1

Recent work in multi-agent learning has put forth a number o
proposals for judging algorithni8owling and Veloso, 2002;
Conitzer and Sandholm, 2003; Powers and Shoham,]200
In addition to arguing the merits of their proposal, each re
searcher also demonstrated an algorithm meeting thedr- crit
ria. Unfortunately, the algorithms and even the criterinth
selves are in general applicable only within a very limited
setting. In particular, there has been a focus on desigring
gorithms that behave well in the presence of stationary opp
nents, dodging the complexities that arise when the oppone%
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Abstract

Recently, a number of authors have proposed cri-
teria for evaluating learning algorithms in multi-
agent systems. While well-justified, each of these
has generally given little attention to one of the
main challenges of a multi-agent setting: the ca-
pability of the other agents to adapt and learn as
well. We propose extending existing criteria to ap-
ply to a class of adaptive opponents with bounded
memory. We then show an algorithm that prov-
ably achieves ar-best response against this richer
class of opponents while simultaneously guarantee-
ing a minimum payoff against any opponent and
performing well in self-play. This new algorithm
also demonstrates strong performance in empirical
tests against a variety of opponents in a wide range
of environments.

Introduction

may be adapting to the agent’s past play.

best response if the opponent converges to a stationary p
icy. If these criteria are satisfied by all the players, this r

sults in a guarantee of ultimately repeatedly playing a Nas
equilibria of the stage game. They then propose an algorith
that provably meets these criteria in two player normal for
games with two actions per playgConitzer and Sandholm,
2003 adopt a restatement of these same criteria and pro

The two criteria proposed ifBowling and Veloso, 2002
require that the agent both converge to a stationary polic
against some class of opponents and that the agent play(/)‘,il% long as they are assigned positive probability in ther.prio
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that their own algorithm achieves these criteria in arbjtra-
peated games. Note however that neither of these algorithms
makes any guarantee about the payoffs achieved by their al-
gorithm against non-stationary opponents and can potigntia
be exploited arbitrarily by adaptive opponents, as shown in
[Chang and Kaelbling, 2002

In recent work[Bowling, 2009 addresses this vulnerabil-
ity by adding a requirement that the agent experience zero av
erage regret. In this context, regret is traditionally dedias
the maximum payoff that could have been achieved by play-
ing any stationary policy against the opponent’s entiréohnys
of actual moves minus the actual payoff the agent received.
Several algorithms have been proven to achieve at most zero
regret in the limit (se¢Hart and Mas-Colell, 20d0and[Ja-
fari et al,, 2007 for examples in both game theory and Al).

The work of[Fudenberg and Levine, 19P6n ‘universal-
consistency’ is representative of this literature and plsats
out two limitations of the regret minimization approach as a
whole. The first is the inability of no-regret strategies apic
talize on simple patterns in the opponent’s play. They akdre
tthis limitation with a proposal for the stronger concept of
conditional consistency’ and a new algorithm that achseve
it in [Fudenberg and Levine, 19R9The second limitation is

5that while a no-regret algorithm guarantees a minimum pay-

off against any possible opponent, it ignores the possibili
that the sequence of moves played by the opponent is de-
pendent on the agent's own moves. While this assumption
is quite justified in games with a large number of players, it

?)becomes a serious liability in repeated interactions witly o

a few players. While we are not aware of much work dealing
xplicitly with this limitation,[de Farias and Megiddo, 20p4
address it in the design of their experts algorithm and the ra
tional learning approach dKalai and Lehrer, 1993can in
¥)rinciple handle adaptive algorithms of arbitrary comfilex

To see how the failure to consider adaptive opponents
ﬁould hurt an algorithm’s performance, let us consider a re-

rﬁeated version of the Prisoner’s Dilemma game shown in

igure 1. Prisoner's Dilemma has been extensively studied
[Axelrod, 1984 and numerous algorithms proposed that al-

