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Abstract

Recently, a number of authors have proposed cri-
teria for evaluating learning algorithms in multi-
agent systems. While well-justified, each of these
has generally given little attention to one of the
main challenges of a multi-agent setting: the ca-
pability of the other agents to adapt and learn as
well. We propose extending existing criteria to ap-
ply to a class of adaptive opponents with bounded
memory. We then show an algorithm that prov-
ably achieves anǫ-best response against this richer
class of opponents while simultaneously guarantee-
ing a minimum payoff against any opponent and
performing well in self-play. This new algorithm
also demonstrates strong performance in empirical
tests against a variety of opponents in a wide range
of environments.

1 Introduction
Recent work in multi-agent learning has put forth a number of
proposals for judging algorithms[Bowling and Veloso, 2002;
Conitzer and Sandholm, 2003; Powers and Shoham, 2005].
In addition to arguing the merits of their proposal, each re-
searcher also demonstrated an algorithm meeting their crite-
ria. Unfortunately, the algorithms and even the criteria them-
selves are in general applicable only within a very limited
setting. In particular, there has been a focus on designing al-
gorithms that behave well in the presence of stationary oppo-
nents, dodging the complexities that arise when the opponent
may be adapting to the agent’s past play.

The two criteria proposed in[Bowling and Veloso, 2002]
require that the agent both converge to a stationary policy
against some class of opponents and that the agent play a
best response if the opponent converges to a stationary pol-
icy. If these criteria are satisfied by all the players, this re-
sults in a guarantee of ultimately repeatedly playing a Nash
equilibria of the stage game. They then propose an algorithm
that provably meets these criteria in two player normal form
games with two actions per player.[Conitzer and Sandholm,
2003] adopt a restatement of these same criteria and prove
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that their own algorithm achieves these criteria in arbitrary re-
peated games. Note however that neither of these algorithms
makes any guarantee about the payoffs achieved by their al-
gorithm against non-stationary opponents and can potentially
be exploited arbitrarily by adaptive opponents, as shown in
[Chang and Kaelbling, 2002].

In recent work,[Bowling, 2005] addresses this vulnerabil-
ity by adding a requirement that the agent experience zero av-
erage regret. In this context, regret is traditionally defined as
the maximum payoff that could have been achieved by play-
ing any stationary policy against the opponent’s entire history
of actual moves minus the actual payoff the agent received.
Several algorithms have been proven to achieve at most zero
regret in the limit (see[Hart and Mas-Colell, 2000] and[Ja-
fari et al., 2001] for examples in both game theory and AI).

The work of[Fudenberg and Levine, 1995] on ‘universal-
consistency’ is representative of this literature and alsopoints
out two limitations of the regret minimization approach as a
whole. The first is the inability of no-regret strategies to capi-
talize on simple patterns in the opponent’s play. They address
this limitation with a proposal for the stronger concept of
‘conditional consistency’ and a new algorithm that achieves
it in [Fudenberg and Levine, 1999]. The second limitation is
that while a no-regret algorithm guarantees a minimum pay-
off against any possible opponent, it ignores the possibility
that the sequence of moves played by the opponent is de-
pendent on the agent’s own moves. While this assumption
is quite justified in games with a large number of players, it
becomes a serious liability in repeated interactions with only
a few players. While we are not aware of much work dealing
explicitly with this limitation,[de Farias and Megiddo, 2004]
address it in the design of their experts algorithm and the ra-
tional learning approach of[Kalai and Lehrer, 1993] can in
principle handle adaptive algorithms of arbitrary complexity
as long as they are assigned positive probability in the prior.

