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Abstract

We investigate the properties of an abstract nego-
tiation framework where agents autonomously ne-
gotiate over allocations of discrete resources. In
this framework, reaching an optimal allocation po-
tentially requires very complex multilateral deals.
Therefore, we are interested in identifying classes
of utility functions such that any negotiation con-
ducted by means of deals involving only a single re-
source at at time is bound to converge to an optimal
allocation whenever all agents model their prefer-
ences using these functions. We show that the class
of modular utility functions is not only sufficient
but also maximal in this sense.

1 Introduction
The problem ofdiscreteresource allocation has recently re-
ceived much attention from the artificial intelligence commu-
nity. A large amount of this work is focused oncombinatorial
auctions[Cramtonet al., 2005]. In this case, the allocation
procedure is centralised, and the so-calledwinner determi-
nation problemconsists in determining the allocation of re-
sources maximising the auctioneer’s revenue.

A different perspective is taken when one assumes that the
allocation process is truly distributed, in the sense that agents
autonomously negotiate over the bundles of resources they
hold. This assumption is justified in many applications where
no central authority can be relied on to decide upon the al-
location of resources. In this case, the system designer will
typically seek to set up the system in such way that it guar-
antees desirable properties, without directly interfering in the
negotiation process itself. In this paper we will make use
of such an abstract negotiation framework investigated by a
number of authors[Sandholm, 1998; Endrisset al., 2003;
Dunneet al., 2005].

To make things more precise, we assume a set of negotiat-
ing agents populating the system, and we model their prefer-
ences (over different bundles of resources) by means of utility
functions. In order to pursue their own interests, agents agree
on deals benefitting themselves but without planning ahead
(i.e. they are both rational and myopic), thereby modifying
the allocation of resources. From a global point of view, the
quality of an allocation reflects the overall performance of the

system, and the designer will naturally seek to ensure that ne-
gotiation converges towards an optimal allocation.

Section 2 introduces the negotiation framework used in this
paper. As we shall recall in Section 3, it is known that very
complex multilateral deals are potentially required to reach an
optimal allocation. When deals are restricted (e.g. to a lim-
ited number of resources), it is only possible to guarantee an
optimal outcome by also restricting the negotiation process
to agents whose preferences have certain properties. In this
paper, we study the conditions under which negotiation con-
ducted by means of the simplest deals, involving one item at
a time (or1-deal negotiationfor short) still allows us to reach
an optimal allocation. Section 4 generalises a result from the
literature and shows that modelling preferences withmodu-
lar utility functionsis a sufficient condition. However, mod-
ularity is not anecessarycondition. This is demonstrated in
Section 5 by means of a counterexample. We also show that
there can beno condition on utility functions that would be
both necessary and sufficient for optimal allocations to be ne-
gotiable by means of rational 1-deals. The main contribution
of this paper is to show that the class of modular utility func-
tions ismaximal, in the sense that no class strictly including
the modular utility functions would still be sufficient for 1-
deal negotiation. The proof detailed in Section 6 shows that,
given any non-modular utility function, it is always possible
to construct a modular utility function and select a scenario
where the optimal allocation cannot be reached by 1-deals.
Section 7 concludes.

2 Myopic negotiation over resources
In this section, we introduce the decentralised negotiation
framework used throughout this paper and report a number
of known technical results. In this framework, a finite set of
agents negotiate over a finite set of discrete (i.e.non-divisible)
resources. A resourceallocation is a partitioning of the re-
sources amongst the agents (that is, every resource has to be
allocated to one and only one agent). As an example, the
allocationA defined byA(i) = {r1} andA(j) = {r2, r3}
would allocate resourcer1 to agenti, while resourcesr2 and
r3 would be owned by agentj.

