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Abstract
We investigate the properties of logic programs
with aggregates. We mainly focus on pro-
grams with monotone and antimonotone aggregates
(LPA

m,a programs). We define a new notion of un-
founded set for LPA

m,a programs, and prove that
it is a sound generalization of the standard notion
of unfounded set for aggregate-free programs. We
show that the answer sets of an LPA

m,a program are
precisely its unfounded-free models.
We define a well-founded operator WP for LPA

m,a

programs; we prove that its total fixpoints are pre-
cisely the answer sets of P , and its least fixpoint
Wω

P(∅) is contained in the intersection of all an-
swer sets (if P admits an answer set). Wω

P(∅) is
efficiently computable, and for aggregate-free pro-
grams it coincides with the well-founded model.
We carry out an in-depth complexity analysis in
the general framework, including also nonmono-
tone aggregates. We prove that monotone and anti-
monotone aggregates do not increase the complex-
ity of cautious reasoning, which remains in co-NP.
Nonmonotone aggregates, instead, do increase the
complexity by one level in the polynomial hierar-
chy. Our results allow also to generalize and speed-
up ASP systems with aggregates.

1 Introduction
The introduction of aggregates atoms [Kemp and Stuckey,
1991; Denecker et al., 2001; Gelfond, 2002; Simons et al.,
2002; Dell’Armi et al., 2003; Pelov and Truszczyński, 2004;
Pelov et al., 2004] is one of the major linguistic extensions to
Answer Set Programming of the recent years.

While both semantic and computational properties of stan-
dard (aggregate-free) logic programs have been deeply in-
vestigated, only few works have focused on logic programs
with aggregates; their behaviour, their semantic properties,
and their computational features are still far from being fully
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clarified. A recent proposal for answer set semantics is re-
ceiving a consensus [Faber et al., 2004]. However, un-
founded sets and the well-founded operator [Van Gelder et
al., 1991], which are important for both the characterization
and the computation of standard LPs [Leone et al., 1997;
Simons et al., 2002; Calimeri et al., 2002; Koch et al., 2003;
Pfeifer, 2004], have not been defined in a satisfactory manner
for logic programs with aggregates. Moreover, the impact of
aggregates on the computational complexity of the reasoning
tasks has not been analyzed in depth.

This paper makes a first step to overcome this deficiency,
improving the characterization of programs with aggregates,
for both declarative and computational purposes. The main
contributions of the paper are as follows.
• We define the notion of unfounded set for logic programs
with both monotone and antimonotone aggregates (LPA

m,a

programs). This notion is a sound generalization of the con-
cept of unfounded sets previously given for programs without
aggregates. We show that our definition coincides with the
original definition of unfounded sets of [Van Gelder et al.,
1991] on the class of normal (aggregate-free) programs, and
shares its nice properties (like, e.g., the existence of the great-
est unfounded set).
• We provide a declarative characterization of answer sets in
terms of unfounded sets. In particular, answer sets are pre-
cisely unfounded-free models of an LPA

m,a program.
• We define a well-founded operator WP for logic programs
with aggregates, which extends the classical well-founded op-
erator [Van Gelder et al., 1991]. The total fixpoints of WP are
exactly the answer sets of P , and its least fixpoint Wω

P(∅) is
contained in the intersection of all answer sets. Importantly,
Wω

P(∅) is polynomial-time computable.
• We analyze the complexity of logic programs with arbi-
trary (also nonmonotone) aggregates and fragments thereof.
Both monotone and antimonotone aggregates do not affect
the complexity of answer set semantics, which remains co-
NP-complete (for cautious reasoning). Nonmonotone aggre-
gates, instead, do increase the complexity, jumping to the sec-
ond level of the polynomial hierarchy (ΠP

2 ).
For space limitations, some proofs are sketched.

2 Logic Programs with Aggregates
In this section, we recall syntax, semantics, and some basic
properties of logic programs with aggregates.



