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Abstract

We investigate the properties of an abstract nego-
tiation framework where agents autonomously ne-
gotiate over allocations of discrete resources. In
this framework, reaching an optimal allocation po-
tentially requires very complex multilateral deals.
Therefore, we are interested in identifying classes
of utility functions such that any negotiation con-
ducted by means of deals involving only a single re-
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system, and the designer will naturally seek to ensure that ne-
gotiation converges towards an optimal allocation.

Section 2 introduces the negotiation framework used in this
paper. As we shall recall in Section 3, it is known that very
complex multilateral deals are potentially required to reach an
optimal allocation. When deals are restrictedy(to a lim-
ited number of resources), it is only possible to guarantee an
optimal outcome by also restricting the negotiation process
to agents whose preferences have certain properties. In this
paper, we study the conditions under which negotiation con-

source at at time is bound to converge to an optimal
allocation whenever all agents model their prefer-
ences using these functions. We show that the class
of modular utility functions is not only sufficient
but also maximal in this sense.

ducted by means of the simplest deals, involving one item at
atime (orl-deal negotiatiorior short) still allows us to reach

an optimal allocation. Section 4 generalises a result from the
literature and shows that modelling preferences witbdu-

lar utility functionsis a sufficient condition. However, mod-
ularity is not anecessarygondition. This is demonstrated in
Section 5 by means of a counterexample. We also show that
there can beao condition on utility functions that would be
both necessary and sufficient for optimal allocations to be ne-
gotiable by means of rational 1-deals. The main contribution
of this paper is to show that the class of modular utility func-
tions ismaximal in the sense that no class strictly including
the modular utility functions would still be sufficient for 1-
deal negotiation. The proof detailed in Section 6 shows that,
hgiven any non-modular utility function, it is always possible
{0 construct a modular utility function and select a scenario
here the optimal allocation cannot be reached by 1-deals.
ection 7 concludes.

1 Introduction

The problem ofdiscreteresource allocation has recently re-
ceived much attention from the artificial intelligence commu-
nity. A large amount of this work is focused ocombinatorial
auctions[Cramtonet al, 2009. In this case, the allocation
procedure is centralised, and the so-callddner determi-
nation problemconsists in determining the allocation of re-
sources maximising the auctioneer’s revenue.

A different perspective is taken when one assumes that t
allocation process is truly distributed, in the sense that agen
autonomously negotiate over the bundles of resources th
hold. This assumption is justified in many applications where
no central authority can be relied on to decide upon the al; . -
location of resources. In this case, the system designer wi@ Myopic negotiation over resources
typically seek to set up the system in such way that it guarin this section, we introduce the decentralised negotiation
antees desirable properties, without directly interfering in thdramework used throughout this paper and report a number
negotiation process itself. In this paper we will make useof known technical results. In this framework, a finite set of
of such an abstract negotiation framework investigated by agents negotiate over a finite set of discrete fon-divisible)
number of author§Sandholm, 1998; Endrisst al, 2003; resources. A resouradlocationis a partitioning of the re-
Dunneet al, 2009. sources amongst the agents (that is, every resource has to be

To make things more precise, we assume a set of negotiaéllocated to one and only one agent). As an example, the
ing agents populating the system, and we model their prefemllocation A defined byA(i) = {r;} and A(j) = {re,r3}
ences (over different bundles of resources) by means of utilityvould allocate resource to agent, while resources, and
functions. In order to pursue their own interests, agents agree; would be owned by agernt
on deals benefitting themselves but without planning ahead We are going to model the preferences of agents by means
(i.e. they are both rational and myopic), thereby modifying of utility functionsmapping bundles of resources to real num-
the allocation of resources. From a global point of view, thebers. Assuming that agents are only concerned with resources
quality of an allocation reflects the overall performance of thethey personally own, we will use the abbreviatief{A) for



u;(A(i)), representing the utility value assigned by agemnt
the bundle it holds for allocatiod. The parameters of a ne-
gotiation problem are summarised in the following definition:

Definition 1 (Negotiation problems) A negotiation problem
isatupleP = (R, AU, Ay), where

e R is a finite set of indivisible resources;
e A={1,...,n}is afinite set of agentsi(> 2);

o U = (uy,...,u,) is a vector of utility functions, such
that for all i € A, u; is a mapping from@” to R;

e Ay : A — 2R is an (initial) allocation.

Agents may agree on deal to exchange some of the re-
sources they possess. It transforms the current allocation
resourcesA into a new allocatiomd’; that is, we can define a
deal as a paif = (A4, A') of allocations (withA # A’).