\)é)w two agents to cooperate on the advantageous cooperation

outcome without being exploited. The simplest but perhaps
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00-2-0598 and by NSF Grant 11S-0205633

starts by cooperating and thereafter repeats whatevemacti



the opponent played last. Note that any approach that corfull game structure and payoffs are known to both agents. Fi-
siders only stationary opponents must always pglayfect, nally, although we shall generally refer to the other plager
since this is the unique best response to any stationary ophe opponent, we do not mean to imply an adversarial setting,
ponent and the only strategy that can ever result in no+tegrdout instead consider the full space of general-sum games.
performance. Against Tit-for-Tat this results in a paydfiip

but the strategy of always playir@ooperate would yield a Cooperate De fect Left Right

payoff of 3. Clearly, a no-regret policy is not the best resm

in this richer strategy space. Cooperate, 3,3 0,4 Up | 1,0 | 3,2
As another example of the advantages of considering adap- 4 11 51 | 4

tive opponents, consider playing the Stackelberg gamenpf Fi De fect 0 ’ Down|_ 2, 0

ure 1 repeatedly. Notice thatp is a strictly dominated strat-
egy, regardless of what the opponent chooses the row agent
would prefer to playDown. However, if the opponent is
learning, this would presumably prompt them to playt,
resulting in a payoff of 2 for the row agent. If it instead paaly )
the seemingly suboptimal action 6fp, the opponent may 3 Adaptive Opponents

learn to playRight, giving the row agent a higher payoff of while the goal of this work is to expand the set of possible
3. We can see that in this instance, teaching can play as mu@pponents against which we can achieve a best response, we
of a role in achieving a desirable outcome as learning. Inwi|| need to limit their capabilities in some way. If we con-
both of these games some of the most successful strategiggier opponents whose future behavior can depend arbitrar-
are those that have the ability to either cooperate wittr theijly on the entire history of play, we lose the ability to learn
opponents or manipulate their opponents as appropriate.  anything about them in a single repeated game, since we will
The weaknesses of this reliance on an assumption Qdnjy ever see a given history once. We will therefore assume a
stationarity were previously acknowledged [iRowers and  jimit on the opponent’s ability to condition on the histoWe
Shoham, 2006and we proposed the following three critetia: propose directly limiting the amount of history availatis,

Targeted Optimality: Against any member of the target requiring that the opponents play a conditional strateggreh
set of opponents, the algorithm achieves withiof the ex-  their actions can only depend on the most redeperiods of
pected value of the best response to the actual opponent. Past history.f; : O_y x ... x O_, — AA;, whereO_, is
Compatibility: During self-play, the algorithm achieves the outcome of the ganteperiods ago. We will assume that
at least withine of the payoff of some Nash equilibrium that € OPPonents have a default past history they assume at the
is not Pareto dominated by another Nash equilibrium. start of the game. Note that even this glmple model allows
Safety: Against any opponent, the algorithm always re- us to capture many methods such as Tit-for-Tat that current

; o ! approaches are unable to properly handle.
ceives at least withia of the security value for the game. Let's now consider how we could apply the criteria given

One of the key aspects of the proposal is the use of a paranabove to this set of opponents. While the value of the best
eterized target class of opponents against which to achiew@sponse to a given conditional strategy is well-defined, it
optimal performance. While this could also address adapwould prove an unreasonable requirement for many possi-
tive agents, the previous work only provides an algorithm fo ble strategies. Let’s again consider the Prisoner’s Dilamm
stationary opponents. In this work, we adopt the same critegame with an opponent that is either playing the grim stsateg
ria and analyze how to develop algorithms that behave welbr always playCooperate. In the grim strategy the oppo-
against opponents that can adapt to their past experience. nent initially starts playin@”ooperate but switches to play-

ing De fect indefinitely if its opponent ever playBe fect (a
2 Environment conditional strategy with history 1). Note that no possible
learning strategy can achieve the value of the best response
gainst both opponents, since it must plyfect at least
nce to distinguish them, at which point the option of always
ooperating with the grim strategy will no longer exist. Téne
are two possible approaches to remedying this problem. One
way is to constrain the class of opponents we consider. Suf-
ficient requirements for conditional strategies are ththteei
the opponent only condition on the actions of the agent, not
own past actions, or that the policies the opponent days
n non-zero probability to each action for every pastinist

(a) Prisoner’s Dilemma  (b) Stackelberg Game

Figure 1: Example stage games. The row player's payoff is
given first, with the column player’s payoff following.