2.1 Syntax
We assume that the reader is familiar with standard LP; we
refer to atoms, literals, rules, and programs of LP, as stan-
dard atoms, standard literals, standard rules, and standard
programs, respectively. Two literals are said to be comple-
mentary if they are of the form p and not p for some atom
p. Given a literal L, ¬.L denotes its complementary literal.
Accordingly, given a set A of literals, ¬.A denotes the set
{¬.L | L ∈ A}. For further background, see [Baral, 2002;
Gelfond and Lifschitz, 1991].

Set Terms. A (LPA) set term is either a symbolic set
or a ground set. A symbolic set is a pair {Vars : Conj},
where Vars is a list of variables and Conj is a conjunction
of standard atoms.1 A ground set is a set of pairs of the form
〈t :Conj 〉, where t is a list of constants and Conj is a ground
(variable free) conjunction of standard atoms.

Aggregate Functions. An aggregate function is of the form
f(S), where S is a set term, and f is an aggregate function
symbol. Intuitively, an aggregate function can be thought of
as a (possibly partial) function mapping multisets of constants
to a constant.

Example 1 (In the examples, we adopt the syntax of DLV to
denote aggregates.) Aggregate functions currently supported
by the DLV system are: #count (number of terms), #sum

(sum of non-negative integers), #times (product of positive
integers), #min (minimum term, undefined for empty set),
#max (maximum term, undefined for empty set)2.

Aggregate Literals. An aggregate atom is f(S) ≺ T ,
where f(S) is an aggregate function, ≺∈ {=, <, ≤, >,≥}
is a predefined comparison operator, and T is a term (variable
or constant) referred to as guard.

Example 2 The following aggregate atoms in DLV notation,
where the latter contains a ground set and could be a ground
instance of the former:

#max{Z : r(Z), a(Z, V )} > Y
#max{〈2 : r(2), a(2, k)〉, 〈2 : r(2), a(2, c)〉} > 1

An atom is either a standard (LP) atom or an aggregate atom.
A literal L is an atom A or an atom A preceded by the de-
fault negation symbol not; if A is an aggregate atom, L is an
aggregate literal.

LPA Programs. A (LPA) rule r is a construct
a :− b1, · · · , bk, not bk+1, · · · , not bm.

where a is a standard atom, b1, · · · , bm are atoms, and
m ≥ k ≥ 0. The atom a is referred to as the head of r
while the conjunction b1, ..., bk, not bk+1, ..., not bm is the
body of r. We denote the head atom by H(r), and the set
{b1, ..., bk, not bk+1, ..., not bm} of the body literals by
B(r).

1Intuitively, a symbolic set {X : a(X, Y ), p(Y )} stands
for the set of X-values making a(X, Y ), p(Y ) true, i.e.,
{X |∃Y s.t . a(X, Y ), p(Y ) is true}.

2The first two aggregates correspond, respectively, to the cardi-
nality and weight constraint literals of Smodels.

A (LPA) program is a set of LPA rules. A global variable
of a rule r is a variable appearing in a standard atom of r; all
other variables are local variables.

Safety. A rule r is safe if the following conditions hold: (i)
each global variable of r appears in a positive standard literal
in the body of r; (ii) each local variable of r appearing in a
symbolic set {Vars : Conj} appears in an atom of Conj ;
(iii) each guard of an aggregate atom of r is a constant or a
global variable. A program P is safe if all r ∈ P are safe. In
the following we assume that LPA programs are safe.

2.2 Answer Set Semantics

Universe and Base. Given a LPA program P , let UP denote
the set of constants appearing in P , and BP be the set of
standard atoms constructible from the (standard) predicates
of P with constants in UP . Given a set X , let 2

X denote the
set of all multisets over elements from X . Without loss of
generality, we assume that aggregate functions map to I (the
set of integers).

Example 3 #count is defined over 2
UP, #sum over 2

N,

#times over 2
N

+

, #min and #max are defined over 2
N
−{∅}.