To see how the failure to consider adaptive opponents
could hurt an algorithm’s performance, let us consider a re-
peated version of the Prisoner’s Dilemma game shown in
Figure 1. Prisoner’s Dilemma has been extensively studied
[Axelrod, 1984] and numerous algorithms proposed that al-
low two agents to cooperate on the advantageous cooperation
outcome without being exploited. The simplest but perhaps
most effective of these is the Tit-for-Tat algorithm. Tit-for-Tat
starts by cooperating and thereafter repeats whatever action



the opponent played last. Note that any approach that con-
siders only stationary opponents must always playDefect,
since this is the unique best response to any stationary op-
ponent and the only strategy that can ever result in no-regret
performance. Against Tit-for-Tat this results in a payoff of 1,
but the strategy of always playingCooperate would yield a
payoff of 3. Clearly, a no-regret policy is not the best response
in this richer strategy space.

As another example of the advantages of considering adap-
tive opponents, consider playing the Stackelberg game of Fig-
ure 1 repeatedly. Notice thatUp is a strictly dominated strat-
egy, regardless of what the opponent chooses the row agent
would prefer to playDown. However, if the opponent is
learning, this would presumably prompt them to playLeft,
resulting in a payoff of 2 for the row agent. If it instead played
the seemingly suboptimal action ofUp, the opponent may
learn to playRight, giving the row agent a higher payoff of
3. We can see that in this instance, teaching can play as much
of a role in achieving a desirable outcome as learning. In
both of these games some of the most successful strategies
are those that have the ability to either cooperate with their
opponents or manipulate their opponents as appropriate.

The weaknesses of this reliance on an assumption of
stationarity were previously acknowledged in[Powers and
Shoham, 2005] and we proposed the following three criteria:1

Targeted Optimality: Against any member of the target
set of opponents, the algorithm achieves withinǫ of the ex-
pected value of the best response to the actual opponent.

Compatibility: During self-play, the algorithm achieves
at least withinǫ of the payoff of some Nash equilibrium that
is not Pareto dominated by another Nash equilibrium.

Safety: Against any opponent, the algorithm always re-
ceives at least withinǫ of the security value for the game.

One of the key aspects of the proposal is the use of a param-
eterized target class of opponents against which to achieve
optimal performance. While this could also address adap-
tive agents, the previous work only provides an algorithm for
stationary opponents. In this work, we adopt the same crite-
ria and analyze how to develop algorithms that behave well
against opponents that can adapt to their past experience.

2 Environment
Within this paper, we will focus on the class of two-player re-
peated games with average reward. In this setting the two
players repeatedly play a simultaneous move normal form
game, represented as a tuple,G = (n,A,R1...n), wheren
is the number of players,A = A1 × ... × An, whereAi is
the set of actions for playeri, andRi : A → ℜ is the reward
function for agenti. After each round, the agents accumu-
late their reward from the joint outcome and get to observe
the prior actions of the other agent. Each agent is assumed
to be trying to maximize its average reward. Two example
normal form games with the rewards organized into a table
are shown in Figure 1. For our purposes we assume that the

1These three criteria were additionally required to hold for any
choice ofǫ with probability at least1 − δ after a polynomial period
of learning at the start of the game.

full game structure and payoffs are known to both agents. Fi-
nally, although we shall generally refer to the other playeras
the opponent, we do not mean to imply an adversarial setting,
but instead consider the full space of general-sum games.

Cooperate Defect

Cooperate 3, 3 0, 4

Defect 4, 0 1, 1

(a) Prisoner’s Dilemma

Left Right

Up 1, 0 3, 2

Down 2, 1 4, 0

(b) Stackelberg Game

Figure 1: Example stage games. The row player’s payoff is
given first, with the column player’s payoff following.

3 Adaptive Opponents
While the goal of this work is to expand the set of possible
opponents against which we can achieve a best response, we
will need to limit their capabilities in some way. If we con-
sider opponents whose future behavior can depend arbitrar-
ily on the entire history of play, we lose the ability to learn
anything about them in a single repeated game, since we will
only ever see a given history once. We will therefore assume a
limit on the opponent’s ability to condition on the history.We
propose directly limiting the amount of history available,by
requiring that the opponents play a conditional strategy where
their actions can only depend on the most recentk periods of
past history,Fi : O−1 × ... × O−k → ∆Ai, whereO−t is
the outcome of the gamet periods ago. We will assume that
the opponents have a default past history they assume at the
start of the game. Note that even this simple model allows
us to capture many methods such as Tit-for-Tat that current
approaches are unable to properly handle.

