incoming
request. Based on the analysis, the system then constructs an
executable version of the proposed change, which is repre-
sented as a pre-filled instance of a form. By examining the
form, the end user can efficiently determine whether the anal-
ysis step was correctly accomplished, and, if necessary, over-
ride the results of the agent’s analysis by changing values in
the form. Prior experiments with human subjects have shown
that this process is an effective means of reducing human ef-
fort, even if the initial analysis step is imperfect[2004].

This paper focuses on the natural-language processing part
of this system. As is typical of informal text like email, users’
messages are often ungrammatical, use capitalization patterns
inconsistently, use many abbreviations and include typos (as
illustrated in Figure 1). As a consequence, standard shallow-
NLP tools such as part-of-speech tagging and noun-phrase
chunking, which are preliminary steps for text parsing, are
quite unreliable. We therefore suggest here a learning ap-
proach, where rather than parse the text into a framework
of pre-modeled domain knowledge, we decompose the gen-
eral task into a sequence of entity extraction and classification
sub-tasks. All of these sub-tasks can be learned from incom-
ing messages, improving system performance over time.

We will first describe a scheme for decomposing request-
understanding into a sequence of learning tasks. Next, we
describe the corpus of requests that is used for performance
evaluation. We then describe each of the learning sub-tasks



in detail, along with experimental results. We also present
experimental results on the robustness of the system – in par-
ticular, how the system will perform on request types not seen
in training, or on user-specific language usage not seen in
training. Finally, we evaluate the end-to-end system’s perfor-
mance, to determine what fraction of messages can be pro-
cessed completely without errors. We conclude with a review
of related work and our conclusions.

2 Understanding Update Requests
2.1 Analysis procedure
Figure 1 gives some example web site update requests that are
addressed by the given analysis procedure. General requests
that are not for factual update (e.g., “The animated gif in the
logo doesn’t flash properly when I view it from my home
PC”) will simply be flagged and forwarded to the real human
webmaster.

The analysis procedure contains the following steps.
Request type classification. An informal prelimi-

nary analysis of real webmaster request logs suggested that
factual-update requests are in one of the following forms: add
a new tuple to the database; delete an existing tuple; deletea
value from an existing tuple; or alter (add or replace) a value
of an existing tuple. One step of the analysis is thus deter-
mining the type of request. This is atext classificationtask:
each request will be mapped to one of the categoriesaddTu-
ple, deleteTuple, deleteValue, alterValue. If it is not in one of
these categories, it will be mapped tootherRequest.

Named entity recognition (NER). Another step of the
analysis is to identify allentity namesin a request. Figure 2
shows the result of correctly recognizing person names, email
addresses, phone numbers, room numbers, and event titles in
some sample requests. The subscript after an entity indicates
its type (for instance, “person” or “room number”).

Role-based entity classification.We distinguish between
four different roles for an entity in an update request. (a)
An entity is akeyEntityif it serves to identify the database
tuple which is to be modified. In the figure, key entities
are marked with a superscriptK. An example is the entity
“Freddy Smith” in the sentence “please delete Freddy Smith’s
phone number”. (b) An entity is anewEntity(marked with a
superscriptN ) if it is a value to be stored in the database. (c)
An entity is anoldEntity (superscriptO) if it is a value cur-
rently in the database which the user expects to be replaced
with anewEntity. (d) Entities unrelated to the execution of the
request are considered to benoiseEntities. In the figure, they
have no superscript marking. Role-based entity classification
is anentity classificationtask, in which entities produced by
the earlier NER step are given an additional classification.

Target relation classification.The second column of Fig-
ure 2 shows the relation associated with each request. For
any fixed database schema, there is a fixed set of possible re-
lations, so this is atext classificationoperation.

Target attribute classification. Given entities, the roles of
entities, the target relation, and the request type, the seman-
tics of the many tuple-based commands will be often com-
pletely determined. One type of request that may still be un-
derspecified is thedeleteValuerequest. As an example con-

sider request 4 in the figure: the previous analysis tells us we
should delete some attribute value from the tuple of the “per-
son” relation with the key value of “Tommy Lee”, but does
not specify the value to be deleted. Hence, to complete the
analysis fordeleteValuerequests, it is necessary to determine
the attribute that needs to be deleted. This is again a text clas-
sification task: given a database schema, only a fixed number
of attributes need to be considered as possible targets.