Instantiation. A substitution is a mapping from a set of vari-
ables to UP . A substitution from the set of global variables
of a rule r (to UP ) is a global substitution for r; a substitution
from the set of local variables of a symbolic set S (to UP ) is a
local substitution for S. Given a symbolic set without global
variables S = {Vars : Conj}, the instantiation of S is the
following ground set of pairs inst(S):
{〈γ(Vars) : γ(Conj )〉 | γ is a local substitution for S}.3
A ground instance of a rule r is obtained in two steps: (1)
a global substitution σ for r is first applied over r; (2) ev-
ery symbolic set S in σ(r) is replaced by its instantiation
inst(S). The instantiation Ground(P) of a program P is
the set of all possible instances of the rules of P .

Example 4 Consider the following program P1:
q(1) ∨ p(2, 2). q(2) ∨ p(2, 1).
t(X):−q(X), #sum{Y : p(X, Y )} > 1.

The instantiation Ground(P1) is the following:
q(1) ∨ p(2, 2).t(1):−q(1), #sum{〈1:p(1, 1)〉, 〈2:p(1, 2)〉}>1.
q(2) ∨ p(2, 1).t(2):−q(2), #sum{〈1:p(2, 1)〉, 〈2:p(2, 2)〉}>1.

Interpretations. An interpretation for a LPA program P is
a consistent set of standard ground literals, that is I ⊆ (BP ∪
¬.BP) such that I ∩ ¬.I = ∅. A standard ground literal L
is true (resp. false) w.r.t I if L ∈ I (resp. L ∈ ¬.I). If a
standard ground literal is neither true or false w.r.t I then it is
undefined w.r.t I . We denote by I+ (resp. I−) the set of all
standard positive (resp. negative) literals occurring in I . We
also denote with Ī the set of undefined standard literals w.r.t
I . An interpretation I is total if Ī is empty (i.e., I+∪¬.I− =
BP ), otherwise I is partial.

3Given a substitution σ and a LPA object Obj (rule, set, etc.),
we denote by σ(Obj) the object obtained by replacing each variable
X in Obj by σ(X).



An interpretation also provides a meaning for aggregate lit-
erals. Their truth value is first defined for total interpretations,
and then induced for partial ones.

Let I be a total interpretation. A standard ground conjunc-
tion is true (resp. false) w.r.t I if all its literals are true. The
meaning of a set, an aggregate function, and an aggregate
atom under an interpretation, is a multiset, a value, and a
truth-value, respectively. Let f(S) be a an aggregate func-
tion. The valuation I(S) of S w.r.t. I is the multiset of
the first constant of the elements in S whose conjunction is
true w.r.t. I . More precisely, let I(S) denote the multiset
[t1 | 〈t1, ..., tn : Conj 〉 ∈ S∧ Conj is true w.r.t. I ]. The val-
uation I(f(S)) of an aggregate function f(S) w.r.t. I is the
result of the application of f on I(S). If the multiset I(S)
is not in the domain of f , I(f(S)) = ⊥ (where ⊥ is a fixed
symbol not occurring in P).4

An instantiated aggregate atom A = f(S) ≺ k is true
w.r.t. I if: (i) I(f(S)) 6= ⊥, and, (ii) I(f(S)) ≺ k holds; oth-
erwise, A is false. An instantiated aggregate literal not A =
not f(S) ≺ k is true w.r.t. I if (i) I(f(S)) 6= ⊥, and, (ii)
I(f(S)) ≺ k does not hold; otherwise, A is false.

If I is a partial interpretation, an aggregate literal A is true
(resp. false) w.r.t. I if it is true (resp. false) w.r.t. each total
interpretation J extending I (i.e., ∀ J s.t. I ⊆ J , A is true
w.r.t. J); otherwise it is undefined.