Let’s now consider how we could apply the criteria given
above to this set of opponents. While the value of the best
response to a given conditional strategy is well-defined, it
would prove an unreasonable requirement for many possi-
ble strategies. Let’s again consider the Prisoner’s Dilemma
game with an opponent that is either playing the grim strategy
or always playsCooperate. In the grim strategy the oppo-
nent initially starts playingCooperate but switches to play-
ing Defect indefinitely if its opponent ever playsDefect (a
conditional strategy with history 1). Note that no possible
learning strategy can achieve the value of the best response
against both opponents, since it must playDefect at least
once to distinguish them, at which point the option of always
cooperating with the grim strategy will no longer exist. There
are two possible approaches to remedying this problem. One
way is to constrain the class of opponents we consider. Suf-
ficient requirements for conditional strategies are that either
the opponent only condition on the actions of the agent, not
its own past actions, or that the policies the opponent playsas-
sign non-zero probability to each action for every past history.
An alternative approach would be to relax our best response
target. Instead of requiring the agent achieve the best value
possible by any strategy played from the start of the game,
we can set the target to be the highest average value that can
be achieved after any arbitrary initial sequence of moves to
account for the need for exploration.



Even with these restrictions on our target, we can see that
in order to guarantee anǫ-best response with high probabil-
ity we will require an exponential exploration period, since
to find a good outcome an agent needs to sample from the
exponential number of histories the opponent considers. Fur-
thermore, if we allow the opponent to condition on its own
actions, the number of observations required can become un-
bounded unless we add a requirement of a minimum proba-
bility of playing any given action.2

4 A Manipulative Algorithm
Although the MetaStrategy algorithm we introduced in[Pow-
ers and Shoham, 2005] is only explicitly designed for station-
ary opponents, we can use much of the intuition behind the
approach to design a new algorithm for our class of adaptive
opponents. The idea behind MetaStrategy is to start with a
teaching strategy for an initial coordination/exploration phase
and use its payoff and the opponent’s play to determine which
of three possible strategies to play. If its opponent is con-
sistent with the target class it adopts a best response. If it
achieves its target value by getting its opponent to adopt a
best response to its teaching strategy it continues playingit,
otherwise it selects a default strategy.3 The algorithm then
plays according to this strategy as long as it exceeds its secu-
rity level, reverting to a maximin policy if its payoff drops.

In figure 2, we show the implementation of this general
approach for our target class. The MemBR strategy calcu-
lates a best response strategy against conditional strategies.
This approach maintains counts of the opponent’s actions af-
ter each history of lengthk, which it uses to calculate the cy-
cle of agent actions with the highest expected reward out of
all possible unique agent action sequences (those that don’t
contain a lengthk repeated subsequence). Given sufficient
observations, this lets us guarantee that we achieve anǫ-best
response against any member of our target opponent set.4 We
can calculate the probability the opponent’s play is consistent
with our target set by comparing the observed distribution of
play for each history at separate times and measuring the de-
viation in action profiles. We continue to use the minimax
strategy to achieve the security value guarantee. And for the
self-play guarantee we can replace the Bully-Mixed strategy
with a generous stochastic version of Godfather[Littman and
Stone, 2001]. Godfather was motivated by the folk theorem
for repeated games and selects some outcome in the game
matrix with greater payoff for each agent than their security

2To see this, consider a conditional strategy that always plays
Defect in Prisoner’s Dilemma if its opponent playedDefect the
previous move, but playsCooperate with δ probability if its op-
ponent playedCooperate and it playedDefect, and always plays
Cooperate if both it and the agent playedCooperate. The agent
will require a number of observations proportional to1/δ in order to
distinguish this opponent from one that always playsDefect.