Within this paper, we will focus on the class of two-player re
peated games with average reward. In this setting the tw
players repeatedly play a simultaneous move normal for
game, represented as a tuplé,= (n, A, Ry, ), Wheren

is the number of playersd = A; x ... x A, whereA; is
the set of actions for playér andR; : A — R is the reward
function for agent. After each round, the agents accumu-
late their reward from the joint outcome and get to observq
the prior actions of the other agent. Each agent is assumes@%

:]OOPrTe];IrB]f:)r;%tgar&ae)grc\;ﬁﬁ {Lsea:\é?/cz?(jesrggzrrﬂiegvﬁ?]tgxsgﬂle n alternative approach would be to relax our best response
L 9C rget. Instead of requiring the agent achieve the besevalu
are shown in Figure 1. For our purposes we assume that ﬂb%)ssible by any strategy played from the start of the game,
These three criteria were additionally required to hold for anyWe can set the target to be the highest average value that can

choice ofe with probability at least — § after a polynomial period ~ be achieved after any arbitrary initial sequence of moves to
of learning at the start of the game. account for the need for exploration.



Even with these restrictions on our target, we can see that
in order to guarantee anbest response with high probabil-
ity we will require an exponential exploration period, snc
to find a good outcome an agent needs to sample from the
exponential number of histories the opponent considens. Fu
thermore, if we allow the opponent to condition on its own
actions, the number of observations required can become un-

Set strategy = StochCodf at her
for 7 tinme steps, Play strategy
for » time steps
if (Angalue < VGodfather - 61)
Wth probability p,
set strategy = MenBR
Pl ay strategy

bounded unless we add a requirement of a minimum proba-

e : - 4 i f opponent| nTar get Set ()
bility of playing any given action.

for 7 time steps, Play MenBR
i f opponent | nTarget Set ()
Set bestStrategy = MenBR
el se set bestStrategy = strategy
else if (strategy St ochGodf at her
AND AvgValue > Vgoatather — €1)
Set bestStrategy = StochGodf at her
el se set bestStrategy = MenBR
whil e not end of gane
it AvgValue < Viecurity — €0
Play maxi m n strategy
el se
Pl ay best Strategy

4 A Manipulative Algorithm

Although the MetaStrategy algorithm we introducediRow-
ers and Shoham, 20P& only explicitly designed for station-
ary opponents, we can use much of the intuition behind the
approach to design a new algorithm for our class of adaptive
opponents. The idea behind MetaStrategy is to start with a
teaching strategy for an initial coordination/exploratjghase
and use its payoff and the opponent’s play to determine which
of three possible strategies to play. If its opponent is con-
sistent with the target class it adopts a best response. If it
achieves its target value by getting its opponent to adopt a
best response to its teaching strategy it continues playing
otherwise it selects a default stratégyThe algorithm then
plays according to this strategy as long as it exceeds its sec

Figure 2: The Manipulator algorithm

; 4 e C e values and plays its portion of the target outcome. If the op-
rity level, reverting to a maximin policy if its payoff drops ponent ever plays an action other than the matching action

In figure 2, we show the implementation of this generalfor the target outcome, the agent plays a strategy thatgorce
approach for our target class. The MemBR strategy calcus, 9 ' gent play 9y

lates a best response strategy against conditional sgateg the opponent to aghleve no more than Its security value until
]the opponent again plays its target action. For our purposes

This approach maintains counts of the opponent’s actions af ~, ; .