Example 5 Consider the atom A = #sum{〈1 : p(2, 1)〉, 〈2 :
p(2, 2)〉} > 1 from Example 4. Let S be the ground set in
A. For the interpretation I = {p(2, 2)}, each extending total
interpretation contains either p(2, 1) or not p(2, 1). There-
fore, either I(S) = [2] or I(S) = [1, 2] and the application of
#sum yields either 2 > 1 or 3 > 1, hence A is true w.r.t. I .

Minimal Models. Given an interpretation I , a rule r is satis-
fied w.r.t. I if the head atom is true w.r.t. I whenever all body
literals are true w.r.t. I . A total interpretation M is a model of
a LPA program P if all r ∈ Ground(P) are satisfied w.r.t.
M . A model M for P is (subset) minimal if no model N for
P exists such that N+ ⊂ M+. Note that, under these def-
initions, the word interpretation refers to a possibly partial
interpretation, while a model is always a total interpretation.

Answer Sets. We now recall the generalization of the
Gelfond-Lifschitz transformation for LPA programs from
[Faber et al., 2004].

Definition 1 ([Faber et al., 2004]) Given a ground LPA

program P and a total interpretation I , let PI denote the
transformed program obtained from P by deleting all rules
in which a body literal is false w.r.t. I . I is an answer set of a
program P if it is a minimal model of Ground(P)I .

Example 6 Consider the following two programs:
P1 : {p(a):−#count{X : p(X)} > 0.}
P2 : {p(a):−#count{X : p(X)} < 1.}

Ground(P1) = {p(a):−#count{〈a : p(a)〉} > 0.} and
Ground(P2) = {p(a):−#count{〈a : p(a)〉} < 1.}, and
interpretation I1 = {p(a)}, I2 = ∅. Then, Ground(P1)

I1 =

4In this paper, we assume that the value of an aggregate function
can be computed in time polynomial in the size of the input multiset.

Ground(P1), Ground(P1)
I2 = ∅, and Ground(P2)

I1 = ∅,
Ground(P2)

I2 = Ground(P2) hold.
I2 is the only answer set of P1 (because I1 is not a minimal

model of Ground(P1)
I1 ), while P2 admits no answer set (I1

is not a minimal model of Ground(P2)
I1 , and I2 is not a

model of Ground(P2) = Ground(P2)
I2 ).

Note that any answer set A of P is also a model of
P because Ground(P)A ⊆ Ground(P), and rules in
Ground(P) − Ground(P)A are satisfied w.r.t. A.

Monotonicity. Given two interpretations I and J we say
that I ≤ J if I+ ⊆ J+ and J− ⊆ I−. A ground literal `
is monotone, if for all interpretations I, J , such that I ≤ J ,
we have that: (i) ` true w.r.t. I implies ` true w.r.t. J , and (ii)
` false w.r.t. J implies ` false w.r.t. I . A ground literal ` is
antimonotone, if the opposite happens, that is, for all inter-
pretations I, J , such that I ≤ J , we have that: (i) ` true w.r.t.
J implies ` true w.r.t. I , and (ii) ` false w.r.t. I implies ` false
w.r.t. J . A ground literal ` is nonmonotone, if it is neither
monotone nor antimonotone.

Note that positive standard literals are monotone, whereas
negative standard literals are antimonotone. Aggregate lit-
erals may be monotone, antimonotone or nonmonotone, re-
gardless whether they are positive or negative. Nonmonotone
literals include the sum over (possibly negative) integers and
the average.

Example 7 All ground instances of #count{Z : r(Z)} > 1
and not #count{Z : r(Z)} < 1 are monotone, while for
#count{Z : r(Z)} < 1, and not #count{Z : r(Z)} > 1 they
are antimonotone.

We denote by LPA
m (LPA

a /LPA
n ) the fragment of LPA

where only monotone (antimonotone/nonmonotone) aggre-
gates are allowed; LPA

m,a allows for both monotone and anti-
monotone aggregates.