3In MetaStrategy this was Fictitious Play[Brown, 1951], but
note that by instead using a no-regret policy, we could have achieved
a stronger payoff guarantee against many opponents.

4This implementation is suitable for conditional strategies that
only depend on the agent’s actions. For general conditional strate-
gies we need to consider the full space of deterministic conditional
strategies to find a best response.

Set strategy = StochGodfather
for τ1 time steps, Play strategy
for τ2 time steps
if (AvgV alue < VGodfather − ǫ1)

With probability p,
set strategy = MemBR

Play strategy
if opponentInTargetSet()
for τ1 time steps, Play MemBR
if opponentInTargetSet()

Set bestStrategy = MemBR
else set bestStrategy = strategy

else if (strategy == StochGodfather
AND AvgV alue > VGodfather − ǫ1)

Set bestStrategy = StochGodfather
else set bestStrategy = MemBR
while not end of game
if AvgV alue < Vsecurity − ǫ0

Play maximin strategy
else

Play bestStrategy

Figure 2: The Manipulator algorithm

values and plays its portion of the target outcome. If the op-
ponent ever plays an action other than the matching action
for the target outcome, the agent plays a strategy that forces
the opponent to achieve no more than its security value until
the opponent again plays its target action. For our purposes
we’ve created a stochastic version of Godfather that selects a
mixed strategy for the agent and a target action for the oppo-
nent such that the joint strategy gives the opponent a higher
expected value than its security value and also denies it any
advantageous deviations. This is necessary since we want
our godfather algorithm to be implementable by a conditional
strategy with history 1. Because of this constraint, we needto
make sure the opponent can’t achieve a net profit by deviating
one turn and then playing the target action the next, incurring
only one period of punishment. The parameters specified in
the algorithm are a function of the desired values forǫ and
δ in the theoretical guarantees. (Our empirical results used
τ1 = 20000, τ2 = 60000, p = 0.005%, ǫ0 = ǫ1 = 0.025)

An additional advantage of reusing our existing framework
is that we can apply the proof used for the MetaStrategy algo-
rithm with only minor modifications to show Theorem 1. The
main change is that we must require that the agent play fully
mixed strategies during the beginning of the game in order
to get sufficient observations to test whether the opponent’s
play was consistent with the target set of strategies. Given
this constraint, the proof consists mainly of a long string of
applications of the Hoeffding inequality[Hoeffding, 1956].

Theorem 1 Our algorithm, Manipulator, satisfies the three
properties stated in the introduction for the class of condi-
tional strategies with bounded memoryk, after a training pe-

riod depending on|A|k

λ
, whereλ is the minimum probability

the opponent assigns to any action, orλ = 1 for opponents
that condition only on the agent’s actions.
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Figure 3: Average value for last 20K rounds (of 200K) across selected games in GAMUT. Game payoffs range from -1 to 1.

5 Experimental Results
In order to test the performance of our approach we’ve used
the comprehensive testing environment detailed in[Powers
and Shoham, 2005; Nudelmanet al., 2004]. Besides MetaS-
trategy, our set of opponents includes Bully and Godfather
from [Littman and Stone, 2001], Hyper-Q[Tesauro, 2004],
Local Q-learning[Watkins and Dayan, 1992], smooth ficti-
tious play [Fudenberg and Levine, 1995], and WoLF-PHC
[Bowling and Veloso, 2002]. We also include random sta-
tionary strategies (Random), random conditional strategies
(StochMem), and MemBR1 which learns a best response to
conditional strategies with history 1.