For pedagogical reasons, we have described these steps
as if they are taken separately. However, the steps are not
independent—i.e., information from each step of analysis
may affect other steps. In section 6 we describe and eval-
uate a particular sequence, where outputs of some steps are
propagated as inputs to the next steps.

3 The Experimental Corpus

In order to collect an appropriate corpus, a series of controlled
human-subject experiments were performed, in which partic-
ipants were given a series of tasks in pictorial form and asked
that they compose and send an appropriate e-mail messages
to a webmaster agent. In response to the user’s request, the
agent returned apreviewof the updated page, and alsopre-
filled form that contained a structured representation of the
user’s request. The user could correct errors by editing text
in various slots of the form, or by choosing from pull-down
menus.

Overall, the human-generated corpus contains a total of
only 617 example requests, involving approximately 20 sub-
jects, and about 30 different tasks.

Note that the same pictorial task descriptions were pre-
sented to multiple users. This sort of duplication can lead
to undesirable behavior for a learning system: if a certain
pictorial task ,demonstrating addition of a phone number to
a person named Greg Johnson for example, is represented by
multiple similar examples in the data, then the system might
learn a correlation between the phrase “Greg Johnson” and
the task of adding a phone number. To address this problem,
we manually replaced duplicate entity names with alterna-
tive values throughout the corpus, preserving surface features
such as capitalization patterns and misspellings.

The requests in the corpus are largely factual updates con-
cerning a single tuple in the database, so we will focus our at-
tention on such requests. Also, the relations in the underlying
database schema of the corpus do not contain two attributes or
more of the same type, where “type” is defined by the output
of the entity recognizer. For instance, personal details might
include a home phone number and an office phone number,
but our corpus has no such duplications. Duplications of this
sort would require an additional entity classifier.

As mentioned, the text itself is often ungrammatical and
noisy. We pre-processed the text, annotating it with a ver-
sion of Brill’s part-of-speech tagger[Brill, 1995] and a hand-
coded noun-phrase chunker which was tuned for email (us-
ing a different corpus). In learning, however, we rely mainly
on alternative features that exploit syntactic propertiesof the
messages. These features prove to be informative for the
noisy text in our corpus.



Request Request Target Target
Type Relation Attribute

1
Add the following contact to the Staff list.[Arthur Scott] N

person

[ascott@ardra.com]Nemail Rm [7992]Nroom [412 281 1914]Nphone

addTuple people −

2 On the events page, delete row "[December 23]Kdate [Assembly for
Automotive Engineers Conference]KeventTitle Room[A21]Kroom"

deleteTuple events −

3
On the people page under[Tommy Lee]Kperson delete[412 281
2000]Ophone

deleteValue people phoneNum

4 Please delete[Freddy Smith’s]K
person’s phone number - thanx,

[Martha] person

deleteValue people phoneNum

5 Change[Mike Roberts]K
person to [Michael Roberts]Nperson on the

People page.
alterValue people personName

6
Please add[Greg Johnson]Kperson’s phone number-[412 281
2000]Nphone

alterValue people phoneNum

Figure 2: Analyzed update requests.

4 Learning
Below we describe each of the individual learning tasks. Rel-
evant experimental results are given for every component.

4.1 Entity Recognition
Named Entity Recognition (NER), or the identification of the
substrings of a request that correspond to entity names, is
a well-studied yet non-trivial Natural-Language Processing
task. We evaluated NER performance for seven linguistic
types: time, date, amount, email addresses, phone numbers,
room numbers, and personal names. The data includes some
mentions of additional entity types (e.g., job titles and orga-
nization names) but not in sufficient quantity for learning.

We experimented with two approaches to entity extraction:
a rule-based approach, in which hand-coded rules are used
to recognize entities; and learning-based extraction. Therule
language we used is based on cascaded finite state machines.
The learning algorithm we use here is VPHMM, a method
for discriminatively training hidden Markov models using a
voted-perceptron algorithm[Collins, 2002].

We found that manually constructed rules are best suited
for entities such as e-mail addresses and temporal expres-
sions. These types are based on limited vocabularies and
fairly regular patterns, and are therefore relatively easyto
model manually. Email addresses are an extreme example
of this: a simple regular expression matches most email ad-
dresses.