Remark 1 Observe that our definitions of interpretation and
truth values preserve “knowledge monotonicity”. If an inter-
pretation J extends I (i.e., I ⊆ J), then each literal which
is true w.r.t. I is true w.r.t. J , and each literal which is false
w.r.t. I is false w.r.t. J as well.

3 Unfounded Sets
In this section, we extend the notion of unfounded sets, given
in [Van Gelder et al., 1991] for aggregate-free programs,
to the framework of LPA

a,m programs. Let us denote by
S1 ∪̇ ¬.S2 the set (S1 − S2) ∪ ¬.S2, where S1 and S2 are
sets of standard ground literals.

Definition 2 (Unfounded Set) A set X of ground atoms is
an unfounded set for an LPA

a,m program P w.r.t. I if, for
each rule r ∈ P having the head atom belonging to X, at least
one of the following conditions holds: 1. some antimonotone
body literal of r is false w.r.t. I , and 2. some monotone body
literal of r is false w.r.t. I ∪̇ ¬.X .
Example 8 Consider the following program P :

r1 : a(1):−#count{〈1:a(1)〉, 〈2:a(2)〉, 〈3:a(3)〉}>2.
r2 : a(2).
r3 : a(3):−#count{〈1:a(1)〉, 〈2:a(2)〉, 〈3:a(3)〉}>2.



and I = {a(1), a(2), a(3)}. Then X = {a(1)} is an un-
founded set w.r.t. I,P , since condition 2 holds for r1. Also
{a(3)}, and {a(1), a(3)} are unfounded.

We can show that Definition 2 generalizes the one given in
[Van Gelder et al., 1991] for aggregate-free programs.
Theorem 9 For an aggregate-free LPA

a,m program P , Defi-
nition 2 is equivalent to the one of [Van Gelder et al., 1991].

Thus, Definition 2 is an alternative characterization of un-
founded sets for standards literals. In fact, while condition 1
of Definition 2 does not exactly cover the first one in [Van
Gelder et al., 1991], condition 2 catches all cases of the sec-
ond in [Van Gelder et al., 1991] and those ”lost” by condi-
tion 1. This separates positive and negative literals, allowing
to distinguish between the behavior of monotone and anti-
monotone literals.
Theorem 10 If X1 and X2 are unfounded sets w.r.t. an inter-
pretation I for a LPA

a,m program P , then also X1 ∪ X2 is an
unfounded set w.r.t. I for P .
Proof sketch. For Condition 2 of Def. 2, observe that
I ∪̇ ¬.(X1 ∪ X2) ≤ I ∪̇ ¬.X1. Therefore, if a mono-
tone literal ` is false w.r.t. I ∪̇ ¬.X1, then it is false w.r.t.
I ∪̇ ¬.(X1 ∪ X2). Symmetrically for X2. 2

By virtue of Theorem 10, the union of all unfounded sets
for P w.r.t. I is an unfounded set. We call it the Greatest
Unfounded Set of P w.r.t. I , and denote it by GUSP(I).
Proposition 1 Let I and J be interpretations for an LPA

a,m

program P . If I ⊆ J , then GUSP(I) ⊆ GUSP(J).
Proof sketch. Follows from Remark 1, since I ∪̇ ¬.X ⊆
J ∪̇ ¬.X . 2

4 Answer Sets and Unfounded Sets
In this section, we provide a couple of characterizations of
answer sets in terms of unfounded sets.
Definition 3 (Unfounded-free Interpretation) Let I be an
interpretation for a program P . I is unfounded-free if I∩X =
∅ for each unfounded set X for P w.r.t. I .