In Figure 3 we show the performance of the most suc-
cessful of the distinct algorithms across a variety of nor-
mal form games. All of the adaptive algorithms fare well
against the stationary opponents, Random and Bully, while
Manipulator and to a lesser degree, Hyper-Q, fare the best
against the bounded memory adaptive strategies, Godfather
and StochMem. Manipulator and Godfather also have an ad-
vantage against opponents that learn a best response to con-
ditional strategies, such as MemBR1 and Manipulator itself.
For other approaches that fall outside the target sets of either
MetaStrategy or Manipulator we can see that MetaStrategy
has a slight advantage, mainly because of its ability to play
pure strategies, while Manipulator is constrained to explore
the opponent’s strategy space during the initial coordination
period. However, an additional advantage of Manipulator in
this setting is its ability to perform well in self-play, achieving
the highest payoff of all algorithms tested, while MetaStrat-
egy is limited to the space of stationary policies and misses
more complex opportunities for cooperation in some games.

Let us now turn to the performance of our new algorithm in
different types of games. Figure 4 shows the relative reward
achieved by the most successful algorithms for a selection of
games in GAMUT averaged across the set of opponents. We
can see that Manipulator has the best performance in nearly
every game. In games like Prisoner’s Dilemma and Hawk

And Dove, Godfather is able to perform better by manipulat-
ing more of the opponents into yielding, both by sending a
clearer message, since it doesn’t have to do any exploration,
and by waiting longer for its opponent to adapt. This stub-
bornness, however, proves its undoing in games where it is
critical to adapt to the other opponent, such as the Disper-
sion Game. MetaStrategy’s strong performance in Shapley’s
Game seems to stem from its default Fictitious Play strategy
exploiting LocalQ and WoLF-PHC. However, we can see the
advantage of Manipulator over MetaStrategy in games like
Prisoner’s Dilemma and Travelers Dilemma which have equi-
libria in the space of repeated game strategies that Pareto-
dominate any equilibria of the stage game.

6 Discussion
Although Manipulator demonstrates consistent performance
across a wide variety of games, we are by no means claim-
ing that it would be the best approach for all settings. In
particular, it doesn’t fare nearly as well in the most adver-
sarial games, like MatchingPennies, Rochambeau, and Shap-
leysGame. This is not surprising since it will be unable to
find any deals to offer with its Godfather component and its
model-based assumption that its opponent is a conditional
strategy offers no particular advantage against other adaptive
opponents. An alternate approach we considered was adapt-
ing a model-free algorithm such as Q-learning[Watkins and
Dayan, 1992] to the multi-agent setting, following in the foot-
steps of numerous previous researchers attempting to find ef-
fective multi-agent learning strategies (e.g.[Littman, 1994;
Claus and Boutilier, 1998; Tesauro, 2004]). In traditional Q-
learning the algorithm learns values for each action at each
possible state of the world and then chooses the action that
maximizes its expected reward. We propose two possible al-
ternatives for dealing explicitly with adaptive opponents. One
method is to incorporate the recent history into the state ofthe
world and learn action values for each possible recent history.
A second approach is to instead learn values over sequences
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Figure 4: Percent of maximum value for last 20K rounds (of 200K) averaged across all opponents for selected games in
GAMUT. The rewards were divided by the maximum reward achieved by any agent to make visual comparisons easier.

of actions. When we conducted tests for these two algorithms
we found that the approach that conditioned on previous his-
tory demonstrated the ability to exploit some of the other
adaptive approaches including: Local Q-learning, SmoothFP,
and Hyper-Q, resulting in a higher average value in zero-sum
games than any of the previous approaches. However, nei-
ther of these model-free methods performed as well in general
sum games and both were dominated by Manipulator against
each opponent when tested on the full set of games. Although
these approaches also lack the theoretical guarantees of Ma-
nipulator, they profit from not requiring any advance knowl-
edge about the game payoffs. Additionally, the ability to iden-
tify settings where individual approaches are particularly ef-
fective may lead to more powerful methods using portfolios
of algorithms as suggested in[Leyton-Brownet al., 2003].