Table 1(a) shows the results of extraction using hand-coded
rules for email and temporal expressions. We evaluated the
rules on the main corpus, which was used for generating the
rules, and also on a 96-message “validation set”, containing
messages which were collected in a second, later series of
human-subject experiments (unfortunately, no time expres-
sions were present in this additional set.) As shown in the
table, the entity F1 performance is above 95% for all cases
that could be evaluated.

In Table 1(b) we show results for learning on the full set of

Test Set
Type Full Corpus Validation
Time 95.7 n/a
Date 96.1 97.7
Email 100.0 100.0

(a) Rules

Base f. Tuned f. Tuned features
Type 5CV 5CV 5CVUSR 5CVREQ

Time 87.7 91.2 88.2 93.9
Date 88.5 94.4 95.8 88.9
Amount 89.7 93.1 93.1 85.4
Phone 87.3 94.2 92.4 82.3
Room# 81.9 90.4 87.1 83.0
Person 80.9 90.3 83.6 88.3

(b) Learning

Table 1: Entity recognition results: F1 measures

entity types, applying the VPHMM algorithm. Here NER is
reduced to the problem of sequentially classifying each token
as either “inside” or “outside” the entity type to be extracted.
Performance is evaluated by the F1-measure1, where entities
are only counted as correct if both start and end boundaries
are correct (i.e., partially correct entity boundaries aregiven
no partial credit.) The left-hand columns in the table (titled
“5CV”) show F1-measure performance on unseen examples,
as estimated using 5-fold cross validation. The right-hand
columns will be discussed later.

Performance is shown for two sets of features. Thebase
featureset corresponds to words and capitalization templates
over a window including the word to be classified, and the
three adjacent words to each side. The second set of features,
labeledtuned featuresin the table, is comprised of the base
features plus some additional, entity-type specific features,

1F1 is the geometric mean of recall and precision.



which are constructed using the same rule language used to
build the hand-coded extractors. For example, in extracting
dates we added an indicator as to whether a word is a number
in the range 1-31; for personal names, we added an indica-
tor for words that are in certain dictionaries of first and last
names.

Overall, the level of performance for extraction – better
than 90% for every entity type, using the tuned features –
is very encouraging, especially considering the irregularity
of the text and the relatively small amount of training data
available. We found that users tend to use the terminology
and formats of the website, resulting in reduced variability.

4.2 Role-based entity classification

Once an entity span has been identified, we must determine
its functional role—i.e., whether it acts as akeyEntity, newEn-
tity, oldEntity, or noiseEntity(as outlined in Section 2.1). We
approach this problem as a classification task, where the ex-
tracted entities are transformed into instances to be further
classified by a learner.

The features used for the learner are as follows. (a) The
closest preceding “action verb”. An action verb is one of a
few dozen words generally used to denote an update, such as
“add”, “delete”, etc. (b) The closest preceding preposition.
(c) The presence or absence of a possessive marker after the
entity. (d) An indication whether the entity is part of a deter-
mined NP.

The experimental results for the important classes are
shown in Table 2, in the column marked “5CV”. We used
here an SVM learner with a linear kernel[Joachims, 2001].
We show results for each class separately, and in addition to
F1 performance for each category, we also show error rate.
The “Default Error” is the error obtained by always guessing
the most frequent class.

Entity F1/Error Default
Role 5CV 5CVUSR 5CVREQ Error
keyEntity 87.0/11.5 83.5/14.4 84.0/14.3 44.2
newEntity 88.8/ 7.5 85.0/10.6 83.4/10.7 34.4
oldEntity 81.0/ 2.5 81.3 /2.5 76.4/ 3.0 6.7

Table 2: Role-based entity classification results

The results for the role determination are almost-
surprisingly good, considering the difficult, linguistic nature
of this role assignment task. The set of features suggested
here is small and simple, and yet very informative, support-
ing effective learning of roles even for semi-ungrammatical
texts.

4.3 Target relation classification

To determine the target relation, we used the same SVM
learner. The input features to the classifier are a “bag-of-
words” representation of a request, as well as the entity types
included in the request (for example, presence of a “phone
number” entity in a request indicates a “people” relation, in
our database schema.). Results are shown in Table 3 in the

“5CV” column. As shown by these results, the task of re-
lation determination is relatively straight-forward, provided
sufficient training data.