We are going to model the preferences of agents by means
of utility functionsmapping bundles of resources to real num-
bers. Assuming that agents are only concerned with resources
they personally own, we will use the abbreviationui(A) for



ui(A(i)), representing the utility value assigned by agenti to
the bundle it holds for allocationA. The parameters of a ne-
gotiation problem are summarised in the following definition:

Definition 1 (Negotiation problems) A negotiation problem
is a tupleP = 〈R,A,U , A0〉, where

• R is a finite set of indivisible resources;

• A = {1, . . . , n} is a finite set of agents (n ≥ 2);

• U = 〈u1, . . . , un〉 is a vector of utility functions, such
that for all i ∈ A, ui is a mapping from2R to R;

• A0 : A → 2R is an (initial) allocation.

Agents may agree on adeal to exchange some of the re-
sources they possess. It transforms the current allocation of
resourcesA into a new allocationA′; that is, we can define a
deal as a pairδ = (A,A′) of allocations (withA 6= A′).

We should stress that this is amultilateral negotiation
framework. A single deal may involve the displacement
of any number of resources between any number of agents.
An actual implementation of this abstract framework may,
however, not allow for the same level of generality. Sand-
holm [1998] has proposed a typology of different types of
deals, such asswap dealsinvolving an exchange of single
resources between two agents orcluster dealsinvolving the
transfer of a set of items from one agent to another. The sim-
plest type of deals are those involving only a single resource
(and thereby only two agents).

Definition 2 (1-deals) A 1-deal is a dealδ = (A,A′) result-
ing in the reallocation of exactly one resource.

The above is a condition on thestructureof a deal. Other
conditions relate to theacceptabilityof a deal to a given
agent. We assume that agents arerational in the sense of
aiming to maximise their individual welfare. Furthermore,
agents are assumed to bemyopic. This means that agents
will not accept deals that would reduce their level of welfare,
not even temporarily, because they are either not sufficiently
able to plan ahead or not willing to take the associated risk
(see also[Sandholm, 1998] for a justification of such an agent
model in the context of multiagent resource allocation). We
will, however, permit agents to enhance deals withmonetary
side payments, in order to compensate other agents for a pos-
sible loss in utility. This can be modelled using apayment
functionp : A → R. Such a function has to satisfy the side
constraint

∑
i∈A p(i) = 0, i.e. the overall amount of money

in the system remains constant. Ifp(i) > 0, then agenti pays
the amount ofp(i), while p(i) < 0 means that itreceives
the amount of−p(i). The following rationality criterion will
define the acceptability of deals:

Definition 3 (Individual rationality) A deal δ = (A,A′)
is rational iff there exists a payment functionp such that
ui(A′)−ui(A) > p(i) for all i ∈ A, except possiblyp(i) = 0
for agentsi with A(i) = A′(i).

From a system designer’s perspective, we are interested in
assessing the well-being of the whole society, orsocial wel-
fare [Arrow et al., 2002], which is often defined as the sum
of utilities of all the agents.

Definition 4 (Social welfare) The social welfaresw(A) of
an allocationA is defined as follows:

sw(A) =
∑
i∈A

ui(A)

This is theutilitarian definition of social welfare. While this
is the definition usually adopted in the multiagent systems lit-
erature[Wooldridge, 2002], we should stress that also several
of the other notions of social welfare developed in the social
sciences (e.g. egalitarian social welfare[Arrow et al., 2002])
do have potential applications in the context of multiagent re-
source allocation.

We conclude this background section by recalling two im-
portant results[Sandholm, 1998; Endrisset al., 2003]: the
first one makes explicit the connection between the local de-
cisions of agents and the global behaviour of the system, and
the second one is the fundamental convergence theorem for
this negotiation framework.

Lemma 1 (Individual rationality and social welfare) A
dealδ = (A,A′) is rational iff sw(A) < sw(A′).

Theorem 1 (Maximising social welfare) Any sequence of
rational deals will eventually result in an allocation of re-
sources with maximal social welfare.