The next lemma gives an equivalent characterization of the
unfounded-free property for total interpretations.
Lemma 11 Let I be a total interpretation for a program P . I
is unfounded-free iff no nonempty set of atoms contained in
I is an unfounded set for P w.r.t.I .
Proof sketch. If I is not unfounded-free, an unfounded set X
for P w.r.t. I s.t. X ∩ I 6= ∅ exists. Then, X ∩ I is also
an unfounded set. 2

Theorem 12 A model M is an answer set of an LPA
a,m pro-

gram P if and only if M is unfounded-free.
Proof sketch. If M is a model and X ⊆ M is a non-empty
unfounded set w.r.t. M , then it can be shown that M ∪̇ ¬.X
is a model of PM , hence M is no answer set. On the other
hand, if M is an unfounded-free model but not an answer set,
a model N of PM s.t. N+ ⊂ M+ must exist. We can show
that M+ − N+ is an unfounded set. 2

Now we give another interesting characterization of answer
sets. A total interpretation is an answer set if and only if its
false literals are unfounded.

Lemma 13 A total interpretation M is a model for P iff
¬.M− is an unfounded set for P w.r.t. M .

Proof sketch. The result follows from the fact that M =
M ∪̇ ¬.(¬.M−). 2

Theorem 14 Let M be a total interpretation for a program
P . M is an answer set iff ¬.M− = GUSP(M).

Proof sketch. Can be shown using Lemmata 13 and 11 and
Theorem 12. 2

5 Well-Founded Semantics
In this section we extend the WP defined in [Van Gelder et
al., 1991] for aggregate-free programs to LPA

a,m programs.
Then, we show that the answer sets of an LPA

a,m program P
coincide exactly with the total fixpoints of WP .

We start by providing an extension to LPA
a,m programs

of the immediate consequence operator TP defined in [Van
Gelder et al., 1991] for three-valued interpretations of stan-
dard logic programs.

Definition 4 Let P be a LPA
a,m program. Define the oper-

ators TP and WP from 2BP∪¬.BP to 2BP and 2BP∪¬.BP ,
respectively, as follows.

TP(I) = {a ∈ BP | ∃r ∈ Ground(P) s.t. a = H(r)
and B(r) is true w.r.t. I}

WP(I) = TP(I) ∪ ¬.GUSP(I).

Theorem 15 Let M be a total interpretation for a program
P . M is an answer set for P iff M is a fixpoint of WP .

Proof sketch. M− = ¬.GUSP(M) holds by virtue of The-
orem 14, M+ = TP(M) can be shown using Lemma 11 and
Definition 2. 2

The WP operator is clearly monotone on a meet semilat-
tice, and it therefore admits a least fixpoint [Tarski, 1955].
This fixpoint can be computed iteratively starting from the
empty set, and approximates the intersection of all answer
sets (if any).

Theorem 16 Given an LPA
m,a program P , let {Wn}n∈N be

the sequence whose n-th term is the n-fold application of
the WP operator on the empty set (i.e., W0 = ∅, Wn =
WP(Wn−1)). Then (a) {Wn}n∈N converges to a limit
Wω

P(∅), and (b) for each answer set M for P , M ⊇ Wω
P(∅).

Proof sketch. (a) follows from the monotonicity of WP and
the finiteness of BP . (b) holds since all atoms computed by
TP belong to any answer set and because of Theorem 14. 2

From Theorem 15 and 16, the following easily follows.
Corollary 17 If Wω

P(∅) is a total interpretation, then it is the
unique answer set of P .

The following proposition confirms the intuition that Def-
inition 4 extends the WP operator, as defined in [Van Gelder
et al., 1991] for standard programs , to LPA

m,a programs.

Proposition 2 Let P be an aggregate-free program. Then the
WP operator of Definition 4 exactly coincides with WP op-
erator defined in [Van Gelder et al., 1991].

Corollary 18 On aggregate-free programs, Wω
P(∅) coincides

with the well-founded model of [Van Gelder et al., 1991].



Moreover, there are simple cases where Wω
P(∅) captures

the intended meaning of the program.

Example 19 Consider the following program P:
a(1) :− #sum{〈1 : a(1)〉, 〈2 : a(2)〉} > 1.
b :− not a(1). a(2) :− b. b :− not c.