We should stress that this is raultilateral negotiation
framework. A single deal may involve the displacement
of any number of resources between any number of agent
An actual implementation of this abstract framework may,
however, not allow for the same level of generality. Sand
holm [1999 has proposed a typology of different types of
deals, such aswap dealsnvolving an exchange of single
resources between two agentsctuster dealdgnvolving the

Definition 4 (Social welfare) The social welfaresw(A) of
an allocationA is defined as follows:

sw(d) = > ui(A)
i€ A

This is theutilitarian definition of social welfare. While this
is the definition usually adopted in the multiagent systems lit-
eraturd Wooldridge, 2002, we should stress that also several
of the other notions of social welfare developed in the social
sciences (e.g. egalitarian social welféferow et al., 2002)
do have potential applications in the context of multiagent re-
source allocation.

We conclude this background section by recalling two im-

rtant result§Sandholm, 1998; Endrisst al, 2003: the
irst one makes explicit the connection between the local de-
cisions of agents and the global behaviour of the system, and
the second one is the fundamental convergence theorem for
this negotiation framework.

temma 1 (Individual rationality and social welfare) A
deald = (A4, A') is rational iff sw(A) < sw(A").

Theorem 1 (Maximising social welfare) Any sequence of
rational deals will eventually result in an allocation of re-
sources with maximal social welfare.

transfer of a set of items from one agent to another. The simFhe main significance of this latter result, beyond the equiv-
plest type of deals are those involving only a single resource@lence of rational deals and social welfare-increasing deals

(and thereby only two agents).

Definition 2 (1-deals) A 1-deal is a deab = (A4, A’) result-
ing in the reallocation of exactly one resource.

The above is a condition on thetructureof a deal. Other
conditions relate to the@cceptabilityof a deal to a given
agent. We assume that agents eatonal in the sense of
aiming to maximise their individual welfare. Furthermore
agents are assumed to be/opic This means that agents
will not accept deals that would reduce their level of welfare,
not even temporarily, because they are either not sufficientl

will, however, permit agents to enhance deals withnetary

side paymentsn order to compensate other agents for a POS19g(

sible loss in utility. This can be modelled usingpayment
functionp : A — R. Such a function has to satisfy the side
constrainty ., _ , p(i) = 0, i.e. the overall amount of money
in the system remains constantp(f) > 0, then agent pays
the amount ofp(¢), while p(i) < 0 means that ireceives
the amount of-p(i). The following rationality criterion will
define the acceptability of deals:

Definition 3 (Individual rationality) A deald = (A4, A4’)

is rational iff there exists a payment functignsuch that
u;(A")—u;(A) > p(i) forall i € A, except possibly(i) = 0

for agentsi with A(7) = A’(i).

From a system designer’s perspective, we are interested
assessing the well-being of the whole societysacial wel-
fare [Arrow et al, 2004, which is often defined as the sum
of utilities of all the agents.

stated in Lemma 1, is thainy sequence of deals satisfying
the rationality criterion will eventually converge to an optimal
allocation. There is no need for agents to consider anything
but their individual interests. Every single deal is bound to
increase social welfare and there are no local minima.

3 Negotiating over one item at a time

While Theorem 1 shows that, in principle, it is always possi-
ble to negotiate an allocation of resources that is optimal from
a social point of view, deals involving any number of agents

¥nd resources may be required to do[Sandholm, 1998;
able to plan ahead or not willing to take the associated ris‘Endrissetual. 2005{ aul [

(see als¢Sandholm, 1998or a justification of such an agent deal. which involves
model in the context of multiagent resource allocation). We, ar;other and whic

In particular, the most basic type of
moving a single resource from one agent
h is the type of deal implemented in most
systems realising a kind dfontract Netprotocol [Smith,
is certainly not sufficient for negotiation between
agents that are not only rational but also myopic.