The main significance of this latter result, beyond the equiv-
alence of rational deals and social welfare-increasing deals
stated in Lemma 1, is thatany sequence of deals satisfying
the rationality criterion will eventually converge to an optimal
allocation. There is no need for agents to consider anything
but their individual interests. Every single deal is bound to
increase social welfare and there are no local minima.

3 Negotiating over one item at a time
While Theorem 1 shows that, in principle, it is always possi-
ble to negotiate an allocation of resources that is optimal from
a social point of view, deals involving any number of agents
and resources may be required to do so[Sandholm, 1998;
Endrisset al., 2003]. In particular, the most basic type of
deal, which involves moving a single resource from one agent
to another and which is the type of deal implemented in most
systems realising a kind ofContract Netprotocol [Smith,
1980], is certainly not sufficient for negotiation between
agents that are not only rational but also myopic.

This has first been shown by Sandholm[1998] and is best
explained by means of an example.1 Let A = {1, 2, 3} and
R = {r1, r2, r3}. Suppose the utility functions of these
agents are defined as follows (over singleton sets):

u1({r1}) = 5 u1({r2}) = 1 u1({r3}) = 0
u2({r1}) = 0 u2({r2}) = 5 u2({r3}) = 1
u3({r1}) = 1 u3({r2}) = 0 u3({r3}) = 5

Furthermore, for any bundleR not listed above, suppose
ui(R) = 0 for all i ∈ A. Let A0 with A0(1) = {r2},
A0(2) = {r3} andA0(3) = {r1} be the initial allocation,

1A methodology for constructing such examples is easily gener-
ated from the proof of the result on the insufficiency of any kind of
structurally limited class of deals given by Endrisset al. [2003].



i.e. sw(A0) = 3. The optimal allocation would beA∗ with
A∗(1) = {r1}, A∗(2) = {r2} andA∗(3) = {r3}, which
yields a social welfare of15. All other allocations have lower
social welfare thanA∗. Hence, starting fromA0, the deal
δ = (A0, A

∗) would be the only deal increasing social wel-
fare. By Lemma 1,δ would also be the only rational deal.
This deal, however, involves all three resources and affects
all three agents. In particular,δ is not a 1-deal. Hence, if we
choose to restrict ourselves torational deals, then 1-deals are
not sufficient to negotiate allocations of resources with maxi-
mal social welfare.

Of course, for some particular negotiation problems, ra-
tional 1-dealswill be sufficient. The difficulty lies in recog-
nising the problems where this is so. Closely related to this
issue, Dunneet al. [2005] have shown that, given two alloca-
tionsA andA′ with sw(A) < sw(A′), the problem of check-
ing whether it is possible to reachA′ from A by means of
a sequence of rational 1-deals is NP-hard in the number of
resources in the system.

The structural complexity of deals required to be able to
guarantee socially optimal outcomes partly stems from the
generality of the framework. In particular, so far we have
made no assumptions on the structure of utility functions used
by the agents to model their preferences. By introducing re-
strictions on the class of admissible utility functions, it may
be possible to ensure convergence to an allocation with max-
imal social welfare by means of simpler deals. In this pa-
per, we are interested in characterising more precisely those
classes of utility functions that permit 1-deal negotiation.

Definition 5 (1-deal negotiation) A classC of utility func-
tions is said to permit 1-deal negotiation iff any sequence of
rational 1-deals will eventually result in an allocation of re-
sources with maximal social welfare whenever all utility func-
tions{u1, . . . , un} are drawn fromC.

Under this perspective, a relevant result is due to Endrisset
al. [2003], who show that rational 1-deals are sufficient to
guarantee outcomes with maximal social welfare in case all
agents useadditiveutility functions.2 We are going to prove
a slight generalisation of this result in the next section.

4 Modular functions are sufficient
We are now going to define the class ofmodularutility func-
tions. This is an important (see e.g.[Rosenschein and Zlotkin,
1994]), albeit simple, class of functions that can be used in ne-
gotiation domains where there are no synergies (neither com-
plementaries nor substitutables) between different resources.