ter each history of length, which it uses to calculate the cy- W?X\é% Csrt(?:ttgd afs;[?ﬁgzstgn\grs:jog f;rG;d;?[?oenr ;gra:hf?;d o-
cle of agent actions with the highest expected reward out of! 9y Ne ag targ P
all possible unique agent action sequences (those that doﬁ]em such that the joint strategy gives the opponent a higher

contain a length: repeated subsequence). Given sufficienteXpeCted value than its security value and also denies it any

observations, this lets us guarantee that we achievebast advantageous devi.ations. This is necessary since we want
response against any member of our target opponefitaiet,  Our godfather algorithm to be implementable by a conditiona
can calculate the probability the opponent's play is cassis ~ Stategy with history 1. Because of this constraint, we reed
with our target set by comparing the observed distributibn o make sure the opponent can't achieve a net profit by deviating

play for each history at separate times and measuring the @N€ turn and then playing the target action the next, inegrri
viation in action profiles. We continue to use the minimax 2"y One period of punishment. The parameters specified in
strategy to achieve the security value guarantee. And or ththfa algorithm are a function of the desired valuesdand
self-play guarantee we can replace the Bully-Mixed stlyitegé in the theoretical guarantees. (Our empirical results used
with a generous stochastic version of Godfafhéttman and 7 — 20000, 72 = 60000, p = 0.005%, eo = €; = 0.025)

Stone, 200 Godfather was motivated by the folk theorem | An additional advantage of reusing our existing framework
for repeated games and selects some outcome in the gartfenat we can apply the proof used for the MetaStrategy algo-

matrix with greater payoff for each agent than their segurit rithm with only minor mod|f|cat|ons_ to show Theorem 1. The
main change is that we must require that the agent play fully
2To see this, consider a conditional strategy that always playsnixed strategies during the beginning of the game in order
Defect in Prisoner’s Dilemma if its opponent playddefect the  to get sufficient observations to test whether the opposent’
previous move, but play§'ooperate with § probability if its op-  play was consistent with the target set of strategies. Given
ponent played’ooperate and it playedDe fect, and always plays  thjs constraint, the proof consists mainly of a long strifig o

Cooperate if both it and the agent playe@ooperate. The agent  5njjications of the Hoeffding inequalifiioeffding. 195
will require a number of observations proportional §& in order to PP g inequalify g 6

distinguish this opponent from one that always playsfect.

3 . - Theorem 1 Our algorithm, Manipulator, satisfies the three
In MetaStrategy this was Fictitious Pld@rown, 1951, but

note that by instead using a no-regret policy, we could have achieveﬁmperties stated in the introduction for the class of condi
a stronger payoff guarantee against many opponents. onal strategies with bounded memadryafter a training pe-

k
“This implementation is suitable for conditional strategies thatriod depending ori-, where) is the minimum probability
only depend on the agent’s actions. For general conditional stratdhe opponent assigns to any action, o= 1 for opponents
gies we need to consider the full space of deterministic conditionathat condition only on the agent’s actions.
strategies to find a best response.
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Figure 3: Average value for last 20K rounds (of 200K) acradected games in GAMUT. Game payoffs range from -1 to 1.