This has first been shown by Sandhdh®9g and is best
explained by means of an examplé.et A = {1,2,3} and
R = {ri,re,73}. Suppose the utility functions of these
agents are defined as follows (over singleton sets):

ur({ri}) =5  wi({re}) =1 wi({rs3}) =0
us({r1}) =0 wua({r2}) =5  ua({rs}) =1
us({ri}) =1  us({r2}) =0  us({rs}) =5

Furthermore, for any bundl& not listed above, suppose
'U/Z(R) = 0foralli € A. Let Ay with A()(].) = {TQ},

IJ%O(Q) = {r3} and Ag(3) = {r1} be the initial allocation,

1A methodology for constructing such examples is easily gener-

ated from the proof of the result on the insufficiency of any kind of
structurally limited class of deals given by Endrétsal. [2003.



i.e. sw(Ap) = 3. The optimal allocation would bd* with If we apply this step recursively for every resourcerinthen

A*(1) = {r}, A*(2) = {r2} and A*(3) = {r3}, which  we end up with the following equation:

yields a social welfare af5. All other allocations have lower

social welfare thamd*. Hence, starting fromd,, the deal w(R) = u({})+ Z[“({T}) —u({ ] ©)

d = (Ao, A*) would be the only deal increasing social wel- rER

fare. By Lemma 1) would also be the only rational deal. That is, in case:({}) = 0, the utility assigned to a set will

This deal, however, involves all three resources and affectse the sum of utilities assigned to its membars. @ will

all three agents. In particulaf,is not a 1-deal. Hence, if we be additive). Clearly, equation (2) also implies equation (1),

choose to restrict ourselvesrational deals, then 1-deals are j.e. the two characterisations of the class of modular utility

not sufficient to negotiate allocations of resources with maxifunctions are equivalent.

mal social welfare. It turns out that in domains where all utility functions are
Of course, for some particular negotiation problems, ramodular, it is always possible to reach a socially optimal al-

tional 1-dealswill be sufficient. The difficulty lies in recog- location by means of a sequence of rational deals involving

nising the problems where this is so. Closely related to thinly a single resource each. This is a slight generalisation of

issue, Dunnet al.[2009 have shown that, given two alloca- a result proved by Endrist al.[200d, and our proof closely

tions A and A’ with sw(A) < sw(A’), the problem of check- follows theirs.

ing whether it is possible to reacl’ from A by means of heorem 2 (Negotiation in modular domains) The class

a sequence of rational 1-deals is NP-hard in the number 0}/1 of modular utility functions permits 1-deal negotiation.

resources in the system. ) ) o
The structural complexity of deals required to be able toProof. By Lemma 1, any rational deal results in a strict in-

guarantee socially optimal outcomes partly stems from thé&rease in social welfare. Together with the fact that the num-

generality of the framework. In particular, so far we haveber of @syr!ct allocations is f|n|t_e, this ensures thgt there can

made no assumptions on the structure of utility functions use@€ no infinite sequence of rational deals (termination). It

by the agents to model their preferences_ By introducing retherefore SUﬂ:llceS to ShOW that for any a_llocaftlon that -doeS

strictions on the class of admissible utility functions, it may Not have maximal social _welfare there still exists a rational

be possible to ensure convergence to an allocation with maxt-deal that would be applicable. o

imal social welfare by means of simpler deals. In this pa- Ve are going to use the alternative characterisation of mod-

per, we are interested in characterising more precisely thog¢lar utility functions given by equation (2). For any alloca-

classes of utility functions that permit 1-deal negotiation. ~ tion 4, let 4 be the function mapping each resourde the
agent; that holdsr in situation A. Then, for modular do-

Definition 5 (1-deal negotiation) A classC of utility func-  maing; the formula for social welfare (see Definition 4) can
tions is said to permit 1-deal negotiation iff any sequence o}q rewritten as follows:

rational 1-deals will eventually result in an allocation of re-

sources with maximal social welfare whenever all utility func- sw(d) = Z ui({}) + Z U,'fA(T) ({rh
tions{uy, ..., u,} are drawn fromC. i€A reR
Under this perspective, a relevant result is due to Enddiss With wi(R) = u;(R) — u;({}). Now assume we have

al. [2003, who show that rational 1-deals are sufficient to '¢ached an allocation of resourcéshat does not have max-

guarantee outcomes with maximal social welfare in case affal social welfare i.e. there exists another allocatiod’
agents usadditive utility functions2 We are going to prove With sw(A4) < sw(A’). Considering the above definition

a slight generalisation of this result in the next section. of social welfare and observing that,  , u;({ }) is a con-
stant that is independent of the current allocation, this im-

: - plies that at least one resourcenust satisfy the inequation
4 Modular _functlon.s are sufficient ) Wy oy (1)) < W, o ({r}), i the agent owning in al-

We are now going to define the classmédularutility func-  |ocation 4 values that resource less than the agent owning it
tions. This is animportant (see e[Rosenschein and Zlotkin, in allocation A’. But then the 1-deal consisting of passing