We have WP(∅) = {not c}, then WP({not c}) =
{b, not c, not a(1)}, then WP({b, not c, not a(1)}) =
{b, not c, not a(1), a(2)} = Wω

P(∅).
It is easy to verify that Wω

P(∅) (which here is total) is an an-
swer set for P .

6 Computational Complexity
We first show the tractability of the well-founded semantics
for LPA

m,a, and we then analyze the complexity of answer
set semantics for general LPA programs. We consider the
propositional case, hence, throughout this section we assume
that programs are ground.

Theorem 20 Given a ground LPA
m,a program P: 1. The

greatest unfounded set GUSP(I) of P w.r.t. a given inter-
pretation I is polynomial-time computable; 2. Wω

P(∅) is
polynomial-time computable.

Proof sketch. We define an operator ΦI from BP to BP as
follows: ΦI(Y ) = {a | ∃ r ∈ P with a = H(r)
s.t. no antimonotone body literal of r false w.r.t. I ∧
all monotone body literals of r are true w.r.t. Y − ¬.I−}.
The sequence φ0 = ∅, φk = ΦI(φk−1) is monotonically
increasing and converges finitely to a limit φλ, for which
φλ = BP − GUSP(I) can be shown. Furthermore, each
application of ΦI is polynomial in our setting5, and also λ is
polynomial in |BP |. From this, the result follows. 2

This result has a positive impact also for the computation of
the answer set semantics of logic programs with aggregates.
Indeed, as stated in Theorem 16, Wω

P(∅) approximates the
intersection of all answer sets from the bottom, and can be
therefore used to efficiently prune the search space.

We next analyze the complexity of the answer set seman-
tics of general LPA programs. In [Faber et al., 2004], the
authors have shown that arbitrary (including nonmonotone)
aggregates do not increase the complexity of disjunctive pro-
grams. However, nonmonotone aggregates do increase the
complexity of reasoning on Or-free programs.6

Theorem 21 Cautious reasoning over LPA
m,a,n is ΠP

2 -
complete.

Proof. Membership follows directly from the results in
[Faber et al., 2004]. Concerning hardness, we provide a
reduction from 2QBF. Let Ψ = ∀x1, . . . , xm∃y1, . . . , yn : Φ,
where w.l.o.g. Φ is a propositional formula in 3CNF format,
over precisely the variables x1, . . . , xm, y1, . . . , yn. Observe
that Ψ is equivalent to ¬∃x1, . . . , xm∀y1, . . . , yn : ¬Φ, and
that ¬Φ is equivalent to a 3DNF where every literal has
reversed polarity w.r.t. Φ. Let the LPA

m,a,n program ΠΨ be:

5Recall that we are dealing only with aggregates whose function
is computable in polynomial time.

6In [Ferraris, 2004] it was independently shown that deciding
answer set existence for a program with weight constraints (possibly
containing negative weights) is ΣP

2 -complete.

t(xi, 1) : −#sum{V : t(xi, V )} >= 0.
t(xi,−1) : −#sum{V : t(xi, V )} <= 0.
t(yi, 1) : −#sum{V : t(yi, V )} >= 0.
t(yi,−1) : −#sum{V : t(yi, V )} <= 0.
t(yi, 1) : −unsat. t(yi,−1) : −unsat.

For each clause ci = li,1 ∨ li,2 ∨ li,3 of the original Φ, we
add: unsat : −µ(li,1), µ(li,2), µ(li,3), where µ(l) is t(l,−1) if l
is positive, and t(l, 1) otherwise.