Definition 6 (Modular utility) A utility functionu is modu-
lar iff the following holds for all bundlesR1, R2 ⊆ R:

u(R1 ∪R2) = u(R1) + u(R2)− u(R1 ∩R2) (1)

The class of modular functions includes the aforementioned
additive functions. This may be seen as follows. LetR be
any non-empty bundle of resources and letr ∈ R. Then
equation (1) impliesu(R) = u(R \{r})+ [u({r})−u({ })].

2A utility function is additive iff the utility assigned to a set of
resources is always the sum of utilities assigned to its members.

If we apply this step recursively for every resource inR, then
we end up with the following equation:

u(R) = u({ }) +
∑
r∈R

[u({r})− u({ })] (2)

That is, in caseu({ }) = 0, the utility assigned to a set will
be the sum of utilities assigned to its members (i.e. u will
be additive). Clearly, equation (2) also implies equation (1),
i.e. the two characterisations of the class of modular utility
functions are equivalent.

It turns out that in domains where all utility functions are
modular, it is always possible to reach a socially optimal al-
location by means of a sequence of rational deals involving
only a single resource each. This is a slight generalisation of
a result proved by Endrisset al. [2003], and our proof closely
follows theirs.

Theorem 2 (Negotiation in modular domains) The class
M of modular utility functions permits 1-deal negotiation.

Proof. By Lemma 1, any rational deal results in a strict in-
crease in social welfare. Together with the fact that the num-
ber of distinct allocations is finite, this ensures that there can
be no infinite sequence of rational deals (termination). It
therefore suffices to show that for any allocation that does
not have maximal social welfare there still exists a rational
1-deal that would be applicable.

We are going to use the alternative characterisation of mod-
ular utility functions given by equation (2). For any alloca-
tion A, let fA be the function mapping each resourcer to the
agenti that holdsr in situationA. Then, for modular do-
mains, the formula for social welfare (see Definition 4) can
be rewritten as follows:

sw(A) =
∑
i∈A

ui({ }) +
∑
r∈R

u′fA(r)({r})

with u′i(R) = ui(R) − ui({ }). Now assume we have
reached an allocation of resourcesA that does not have max-
imal social welfare,i.e. there exists another allocationA′

with sw(A) < sw(A′). Considering the above definition
of social welfare and observing that

∑
i∈A ui({ }) is a con-

stant that is independent of the current allocation, this im-
plies that at least one resourcer must satisfy the inequation
u′fA(r)({r}) < u′fA′ (r)

({r}), i.e. the agent owningr in al-
locationA values that resource less than the agent owning it
in allocationA′. But then the 1-deal consisting of passing
r from agentfA(r) to agentfA′(r) would already increase
social welfare and thereby be rational. 2

Like Theorem 1, the above establishes an important conver-
gence result towards a global optimum by means of decen-
tralised negotiation between self-interested agents. In addi-
tion, provided all utility functions are modular, convergence
can be guaranteed by means of a much simpler negotiation
protocol, which only needs to cater for agreements on 1-deals
(rather than multilateral deals over sets of resources).

5 Modular functions are not necessary
In the previous section we have introduced a class of utility
functions (namely modular functions) such that it is possible



to guarantee that sequences of rational 1-deals will converge
to an allocation with maximal social welfare under the con-
dition thatall agents’ utilities belong to this class. A natural
question to ask would then be whether modularity is also a
necessarycondition in this sense.

It turns out that this is not the case. We demonstrate this by
means of the following example. SupposeR = {r1, r2} and
there are two agents with utility functionsu1 andu2:

u1({ }) = 90 u2({ }) = 90
u1({r1}) = 93 u2({r1}) = 90
u1({r2}) = 95 u2({r2}) = 90
u1({r1, r2}) = 98 u2({r1, r2}) = 50

While u1 is a modular function,u2 is not. The optimal allo-
cation is the allocation where agent 1 owns both items. Fur-
thermore, as may easily be checked, any1-deal that involves
moving a single resource from agent 2 to agent 1 is rational.
Hence, rational1-deals are sufficient to move to the optimal
allocation for this scenario, despiteu2 not being modular.