5 Experimental Results And Dove, Godfather is able to perform better by manipulat-

In order to test the performance of our approach we've usef!9 more of the opponents into yielding, both by sending a
the comprehensive testing environment detaileFowers ~ Cléarer message, since it doesn't have to do any exploration
and Shoham, 2005; Nudelmanal, 2004. Besides MetaS- &nd by waiting longer for its opponent to adapt. This stub-
trategy, our set of opponents includes Bully and GodfathePOrnness, however, proves its undoing in games where it is
from [Littman and Stone, 2001 Hyper-Q[Tesauro, 2004 critical to adapt to the oth’er opponent, such as the Dlspe!'-
Local Q-learning[Watkins and Dayan, 1992smooth ficti-  SION Game. MetaStrategy s strong perfprm_ance in Shapley’s
tious play[Fudenberg and Levine, 1995and WoLF-PHC Game seems to stem from its default Fictitious Play strategy
[Bowling and Veloso, 2002 We also include random sta- €xPloiting LocalQ and WoLF-PHC. However, we can see the
tionary strategies (Random), random conditional strategi 2dvantage of Manipulator over MetaStrategy in games like
(StochMem), and MemBR1 which learns a best response tprisoner’s Dilemma and Travelers Dilemma Wh|ch have equi-
conditional strategies with history 1. I|br|a_ in the space .of_repeated game strategies that Pareto-
In Figure 3 we show the performance of the most suc:dominate any equilibria of the stage game.
cessful of the distinct algorithms across a variety of nor- . .
mal form games. All of the adaptive algorithms fare well & Discussion
against the stationary opponents, Random and Bully, whil&lthough Manipulator demonstrates consistent perforraanc
Manipulator and to a lesser degree, Hyper-Q, fare the bestcross a wide variety of games, we are by no means claim-
against the bounded memory adaptive strategies, Godfatharg that it would be the best approach for all settings. In
and StochMem. Manipulator and Godfather also have an agarticular, it doesn't fare nearly as well in the most adver-
vantage against opponents that learn a best response to caarial games, like MatchingPennies, Rochambeau, and Shap-
ditional strategies, such as MemBR1 and Manipulator itselfleysGame. This is not surprising since it will be unable to
For other approaches that fall outside the target setstodreit find any deals to offer with its Godfather component and its
MetaStrategy or Manipulator we can see that MetaStrategyodel-based assumption that its opponent is a conditional
has a slight advantage, mainly because of its ability to platrategy offers no particular advantage against othertagap
pure strategies, while Manipulator is constrained to exgplo opponents. An alternate approach we considered was adapt-
the opponent’s strategy space during the initial coorébnat ing a model-free algorithm such as Q-learn[igatkins and
period. However, an additional advantage of Manipulator inDayan, 199Pto the multi-agent setting, following in the foot-
this setting is its ability to perform well in self-play, deliing  steps of numerous previous researchers attempting to find ef
the highest payoff of all algorithms tested, while MetaStra fective multi-agent learning strategies (elg.ittman, 1994;
egy is limited to the space of stationary policies and misse€laus and Boutilier, 1998; Tesauro, 2@p4n traditional Q-
more complex opportunities for cooperation in some gameslearning the algorithm learns values for each action at each
Let us now turn to the performance of our new algorithm inpossible state of the world and then chooses the action that
different types of games. Figure 4 shows the relative rewarenaximizes its expected reward. We propose two possible al-
achieved by the most successful algorithms for a selecfion dernatives for dealing explicitly with adaptive opponer@me
games in GAMUT averaged across the set of opponents. Waethod is to incorporate the recent history into the statbef
can see that Manipulator has the best performance in nearlyorld and learn action values for each possible recentiyisto
every game. In games like Prisoner’s Dilemma and HawkA second approach is to instead learn values over sequences
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Figure 4: Percent of maximum value for last 20K rounds (ofK)08veraged across all opponents for selected games in
GAMUT. The rewards were divided by the maximum reward aaiidyy any agent to make visual comparisons easier.

of actions. When we conducted tests for these two algorithmb particular, we need to consider how to handle finite au-
we found that the approach that conditioned on previous histomata with multiple ergodic sets of states and automata wit
tory demonstrated the ability to exploit some of the otherarbitrarily small transition probabilities.

adaptive approaches including: Local Q-learning, SmoethF
and Hyper-Q, resulting in a higher average value in zero-su
games than any of the previous approaches. However, nel-

ther of these model-free methods performed as well in génergye feg| that explicitly addressing the issue of adaptivesepp
sum games and both were dominated by Manipulator againglons s a critical element of learning in multi-agent syste

each opponent when tested on the full set of games. Althougf 5 this very quality that seems to define the difference be-

these approaches also lack the theoretical guarantees-of Mg, e the multi-agent setting and the single-agent one. Our
nipulator, they profit from not requiring any advance knowl- 546rithm approaches this setting by combining a teaching
edge about the game payoffs. Additionally, the ability @ 555540 which manipulates adaptive opponents into ayin
tify settings where individual approaches are particyleft 5 agent's advantage with a cooperative/learning amro

fective may lead to more powerful methods using portfoliosy, ot adapts itself to its best estimate of its opponentatstr
of algorithms as suggested|ibeyton-Brownet al, 2003. egy. Our algorithm can be shown to achieveptimal aver-