The query not unsat? holds for ΠΨ, iff Ψ is satisfiable. 2

Monotone and antimonotone aggregates, instead, behave
as in the disjunctive case, not causing any complexity gap.
Theorem 22 Cautious reasoning over LPA

m,a is co-NP-
complete.
Proof. Hardness follows from the co-NP-hardness of cau-
tious reasoning over normal (aggregate-free) logic programs
[Marek and Truszczyński, 1991; Schlipf, 1995]. For mem-
bership, we guess a total interpretation M , and check that: (i)
A ∈ M , and (ii) ¬.M− = GUSP(M) (by Theorem 14 M is
then an answer set). By Theorem 20, the checks are feasible
in polynomial time. 2

7 Related Work
To our knowledge, the only other work in which the notion
of unfounded set has been defined for programs with ag-
gregates is [Kemp and Stuckey, 1991]. However, their def-
inition ignores aggregates in the second condition for un-
founded sets. For the program a(1):−#count{X : a(X)} > 0.

the well-founded model of [Kemp and Stuckey, 1991] is ∅,
leaving a(1) undefined. Our well-founded model is {¬a(1)}.
Most of the results reported in this paper do not hold for un-
founded sets as defined in [Kemp and Stuckey, 1991].

There have been several attempts to define well-founded
semantics for programs with aggregates, not relying on un-
founded sets. Several early approaches which are defined
on a limited framework are discussed in [Kemp and Stuckey,
1991]. In [Van Gelder, 1992] a semantics is defined by com-
piling aggregates to rules with standard atoms. This approach
was generalized in [Osorio and Jayaraman, 1999]. In any
case, this strategy works only for certain classes of programs.
In [Ross and Sagiv, 1997] an operator-based definition is
given, which also works only on a restricted set of programs.
In [Pelov, 2004] a well-founded semantics has been defined
based on an approximating operator. Since this definition is
substantially different from the one in this paper, we leave a
comparison for future work.

Other works attempted to define stronger notions of well-
founded semantics (also for programs with aggregates),
among them the Ultimate Well-Founded Semantics of [De-
necker et al., 2001] and WFS1 and WFS2 of [Dix and Oso-
rio, 1997]. Whether a characterization in terms of unfounded
sets can exist for these semantics is not clear, and even if such
generalized unfounded sets would exist, it is likely that some
of the theorems in this paper will no longer hold, given that
these semantics assign truth or falsity for more atoms.

In [Ferraris, 2004] it was shown that the semantics of
Smodels programs with positive weight constraints is equal
to answer sets as defined in [Faber et al., 2004] on the respec-
tive fragment. Since by Theorem 16 Wω

P(∅) approximates



answer sets of [Faber et al., 2004], Wω
P(∅) can be used also

as an approximating operator for the respective Smodels pro-
grams. Indeed, we can show that the AtMost pruning operator
of Smodels [Simons et al., 2002] is a special case of the ΦI

operator (defined in the proof sketch for Theorem 20).

8 Applications and Conclusion
The semantics of logic programs with aggregates is not
straightforward, especially in presence of recursive aggre-
gates. The declarative and fixpoint characterizations of an-
swer sets, provided in Sections 4 and 5, allow for a better
understanding of the meaning of programs with aggregates,
and provide a handle on effective methods for computing an-
swer sets for programs with (recursive) aggregates. In partic-
ular, the operator Wω

P(∅) can be used first to compute what
must be in any answer set. Later in the computation, it can
be used as a pruning operator and for answer set checking (as
described in [Koch et al., 2003; Pfeifer, 2004]).

Furthermore, since loop formulas encode unfounded sets
[Lee, 2004], our results should be adaptable also to SAT-
based ASP systems, all of which rely on loop formulas.

The complexity results make a clear demarcation between
aggregates from the computational viewpoint, which is very
useful to pick the appropriate techniques to be employed for
the computation. The well-founded semantics of LPA

m,a is
efficiently computable. Answer set semantics is in co-NP for
LPA

m,a, while nonmonotone aggregates bring about a com-
plexity gap, and cannot be easily accommodated in NP sys-
tems.

A main concern for future work is therefore the exploita-
tion of our results for the implementation of recursive aggre-
gates in ASP systems.
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