Target F1/Error Def.
Relation 5CV 5CVUSR 5CVREQ Error
people 99.7 / 0.3 99.3 / 0.8 97.3/ 3.4 38.7
budget 100.0 / 0.0 99.2 / 1.6 78.8 / 3.6 10.0
events 99.6 / 0.2 97.4 / 1.1 97.8 / 1.0 22.7
sponsors 100.0 / 0.0 98.6 / 0.2 98.6 / 0.2 6.0

Table 3: Target relation classification results

4.4 Request type classification
In many cases the type of a request can be determined from
the roles of the entities in the request. For instance, anaddTu-
ple request has nokeyEntitiesbut may have multiplenewEn-
tities; conversely adeleteTuplerequest haskeyEntities, but
nonewEntities; and only analterValuerequest can have both
keyEntitiesand newEntities. This means that most request
types can be determined algorithmically from the set of en-
tity roles found in a request.

The primary need for a request-type classifier is to distin-
guish betweendeleteValueanddeleteTuplerequests. These
types of requests are often syntactically quite similar. Con-
sider for instance the requests “delete the extension for Dan
Smith” and “delete the entry for Dan Smith”. The first is a
deleteValuefor a phone number, and the second is adelete-
Tuplerequest. The action verb (“delete”) and the included en-
tities, however, are identical. To distinguish the two request-
types, it is necessary to determine the direct object of the verb
“delete”—which is difficult, since shallow parsing is inaccu-
rate on this very noisy corpus—or else to construct features
that are correlated with the direct object of the verb.

Thus, we used the following as features. (a) The counts
of keyEntities, oldEntities, andnewEntitiesin a request. (b)
The action verbs appearing in a request. (c) The nouns that
appear in an NP immediately following an action verb, or
that appear in NPs before an action verb in passive form. (d)
Nouns from the previous step that also appear in a dictionary
of 12 common attribute names (e.g., “phone”, “extension”,
“room”, “office”, etc).

The results are shown in Table 4. With these features, one
can distinguish between these request types quite accurately.

Request F1/Error Def.
Type 5CV 5CVUSR 5CVREQ Error
deleteTuple 93.1 / 2.4 92.6 / 2.6 74.7 / 9.2 18.0
deleteValue 82.9 / 3.1 86.0 / 2.4 57.5 / 6.0 9.1

Table 4: Request type classification results

4.5 Target attribute classification
The classification of requests by target attributes is very sim-
ilar to request type classification, except that rather thande-
terminingif a delete request concerns an attribute, one must



determinewhichattribute the request concerns. Given our as-
sumptions, this step need only be performed fordeleteValue
requests that do not specify anoldEntityvalue.

Here in fact we learn a vocabulary for attributes names. A
simple bag-of-words feature works quite well for this task,
as is shown by the results in Table 5 in the “5CV” column.
The vocabulary used in the corpus to describe each attribute
is fairly small: e.g., phone is usually described as ”phone”,
”line” or ”extension”. Perhaps this is because users tend to
use the terminology of the website, or because the relevant
vocabularies are limited by nature.

Request F1/Error Def.
Type 5CV 5CVUSR 5CVREQ Error
personal name 77.3 / 2.8 66.7 / 4.2 17.5 / 7.6 7.0
phone# 92.7 / 1.0 92.9 / 1.0 8.2 / 7.3 9.1
room# 87.0 / 2.9 91.5 / 1.0 56.9 / 9.1 18.0
publication 79.6 / 3.7 81.2 / 2.1 44.8 / 5.2 9.1
photo 93.1 / 2.4 78.6 / 3.9 71.3 / 5.3 18.0
CV 82.9 / 3.1 86.5 / 0.8 - / - 9.1
amount 93.1 / 2.4 92.5 / 1.0 92.7 / 1.0 18.0

Table 5: Attribute classification results

5 Robustness Issues
One practically important question is how robust this auto-
mated webmaster is to changes in the distribution of users
and/or requests. To investigate such questions, one can use
a different sampling strategy in performing cross-validation.
For instance, to determine how robust the system is to queries
from new users, we grouped all the examples generated by
each subject into a single set, and then performed a cross-
validation constrained so that no set was split between train-
ing and test. In other words, in every test fold, all of the
example requests were from subjects that had not contributed
to the training set. This split thus estimates performance of
a system that is used for a very large pool of users. Cross
validation by user results are given in the results tables, in the
columns marked as “USR”.