In fact, it is possible to show that there can be no class of
utility functions that would be both sufficient and necessary
in this sense. It suffices to produce two concrete utility func-
tionsu1 andu2 such that(i) both of them would guarantee
convergence if all agents were using them, and(ii) there is a
scenario where some agents are usingu1 and othersu2 and
convergence is not guaranteed. This is so, because assuming
that a necessary and sufficient class exists,(i) would imply
that bothu1 and u2 belong to that class, while(ii) would
entail the contrary. We give two such functions for the case
of two agents and two resources (the argument is easily aug-
mented to the general case):

u1({ }) = 0 u2({ }) = 0
u1({r1}) = 1 u2({r1}) = 5
u1({r2}) = 2 u2({r2}) = 5
u1({r1, r2}) = 3 u2({r1, r2}) = 5

The functionu1 is modular,i.e. all agents using that func-
tion is a sufficient condition for guaranteed convergence to an
optimal allocation by means of rational 1-deals (Theorem 1).
Clearly, convergence is also guaranteed if all agents are using
u2. However, if the first agent usesu1 and the secondu2,
then the allocationA with A(1) = {r1} andA(2) = {r2} is
not socially optimal and the only deal increasing social wel-
fare (and thereby, the only rational deal) would be to swap
the two resources simultaneously. Hence, no condition on all
agents’ utility functions can be both sufficient and necessary
to guarantee convergence to an optimal allocation by means
of rational 1-deals alone.

Our argument for the inexistence of any such necessary
and sufficient condition has directly exploited the fact that we
were looking for asinglecondition to be met by the utility
functions ofall agents. The problem could be circumvented
by looking for suitable conditions on negotiation problems
as a whole, where different utility functions may meet dif-
ferent such conditions. Clearly, such a conditiondoesexist.
However, the aforementioned result of Dunneet al.[2005] on
the NP-hardness of checking whether there exists a path of
rational 1-deals between two given allocations immediately
suggests that verifying whether a given negotiation problem
meets any such condition would be intractable.

6 The modular class is maximal
We are now going to prove the main result of this paper,
namely the surprising fact that the class of modular utility
functions is not only sufficient for 1-deal negotiation but also
maximalin the sense that no class of utility functions strictly
including the modular functions would still be sufficient for
1-deal negotiation. The significance of this result can only be
fully appreciated when considered together with the “nega-
tive” result on necessary and sufficient conditions discussed
in the previous section.

Before stating the main result, we prove the following aux-
iliary lemma:

Lemma 2 (Alternative characterisation of modularity)
A utility functionu is modular iff the following holds for all
R ⊆ R and all r1, r2 ∈ R with r1, r2 6∈ R andr1 6= r2:

u(R∪{r1, r2}) = u(R∪{r1})+u(R∪{r2})−u(R) (3)

Proof. To show this, let us recall elementary facts about sub-
modular functions. A functionv : R → R is submodular iff
∀R1, R2 ⊆ R, v(R1) + v(R2) ≥ v(R1 ∪R2) + v(R1 ∩R2).
It is also known thatv is submodular iffv(R∪{r1})+v(R∪
{r2}) ≥ v(R ∪ {r1, r2}) − v(R) for any R ⊆ R, r1, r2 ∈
R\R, with r1 6= r2 [Nemhauser and Wolsey, 1988, p.662].
Because a functionu is modular iff bothu and−u are sub-
modular, the lemma holds. 2

We are now in a position to prove our theorem on the max-
imality of the class of modular utility functions with respect
to rational negotiation over one resource at a time:

Theorem 3 (Maximality) Let M be the class of modular
utility functions. Then for any class of utility functionsF
such thatM⊂ F , F does not permit 1-deal negotiation.