Finally, it should be pointed out that the model we've age reward against a non-trivial class of adaptive oppsnent
put forth for modelling opponents with bounded capabtitie while simultaneously guaranteeing a minimum payoff agains
is only one of many possible ones. A common approactany opponent and performing well in self-play, all with high
used in the literature on bounded rationalfyeyman, 1985; probability. These results translate into good empiricat p
Papadimitriou and Yannakakis, 1994 to assume the agents formance in a wide variety of environments. There is clearly
can be modelled by finite automata withstates. Note that more work that can be done, however. As we discussed in
the automata model is more comprehensive than the set dfie previous section, we've so far only analyzed one possi-
conditional strategies since any conditional strategyooept  ble model for adaptive opponents with bounded memory and
with bounded memory can be modelled by an automata witkare still considering how best to incorporate other apgreac
|Al* states if we allow stochastic outputs, but there exist authat achieve better empirical performance against exjstin
tomata that cannot be modelled by any function on a finitegorithms. Additionally, our approach still has significaet
fixed history. In the case of automata with deterministiotra strictions on the set of environments it considers. We can
sitions, we can modify our Manipulator algorithm to handleimmediately identify five limitations of our current appaba
this new class by implementing our version of Godfather as ] o ]

a DFA and replacing the best response function. Note that 1. Single Opponent: The criteria are only clearly defined
learning a best response to an opponent modelled by an un- for games with two players.

known finite automata is equivalent to finding the best policy
for an unknown POMDP, investigated [€hrisman, 1992;
Nikovski and Nourbakhsh, 20p0While a difficult computa-
tion problem, we should be able to achieve the same theoreti-3. Average Reward: The criteria are defined for games in
cal properties for this alternate set of opponents givetilaim which the agent only cares about the average of its ag-
constraints to those we placed on the conditional stradegie gregated rewards (rather than a discounted sum).

Conclusions and Future Work

2. Single State: The criteria are only clearly defined for
repeated games (rather than general stochastic games).



4. Full Observability: The agent needs perfect observation[Hart and Mas-Colell, 20d0Sergiu Hart and Andreu Mas-
of the opponent’s actions from prior moves in the game. Colell. A simple adaptive procedure leading to correlated

5. Known Games: The algorithm needs to know all of the ~ €quilibrium. Econometrica68:1127-1150, 2000.
payoffs for each agent from the beginning of the game. [Hoeffding, 1956 Wassily Hoeffding. On the distribution of

While some of these would only require minor modifica-  the number of successes in independent tridisnals of
tions or transformations of the environment, others such as Mathematical Statistic227:713-721, 1956.
the discounted reward setting require a markedly differenfJafariet al, 2001 Amir Jafari, Amy Greenwald, David
way of viewing the problem. We're currently working to test ~ Gondek, and Gunes Ercal. On no-regret learning, ficti-
the limits of how much we can relax each of these restric- tious play, and nash equilibrium. IRroceedings of the
tions in turn and hope our work here may serve as a first step Eighteenth International Conference on Machine Learn-
towards a more widely applicable approach. ing, pages 226—223, 2001.

Ref [Kalai and Lehrer, 1993Ehud Kalai and Ehud Lehrer. Ra-
erences tional learning leads to nash equilibriunEconometrica
[Axelrod, 1984 Robert Axelrod.The Evolution of Coopera- 61(5):1019-1045, 1993.

tion. Basic Books, New York, 1984. [Leyton-Brownet al, 2003 Kevin Leyton-Brown, Eugene
[Bowling and Veloso, 2002 Michael Bowling and Manuela Nudelman, Galen Andrew, Jim McFadden, and Yoav

Veloso. Multiagent learning using a variable learningrate Shoham. A portfolio approach to algorithm selection. In