In the corpus, users usually have some personal stylistic
quirks—for instance, a user might consistently give dates,
names etc. in a particular format. Thus one would expect that
performance with this sort of split will be worse than perfor-
mance with the default uniform splits. As can be seen from
the results, the F1 for most NER task drops only slightly, and
is above 80 for all entity types. Slight drops in performance
are also seen on two of the three entity-role tasks, and notici-
ble drops are seen on two of the seven attribute-classification
tasks (person name and photo). Overall, performance seems
to be affected only slightly in this setting.

Similarly, to determine how robust the system is to fu-
ture requests that are quite different from requests encoun-
tered during training, we grouped together examples for the
same request type (including all requests generated from a
particular pictorial task), and then again performed a cross-
validation constrained so that no set was split between train-
ing and test. In this scenario, all of the example requests in

every test fold are for tasks that were not encountered in the
training set. The results of this split are given in the columns
titled as “REQ”.

To summarize the results, the loss in performance for NER
problems is moderate, but larger than that seen when splitting
by users. Entity-role classification drops off only slightly, and
performance for target-relation classification also remains ex-
cellent for most relations. However, performance for request-
type classification does drop off noticibly. This drop is al-
most certainly due to lack of appropriate training data: there
are only a handful of tasks updating the “budget” relation, and
also only a relatively small number of tasks requiring request-
type classification. Similarly, the task of classification by at-
tribute name is practically infeasible for some attribute types
in this settings, due to the small number of attribute names
mentions in the corpus. However, provided that the system
is given sufficient training data for the relevant relation and
attribute, it should perform well on different requests.

6 Overall Evaluation
In this section, we complement the component-level evalua-
tions with an evaluation of the entire end-to-end process. We
executed the tasks in the following order: NER is run for
each entity type; then, roles of the extracted entities are as-
signed; finally, relation and request types are assigned. Note
that the noisy predicted entities (i.e., entities extracted by a
NER model) were used as input to the entity-role classifier,
as well as to the relation to the request-type classifiers. Here
we used VPHMMs and hand-coded rules for extraction, and
a non-sequential multi-class voted perceptron[Freund and
Schapire, 1998] for classification.2

From the user’s perspective, it is interesting to note what
percentage of the requests can be successfully processed ata
message level, at different levels of automation. In the exper-
iments, 79.2% of the messages got both their relation and re-
quest type classified correctly. In these cases the user would
have received the correct form, with some entries filled out
incorrectly. In more than half of the cases (53.4%), the user
would have received the correct form, with all entities cor-
rectly extracted, but with some entity roles mislabeled. In
39.5% of the messages, the automatic processing encountered
no errors at all.

Note that in the end-to-end scenario errors from the entity
recognition phase are propagated to role classification task.
Also, in order for a message to be considered fully correct,
assignments must be accurate for each one of the multiple
entities included in this message. That is, many correct de-
cisions must be made for perfect performance per request.
Overall, we find these results to be very promising, consider-
ing the limited size of our corpus.

7 Related work
Lockerd et. al [2003] propose an automated Webmaster
called “Mr. Web” which has a similar email-based interface.

2The voted perceptron is another margin-based classifier. For im-
plementation reasons, it was more convenient to use in theseexper-
iments than an SVM, although its performance was generally quite
not as good.



They manually analyzed 325 update requests to assess their
linguistic regularity, but do not describe any algorithm for
processing the requests.

Our system addresses a fairly general natural-language
processing task: learning to understand database updates.As
such it might be compared to other systems that use learn-
ing in NLP. Previous NLP systems have generally either
performed deep semantic analysis using hand-coded gram-
mars in a restricted domain, or else a shallower analysis in
a broader domain. While learning has been an important
tool for developing broad-coverage NLP components such as
POS taggers, parsers, and named entity recognition systems,
there have surprisingly few attempts to use learning to per-
form a complete semantic analysis. Notable exceptions are
the CHILL system[Zelle and Mooney, 1996], which learns
to parse database queries into a meaning representation lan-
guage, and the work by Milleret. al [1996] on using a com-
bination of generative models to extract facts from text. Work
in learning such “semantic parsers” is surveyed and motivated
elsewhere[Mooney, 2004].