1994), albeit simple, class of functions that can be used in ne;. from agentfa(r) to agentfa: (., would already increase
gotiation domains where there are no synergies (neither comypcial welfare and thereby be rational. O

plementaries nor substitutables) between different resources.
Definition 6 (Modular utility) A utility functionu is modu- ~ Like Theorem 1, the above establishes an important conver-

lar iff the following holds for all bundie®;, R, C R: gence result '[.OV\./aI’dS a global op'gimum by means of decen-
tralised negotiation between self-interested agents. In addi-
u(RiURy) = u(Ry)+u(R2) —u(RiNRy) (1) tion, provided all utility functions are modular, convergence

an be guaranteed by means of a much simpler negotiation

The class of modular functions includes the aforementionetgrotocm which only needs to cater for agreements on 1-deals
additive functions. This may be seen as follows. BeDe  (rather than multilateral deals over sets of resources).
any non-empty bundle of resources and/lee R. Then

equation (1) impliesi(R) = u(R\{r}) +[u({r}) ~u({})]. 5 Modular functions are not necessary

2A utility function is additive iff the utility assigned to a set of In the previous section we have introduced a class of utility
resources is always the sum of utilities assigned to its members. functions (hamely modular functions) such that it is possible



to guarantee that sequences of rational 1-deals will converg@ The modular class is maximal
to an allocation with maximal social welfare under the con-
dition thatall agents’ utilities belong to this class. A natural
guestion to ask would then be whether modularity is also
necessargondition in this sense.

We are now going to prove the main result of this paper,
namely the surprising fact that the class of modular utility
3unctions is not only sufficient for 1-deal negotiation but also
., maximalin the sense that no class of utility functions strictly

¥cluding the modular functions would still be sufficient for

1-deal negotiation. The significance of this result can only be
fully appreciated when considered together with the “nega-

means of the following example. Suppd8e= {r;,r>} and
there are two agents with utility functiong andus:

ur({}) = 90 wu({}) = 90 tive” result on necessary and sufficient conditions discussed
ur({r1}) = 93  wux({r1}) = 90 in the previous section.

up ({r2}) = 95  ux({r2}) = 90 Before stating the main result, we prove the following aux-
ur({ri,m2}) = 98  wa({r1,r2}) = 50 iliary lemma:

While u, is a modular functiory; is not. The optimal allo- | emma 2 (Alternative characterisation of modularity)
cation is the allocation where agent 1 owns both items. Fura ytjlity functionw is modular iff the following holds for all

thermore, as may easily be checked, &rgeal that involves R and allry, 7, € R withry, 70 & R andr; # 7o
moving a single resource from agent 2 to agent 1 is rational. —

Hence, rational-deals are sufficient to move to the optimal u(RU{r1,r2}) = w(RU{r1})+u(RU{rs})—u(R) (3)

allocation for this scenario, despitg not being modular. .
In fact, it is possible to show that there can be no class 0F’roof. To show this, let us recall elementary facts about sub-

utility functions that would be both sufficient and necessar odular functions. A functiom : R — R is submodular iff
in th)i/s sense. It suffices to produce two concrete utility funcY{;an’ Rz € R, v(B1) +0(R2) 2 (R U Rp) +-v(Ra N Ry).
tionsu, anduy such that(7) both of them would guarantee
convergence if all agents were using them, &iifithere is a
scenario where some agents are usingnd otherau, and
convergence is not guaranteed. This is so, because assumi

that a necessary and sufficient class exigtswould imply

that bothu; andus belong to that class, whiléi) would Wi . ition t th th

entail the contrary. We give two such functions for the case € aré now in a position 1o prove our theorem on the max-
ality of the class of modular utility functions with respect

of two agents and two resources (the argument is easily au%{]1 tonal tati t a time:
mented to the general case): o0 rational negotiation over one resource at a time:

Itis also known that is submodular ifo(RU{r1}) + v(RU
{ra}) > v(RU {ry,r}) —v(R) foranyR C R,ry,r3 €
R\R, with r; # 7, [Nemhauser and Wolsey, 1988, p.$62
Iﬁ cause a function is modular iff bothu, and —u are sub-
dular, the lemma holds. O

ur({}) = 0 wu({}) = 0 Tht_aorem 3_(Maxima|ity) Let M be the clqgs of quular
uy ({r1}) = 1 u({r}) = 5 utility functions. Then for any class of utility functiots

h thatM C F, F does not permit 1-deal negotiation.
ui({ra2}) 2 wu({ra}) 5 suc ,

u({r1,r2}) 3 u({ri,m2}) 5 Proof. First observe that fofR| < 1, any utility function