Artificial Intelligence 136:215-250, 2002. Proceedings of the Eighteenth International Joint Confer-

[Bowling, 2003 Michael Bowling. Convergence and no-  ence on Artificial Intelligence2003.
regret in multiagent learning. 1Advances in Neural In-  [Littman and Stone, 20Q1Michael Littman and Peter Stone.
formation Processing Systems MIT Press, 2005. Implicit negotiation in repeated games. Rroceedings

[Brown, 1951 George Brown. lterative solution of games  ©Of The Eighth International Workshop on Agent Theories,
by fictitious play. InActivity Analysis of Production and ~ Architectures, and Languagesages 393-404, 2001.

Allocation John Wiley and Sons, New York, 1951. [Littman, 1994 Michael L. Littman. Markov games as a
[Chang and Kaelbling, 2002Yu-Han Chang and framework for multi-agent reinforcement learning.Rro-

Leslie Pack Kaelbling. Playing is believing: The ceedings of the 11th International Conference on Machine

role of beliefs in multi-agent learning. Idvances Learning pages 157-163, 1994.

in Neural Information Processing Systems, ldages [Neyman, 1985 Abraham Neyman. Bounded complex-

1483-1490, 2002. ity justifies cooperation in finitely repeated prisoner's

[Chrisman, 199R Lonnie Chrisman. Reinforcement learning  dilemma.Economic Letterspages 227-229, 1985.

with perceptual aliasing: The perceptual distinctions ap{Nikovski and Nourbakhsh, 200tDaniel Nikovski and Illah
proach. InProceedings of the Tenth National Conference  Nourbakhsh. Learning probabilistic models for decision-
on Artificial Intelligence pages 183-188, 1992. theoretic navigation of mobile robots. Froceedings of

[Claus and Boutilier, 1998Caroline Claus and Craig the International Conference on Machine Learnipgges
Boutilier. The dynamics of reinforcement learning in  266-274, 2000.

cooperative multiagent systems. Rroceedings of the  [Nydelmaret al, 2004 Eugene Nudelman, Jenn Wortman,

Fifteenth National Conference on Artificial Intelligence Kevin Leyton-Brown, and Yoav Shoham. Run the gamut:

pages 746-752, 1998. A comprehensive approach to evaluating game-theorectic
[Conitzer and Sandholm, 20P¥incent Conitzer and Tuo- algorithms.AAMAS 2004.

mas Sandholm. Awesome: A general multiagent learn{pgnadimitriou and Yannakakis, 199€hristos H. Papadim-

reaponse against satonary opponentsPiceedings of ol and Minalis Yannakakis. on complexty as bounded
: rationality. In -94pages 726733, .

the 20th International Conference on Machine Learning I 4 Pag

pages 83-90, 2003. [Powers and Shoham, 200Rob Powers and Yoav Shoham.

. . . . . iteri i ing i Iti-
[de Farias and Megiddo, 20p4aniela Pucci de Farias and New criteria and a new algorithm for learning in mult

; ; . : agent systems. IAdvances in Neural Information Pro-
Nimrod Megiddo. How to combine expert (or novice) ad- ina Svst 1MIT Press. 2005
vice when actions impact the environmentAdvances in cessing systems ' o )
Neural Information Processing Systems 2604. [Tesauro, 200]4 Gerald Tesauro. EXtendlng q-Iearnlng to

. : eneral adaptive multi-agent systemsAbivances in Neu-
[Fudenberg and Levine, 19p®rew Fudenberg and David 9 : ;
Levine. Universal consistency and cautious fictitious play ral _Informatlon Processing _System;:s;lume 16, 2004.
Journal of Economic Dynamics and Contrd9:1065— [Watkins and Dayan, 1992Chris Watkins and Peter Dayan.
1089, 1995. Technical note: Q-learning. Machine Learning

[Fudenberg and Levine, 19p®rew Fudenberg and David 8(3/4):279-292, May 1992.

Levine. Conditional universal consistencyzames and
Economic Behavigr29:104-130, 1999.