Proof. First observe that for|R| ≤ 1, any utility function
is modular,i.e. the theorem holds vacuously in these cases.
Therefore, without loss of generality, from now on we assume
that there are at least two distinct resources in the system.

The proof is constructive. We will show that for any non-
modular utility functionu1 on m resources, it is possible to
construct a modular utility functionu2 (with ui ≡ 0 for all
other agentsi) and an initial allocation such that no optimal
allocation can be reached by means of 1-deals. This implies
thatM∪ {u1} does not permit 1-deals.

Becauseu1 is non-modular, Lemma 2 can be applied in the
following way: there exist a bundleX and distinct resources
r1, r2 /∈ X such thatε, defined as follows, is not equal to0:

ε = u1(X∪{r1})+u1(X∪{r2})−u1(X)−u1(X∪{r1, r2}) (4)

From now on,A12|, A|12, A1|2 andA2|1 will refer to alloca-
tions in whichr1 andr2 belong to one of the first two agents,
and in which resources inX are owned by1, and resources in
Y = R\(X ∪{r1, r2}) by 2, as shown in the following table.

Agent 1 Agent 2
A12| {r1, r2} ∪X Y
A|12 X {r1, r2} ∪ Y
A1|2 {r1} ∪X {r2} ∪ Y
A2|1 {r2} ∪X {r1} ∪ Y



Figure 1: Values ofsw for the four allocations (caseε > 0).

Let us build a modular utility functionu2 defined as follows:
∀R ∈ R,

u2(R) =
∑

r∈{r1,r2}∩R

αr +
∑

r∈R∩Y

ω −
∑

r∈R∩X

ω (5)

with ω = 14 × max |u1| + 1. Let Ω = u2(Y ) = |Y | ×
ω. As the rest of the proof shall reveal, the value ofω has
been chosen such that the social welfare of each of these four
allocations is greater than that of any other allocation. Of
course, this will imply that the optimal allocation has to be
among these four. The values ofαr1 andαr2 will be chosen
later. The social welfare of each of these four allocations can
then be written as follows:

sw(A|12) = Ω + αr1 + αr2 + u1(X)
sw(A12|) = Ω + u1(X ∪ {r1, r2})
sw(A1|2) = Ω + αr2 + u1(X ∪ {r1})
sw(A2|1) = Ω + αr1 + u1(X ∪ {r2})

It remains to be shown that depending on the value ofε, we
can always choose an initial allocation among these four and
values ofαr1 andαr2 such that (1) this initial allocation does
not have optimal social welfare, (2) there is only one rational
deal from this allocation, (3) this deal leads to the optimal
allocation but however (4) this rational deal would involve
more than one resource. We will have to consider two cases
for equation (4): the case ofε > 0 and the case ofε < 0.

(1st case)Supposeε > 0. Let us chooseαr1 = u1(X ∪
{r1})− u1(X)− ε

4 andαr2 = u1(X ∪ {r1, r2})− u1(X ∪
{r1}) + ε

4 .
Let us first show that the four allocations have a greater

social welfare than any other. With the help of equation (4),
observe that both|αr1 | and|αr2 | are less than3 ×max |u1|.
Thus, all four allocations have a social welfare of at leastΩ−
|αr1 | − |αr2 | − max |u1| ≥ Ω − 7 × max |u1| > Ω − ω

2 .
All other allocations have a social welfare lower thanΩ −
ω + |αr1 | + |αr2 | + max |u1| ≤ Ω − ω + 7 × max |u1| <
Ω− ω

2 . Thus, the social welfare of each of the four allocations
is greater than that of any other allocation.

Now let us show thatA2|1 is the optimal allocation, as
illustrated in Figure 1. More precisely, let us show that
sw(A|12) < sw(A1|2), thatsw(A12|) < sw(A1|2) and that
sw(A1|2) < sw(A2|1). By substituting the values ofαr1 and

Figure 2: Values ofsw for the four allocations (caseε < 0).