The functionu, is modular,i.e. all agents using that func- is modular.i.e. the theorem holds vacuously in these cases.
tion is a sufficient condition for guaranteed convergence to a herefore, without loss of generality, from now on we assume
optimal allocation by means of rational 1-deals (Theorem 1)that there are at least two distinct resources in the system.
Clearly, convergence is also guaranteed if all agents are using The proof is constructive. We will show that for any non-
ue. However, if the first agent uses and the seconds, modular utility functionu; onm resources, it is possible to
then the allocatiom with A(1) = {r;} andA(2) = {rp} is  construct a modular utility functiom, (with u; = 0 for all
not socially optimal and the only deal increasing social wel-other agents) and an initial allocation such that no optimal
fare (and thereby, the only rational deal) would be to swagllocation can be reached by means of 1-deals. This implies
the two resources simultaneously. Hence, no condition on athat M U {u, } does not permit 1-deals.
agents’ utility functions can be both sufficient and necessary Because:; is non-modular, Lemma 2 can be applied in the
to guarantee convergence to an optimal allocation by mearfsllowing way: there exist a bundl& and distinct resources
of rational 1-deals alone. r1,72 ¢ X such thak, defined as follows, is not equal to

Our argument for the inexistence of any such necessary
and sufficient condition has directly exploited the fact thatwe ¢ — "t (XU{rh+ua(XUfrh) —ui (X) i (XU{rs, r2}) (4)
Were_looking for asingle condition to be met by_ the utility From now onA;(, Aja, Ayj2 and Ay); will refer to alloca-
functions ofall agents. The problem could be circumventedtions in whichr, andr, belong to one of the first two agents,
by looking for suitable conditions on negotiation problemsand in which resources ik are owned byi, and resources in

as a whole, where different utility functions may meet dif- y — R\(X U{ry,r}) by 2, as shown in the following table.
ferent such conditions. Clearly, such a conditdmesexist.

However, the aforementioned result of Duretal.[2005 on | | Agentl | Agent2 |
the NP-hardness of checking whether there exists a path of Aqg {ri,m} UX Y
rational 1-deals between two given allocations immediately A2 X {r1,re} UY
suggests that verifying whether a given negotiation problem Ay {r}uX {ra} UY
meets any such condition would be intractable. Ao {raJUX {rijuy
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Figure 1: Values ofw for the four allocations (case> 0).

Let us build a modular utility functiom, defined as follows:

sw(A)

(opt alloc)
X
(init alloc)
X
Koo Xy X
XXX | | — A
Other Ap  Ap Ay

allocations 211

Figure 2: Values ofw for the four allocations (case< 0).

o, and using equation (4), the social welfare of each alloca-

VR e R, tion can be written as follows:
sw(Ap2) Q4+ u (X U{ry,re})
uz(R) = ay + w— w (5
TG{T;TQ}QR re%y TE;X sw(Az)) = Q4w (X U{r,r})
€
with w = 14 x max|u;| + 1. LetQ = w(Y) = |Y] x sw(A1|2) = Qt+wu(XU{r,m})+ 4
w. As the rest of the proof shall reveal, the valuexohas sw(Agn) = Q+u(XU{r}) +u(XU{r})

been chosen such that the social welfare of each of these four
allocations is greater than that of any other allocation. Of

course, this will imply that the optimal allocation has to be
among these four. The values®f, anda,., will be chosen

later. The social welfare of each of these four allocations can

then be written as follows:

SW(A|12) Q4 ar, + oy, +ur (X)
sw(Aig)) Q+u (X U{ry,re})

sw(Ay2) = Q+ap, +u(XU{r})
sw(Agp) = Q4o +u (X U{rs})

It remains to be shown that depending on the value, @fe
can always choose an initial allocation among these four an
values ofw,., anda,., such that (1) this initial allocation does

not have optimal social welfare, (2) there is only one rational?hlz f

deal from this allocation, (3) this deal leads to the optimal
allocation but however (4) this rational deal would involve

more than one resource. We will have to consider two caset%atsw(A”z) < sw(Am), tha’[sw(A2|1) < sw(Apy), and

thatsw(A12) < sw(A;9)) asillustrated in Figure 2.

for equation (4): the case ef> 0 and the case af < 0.