There are several important differences between the work
described in this paper and prior efforts. One difference is
that we consider understanding update requests, rather than
understanding queries (like Zelle & Mooney) or declaratively
stated facts (like Milleret al). One advantage of the update-
request task is that a partially correct analysis is still useful,
and furthermore, is likely to elicit user feedback which can
be used for training. In contrast, it is unclear how useful it
is to answer an imperfectly analyzed database query, or what
could be learned from such an episode. A second difference
is that our learning method uses primarily data which can
plausibly collected from user feedback. In contrast, Zelle
& Mooney’s system learns from sentence/query pairs, and
Miller et. al. use a variety of sources for training data in-
cluding POS-tagged text, parsed sentences, and semantically
annotated text. On the other hand, we limit ourselves to con-
ceptually simple database updates, while Zelle & Mooney
consider complex structured queries. There are also numer-
ous smaller differences stemming from the nature of the task
and corpus.

Although the purpose and scope of our research is dif-
ferent, the entity role classification step we consider above
is broadly similar to recent work on semantic role analysis
[Fillmoreet al., 2000; Gildea and Jurafsky, 2002], and earlier
work on case-role assignment (e.g., [Miikkulainen and Dyer,
1991]).

8 Conclusions
We have described and experimentally evaluated a scheme
for processing email requests for certain website facutal up-
dates using a sequence of entity recognition and classification
tasks. We showed that the noisy informal email text can be
successfully processed applying a learning approach, using
relatively small sets of syntactic features. Experimentalre-
sults show that also with limited amount of data, the system
reaches a promising rate of 40% of messages processed per-
fectly. We expect this rate to improve as the examples set
grows. Further, human-subject experiments have also shown

that partially correct results are useful in settings described
here[Tomasicet al., 2004]. Thus the work in this paper is
a realistic evaluation of components of an efficient, adaptive,
automatic webmaster assistant.

Open questions that remain to be resolved by future re-
search include relaxing the restriction that each request con-
cerns the update of a single tuple per email and evaluating
more complex entity types for the entity recognition compo-
nent. Improving on entity recognition will both enable ex-
pansion of system coverage, as well as boost its overall per-
formance.

Acknowledgements
This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA) under Con-
tract No. NBCHD030010. Any opinions, findings and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the Defense Advanced Research Projects Agency
(DARPA), or the Department of Interior-National Business
Center (DOI-NBC).

References
[Brill, 1995] Eric Brill. Transformation-based error-driven learning

and natural language processing: A case study in part of speech
tagging.Computational Linguistics, 1995.

[Collins, 2002] Michael Collins. Discriminative training methods
for hidden markov models: Theory and experiments with per-
ceptron algorithms. InEMNLP, 2002.

[Fillmoreet al., 2000] C. J. Fillmore, F. C. Baker, and H. Sato. The
framenet database and software tools. InLREC, 2000.

[Freund and Schapire, 1998] Yoav Freund and Robert E. Schapire.
Large margin classification using the perceptron algorithm. In
Computational Learning Theory, 1998.

[Gildea and Jurafsky, 2002] D. Gildea and D. Jurafsky. Automated
labeling of semantic roles.Computational Linguistics, 2002.

[Joachims, 2001] Thorsten Joachims. A statistical learning model
of text classification with support vector machines. InSIGIR,
2001.

[Lockerdet al., 2003] Andrea Lockerd, Huy Pham, Taly Sharon,
and Ted Selker. Mr.web: An automated interactive webmaster.
In CHI, 2003.

[Miikkulainen and Dyer, 1991] R. Miikkulainen and M. G. Dyer.
Natural language processing with modular PDP networks and
distributed lexicon.Cognitive Science, 15:343–399, 1991.

[Miller et al., 1996] S. Miller, D D. Stallard, R. Bobrow, and
R. Schwartz. A fully statistical approach to natural language in-
terfaces. InACL, 1996.

[Mooney, 2004] Ray Mooney. Learning semantic parsers: An im-
portant but under-studied problem. InWorking notes of the AAAI
spring symposium on language learning, 2004.

[Tomasicet al., 2004] Anthony Tomasic, William Cohen, Susan
Fussell, John Zimmerman, Marina Kobayashi, Einat Minkov,
Nathan Halstead, Ravi Mosur, and Jason Hum. Learning to nav-
igate web forms. InIIWEB, 2004.

[Zelle and Mooney, 1996] J. M. Zelle and R. J. Mooney. Learning
database queries using inductive logic programming. InAAAI,
1996.