αr2 and using equation (4), the social welfare of each alloca-
tion can be written as follows:

sw(A|12) = Ω + u1(X ∪ {r1, r2})
sw(A12|) = Ω + u1(X ∪ {r1, r2})

sw(A1|2) = Ω + u1(X ∪ {r1, r2}) +
ε

4
sw(A2|1) = Ω + u1(X ∪ {r1}) + u1(X ∪ {r2})

−u1(X)− ε

4

= Ω + u1(X ∪ {r1, r2}) +
3
4
ε

Here, A2|1 is clearly the optimal allocation. If we choose
A1|2 as the initial allocation, then the only 1-deals involving
resourcesr1 or r2 areδ(A1|2, A12|) andδ(A1|2, A|12). These
deals decrease social welfare, and thus are not individually
rational by Lemma 1. Thus, it is not possible to reach the
optimal allocationA2|1 starting fromA1|2 using only 1-deals.

(2nd case)Supposeε < 0. Let us chooseα1 = u1(X ∪
{r1})− u1(X)− ε

4 andα2 = u1(X ∪ {r2})− u1(X)− ε
4 .

Note that again, both|αr1 | and |αr2 | are less than3 ×
max |u1|. Thus, by the same argument as in the first case,
the four allocations all have greater social welfare than any
other allocation.

The optimal allocation is nowA12|. To see this, let us show
thatsw(A1|2) < sw(A|12), thatsw(A2|1) < sw(A|12), and
thatsw(A|12) < sw(A12|) as illustrated in Figure 2.

sw(A|12) = Ω + u1(X ∪ {r1}) + u1(X ∪ {r2})

−u1(X)− ε

2
sw(A12|) = Ω + u1(X ∪ {r1, r2})

= Ω + u1(X ∪ {r1}) + u1(X ∪ {r2})
−u1(X)− ε

sw(A1|2) = Ω + u1(X ∪ {r1}) + u1(X ∪ {r2})

−u1(X)− ε

4
sw(A2|1) = Ω + u1(X ∪ {r1}) + u1(X ∪ {r2})

−u1(X)− ε

4
Here, A12| is clearly the optimal allocation. If we choose
A|12 as the initial allocation, then the only 1-deals involving



r1 or r2 areδ(A|12, A1|2) andδ(A|12, A2|1). These deals de-
crease social welfare, and thus are not individually rational
by Lemma 1. Thus, it is not possible to reach the optimal
allocationA12| starting fromA|12 using only 1-deals. 2

Why is this result significant? As argued earlier, while the
full abstract negotiation framework introduced at the begin-
ning of this paper would be difficult to implement, designing
a system that only allows for pairs of agents to agree on deals
over one resource at a time is entirely feasible. As we would
like to be able to guarantee socially optimal outcomes in as
many cases as possible, also for such a restricted negotiation
system, we would like to be able to identify the largest possi-
ble class of utility functions for which such a guarantee can be
given. However, our discussion in Section 5 has shown that
there can be no class of utility functions thatexactlycharac-
terises the class of negotiation problems for which negotiat-
ing socially optimal allocations by means of rational 1-deals
is always possible. Still, thereare classes of utility functions
that permit 1-deal negotiation. As shown by Theorem 2, the
class of modular functions is such a class and it is a very nat-
ural class to consider. An obvious question to ask is therefore
whether this class can be enlarged in any way without losing
the desired convergence property.

Our proof of Theorem 3 settles this question by giving a
negative answer: For any agent with a non-modular utility
function there exist modular utility functions (for the other
agents) and an initial allocation such that rational 1-deals
alone do not suffice to negotiate an allocation of resources
with maximal social welfare. There may well be further such
classes (that are both sufficient and maximal), but the class of
modular functions is one that is particularly natural and useful
in the context of modelling agent preferences.