(1st case)Supposes > 0. Let us choosey,, = u;(X U
{r1}) —ui1(X) = § anda,, = ug (X U {ry,m2}) —ur (X U
{ri})+ %

Let us first show that the four allocations have a greater

social welfare than any other. With the help of equation (4),
observe that bothv,, | and|«..,| are less thaB x max |u;].
Thus, all four allocations have a social welfare of at léast
|, | — |o, | — maxfuy| > Q — 7 x max|uy| > Q — %,

All other allocations have a social welfare lower th@n-
W+ |ap, | + |ar,| + max|ui| < Q@ —w 4+ 7 x max|uy| <
1—%. Thus, the social welfare of each of the four allocations
is greater than that of any other allocation.

Now let us show thatd,, is the optimal allocation, as
illustrated in Figure 1. More precisely, let us show that
sw(Aj2) < sw(Ayjz), thatsw(A;y) < sw(Ap)2) and that
sw(Ay)2) < sw(Ag)1). By substituting the values of,., and

—mug—i

3
Q—I—ul(XU{rhrg})—&-Ze

Here, Ay, is clearly the optimal allocation. If we choose
Ajyj2 as the initial allocation, then the only 1-deals involving
resources; orry ared(Ayp, Ajg)) andd(A; 2, Aj12). These
deals decrease social welfare, and thus are not individually
rational by Lemma 1. Thus, it is not possible to reach the
optimal allocationd,; starting fromA, |, using only 1-deals.

(2nd case)Supposes < 0. Let us choosey; = uy(X U

érl}) —u(X) — Jandag = u (X U {r2}) — w1 (X) — §.
Note that again, both,, | and |a..,| are less thar x

x |uz|. Thus, by the same argument as in the first case,

our allocations all have greater social welfare than any

other allocation.

The optimal allocation is now 5. To see this, let us show

sw(Ai2) Q4 u (X U{r})+u (XU{r})
—u(X) - 3
Q+U1(XU{7’1,T’2})

Q-+ ul(X U {7‘1}) + ul(X @] {7‘2})
—ul(X) — €

Q + Ul(X @] {7’1}) + Ul(X @] {7’2})

_muj—z
Q4 ur (X U{r}) + u (X U{r})
—ul(X) €

S’lU(Alg‘)

S’U}(Alm)

Sw(Azu)
4

Here, A, is clearly the optimal allocation. If we choose
Aj12 as the initial allocation, then the only 1-deals involving



1 0r 7y ared (A2, Aqj2) andd(Aj o, Ay ). These deals de- then it may be inappropriate to design myopic agents with
crease social welfare, and thus are not individually rationalrery rich preference structures to use such a mechanism.
by Lemma 1. Thus, it is not possible to reach the optimal Inacompanion papéChevaleyrest al., 2004, we prove a
allocationA, 5| starting fromA,,, using only 1-deals. O generalisation of Theorem 1 which shows that rational deals
involving at mostk resources each are sufficient for conver-
Why is this result significant? As argued earlier, while thegence to an optimal allocation in case all utility functions are
full abstract negotiation framework introduced at the begin-additively separablavith respect to a common partition of
ning of this paper would be difficult to implement, designing R (i.e. synergies across different parts of the partition are not
a system that only allows for pairs of agents to agree on dealgossible and overall utility is defined as the sum of utilities for
over one resource at a time is entirely feasible. As we wouldhe different sets in the partitidirishburn, 197§), and each
like to be able to guarantee socially optimal outcomes in aset in this partition has at mostelements. The arguments
many cases as possible, also for such a restricted negotiati@gainst the existence of sufficient conditions for negotiation
system, we would like to be able to identify the largest possi-overk items at a time that are also necessary generalise in the
ble class of utility functions for which such a guarantee can beexpected manner. An important issue that remains to be in-
given. However, our discussion in Section 5 has shown thatestigated in the future therefore is to see whether it is possi-
there can be no class of utility functions thedactlycharac-  ble to derive a similar maximality property as the one proved
terises the class of negotiation problems for which negotiatin this paper for this richer class of utility functions.
ing socially optimal allocations by means of rational 1-deals Another topic for future work would be to investigate what
is always possible. Still, therre classes of utility functions classes of utility functions are sufficient and maximal for ne-
that permit 1-deal negotiation. As shown by Theorem 2, thegotiating socially optimal allocations by means of 1-deals
class of modular functions is such a class and it is a very nawithout side payments.
ural class to consider. An obvious question to ask is therefore
whether this class can be enlarged in any way without losingReferences

the desired convergence property. [Arrow et al, 2004 K. J. Arrow, A. K. Sen, and K. Suzu-

Our proof of Theorem 3 settles this question by giving @™ "y -5 “editors. Handbook of Social Choice and Welfare
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