7 Conclusion
This paper makes a contribution to the theoretical analysis
of a negotiation framework where rational but myopic agents
agree on a sequence of deals regarding the reallocation of a
number of discrete resources. We have shown that the use of
modularutility functions to model agent preferences is asuf-
ficient condition to guarantee final allocations with maximal
social welfare in case agents only negotiate1-deals(involving
one resource each). We have then seen that this is, however,
not anecessarycondition for optimal outcomes and, indeed,
there can be no condition on (individual) utility functions that
would be both necessary and sufficient in this sense. We have
therefore concentrated on showing that the class of modular
functions ismaximal, i.e. no strictly larger class of functions
would still permit an optimal allocation to be found by means
of rational 1-deals in all cases.

We consider this not only a surprising result, but also a
useful characterisation of negotiation domains that can be
handled reliably using simple negotiation protocols, catering
only for Contract Net-like deals over single items between
pairs of agents, rather than the full range of multilateral deals
forseen in the abstract framework. Such theoretical results af-
fect both the design of agents and of negotiation mechanisms.
For instance, if a given mechanism can only handle 1-deals,

then it may be inappropriate to design myopic agents with
very rich preference structures to use such a mechanism.

In a companion paper[Chevaleyreet al., 2005], we prove a
generalisation of Theorem 1 which shows that rational deals
involving at mostk resources each are sufficient for conver-
gence to an optimal allocation in case all utility functions are
additively separablewith respect to a common partition of
R (i.e.synergies across different parts of the partition are not
possible and overall utility is defined as the sum of utilities for
the different sets in the partition[Fishburn, 1970]), and each
set in this partition has at mostk elements. The arguments
against the existence of sufficient conditions for negotiation
overk items at a time that are also necessary generalise in the
expected manner. An important issue that remains to be in-
vestigated in the future therefore is to see whether it is possi-
ble to derive a similar maximality property as the one proved
in this paper for this richer class of utility functions.

Another topic for future work would be to investigate what
classes of utility functions are sufficient and maximal for ne-
gotiating socially optimal allocations by means of 1-deals
without side payments.

References
[Arrow et al., 2002] K. J. Arrow, A. K. Sen, and K. Suzu-

mura, editors. Handbook of Social Choice and Welfare,
volume 1. North-Holland, 2002.

[Chevaleyreet al., 2005] Y. Chevaleyre, U. Endriss, J. Lang,
and N. Maudet. Negotiating over small bundles of re-
sources. InProc. AAMAS-2005. ACM Press, 2005.

[Cramtonet al., 2005] P. Cramton, Y. Shoham, and R. Stein-
berg, editors.Combinatorial Auctions. MIT Press, 2005.
To appear.

[Dunneet al., 2005] P. E. Dunne, M. Wooldridge, and
M. Laurence. The complexity of contract negotiation.Ar-
tificial Intelligence, 2005. To appear.

[Endrisset al., 2003] U. Endriss, N. Maudet, F. Sadri, and
F. Toni. On optimal outcomes of negotiations over re-
sources. InProc. AAMAS-2003. ACM Press, 2003.

[Fishburn, 1970] P. C. Fishburn.Utility Theory for Decision
Making. John Wiley and Sons, 1970.

[Nemhauser and Wolsey, 1988] G. L. Nemhauser and L.A.
Wolsey. Integer and Combinatorial Optimization. John
Wiley and Sons, 1988.

[Rosenschein and Zlotkin, 1994] J. S. Rosenschein and
G. Zlotkin. Rules of Encounter. MIT Press, 1994.

[Sandholm, 1998] T. W. Sandholm. Contract types for satis-
ficing task allocation: I Theoretical results. InProc. AAAI
Spring Symposium: Satisficing Models, 1998.

[Smith, 1980] R. G. Smith. The contract net protocol: High-
level communication and control in a distributed problem
solver.IEEE Transactions on Computers, C-29(12):1104–
1113, 1980.

[Wooldridge, 2002] M. Wooldridge. An Introduction to
MultiAgent Systems. John Wiley and Sons, 2002.