Finally, it should be pointed out that the model we’ve
put forth for modelling opponents with bounded capabilities
is only one of many possible ones. A common approach
used in the literature on bounded rationality[Neyman, 1985;
Papadimitriou and Yannakakis, 1994] is to assume the agents
can be modelled by finite automata withk states. Note that
the automata model is more comprehensive than the set of
conditional strategies since any conditional strategy opponent
with bounded memory can be modelled by an automata with
|A|k states if we allow stochastic outputs, but there exist au-
tomata that cannot be modelled by any function on a finite
fixed history. In the case of automata with deterministic tran-
sitions, we can modify our Manipulator algorithm to handle
this new class by implementing our version of Godfather as
a DFA and replacing the best response function. Note that
learning a best response to an opponent modelled by an un-
known finite automata is equivalent to finding the best policy
for an unknown POMDP, investigated in[Chrisman, 1992;
Nikovski and Nourbakhsh, 2000]. While a difficult computa-
tion problem, we should be able to achieve the same theoreti-
cal properties for this alternate set of opponents given similar
constraints to those we placed on the conditional strategies.

In particular, we need to consider how to handle finite au-
tomata with multiple ergodic sets of states and automata with
arbitrarily small transition probabilities.

7 Conclusions and Future Work

We feel that explicitly addressing the issue of adaptive oppo-
nents is a critical element of learning in multi-agent systems.
It is this very quality that seems to define the difference be-
tween the multi-agent setting and the single-agent one. Our
algorithm approaches this setting by combining a teaching
approach which manipulates adaptive opponents into playing
to our agent’s advantage with a cooperative/learning approach
that adapts itself to its best estimate of its opponent’s strat-
egy. Our algorithm can be shown to achieveǫ-optimal aver-
age reward against a non-trivial class of adaptive opponents
while simultaneously guaranteeing a minimum payoff against
any opponent and performing well in self-play, all with high
probability. These results translate into good empirical per-
formance in a wide variety of environments. There is clearly
more work that can be done, however. As we discussed in
the previous section, we’ve so far only analyzed one possi-
ble model for adaptive opponents with bounded memory and
are still considering how best to incorporate other approaches
that achieve better empirical performance against existing al-
gorithms. Additionally, our approach still has significantre-
strictions on the set of environments it considers. We can
immediately identify five limitations of our current approach:

1. Single Opponent: The criteria are only clearly defined
for games with two players.

2. Single State: The criteria are only clearly defined for
repeated games (rather than general stochastic games).

3. Average Reward: The criteria are defined for games in
which the agent only cares about the average of its ag-
gregated rewards (rather than a discounted sum).



4. Full Observability: The agent needs perfect observations
of the opponent’s actions from prior moves in the game.

5. Known Games: The algorithm needs to know all of the
payoffs for each agent from the beginning of the game.

While some of these would only require minor modifica-
tions or transformations of the environment, others such as
the discounted reward setting require a markedly different
way of viewing the problem. We’re currently working to test
the limits of how much we can relax each of these restric-
tions in turn and hope our work here may serve as a first step
towards a more widely applicable approach.

References
[Axelrod, 1984] Robert Axelrod.The Evolution of Coopera-

tion. Basic Books, New York, 1984.
[Bowling and Veloso, 2002] Michael Bowling and Manuela

Veloso. Multiagent learning using a variable learning rate.
Artificial Intelligence, 136:215–250, 2002.

[Bowling, 2005] Michael Bowling. Convergence and no-
regret in multiagent learning. InAdvances in Neural In-
formation Processing Systems 17. MIT Press, 2005.

[Brown, 1951] George Brown. Iterative solution of games
by fictitious play. InActivity Analysis of Production and
Allocation. John Wiley and Sons, New York, 1951.

[Chang and Kaelbling, 2002] Yu-Han Chang and
Leslie Pack Kaelbling. Playing is believing: The
role of beliefs in multi-agent learning. InAdvances
in Neural Information Processing Systems 14, pages
1483–1490, 2002.

[Chrisman, 1992] Lonnie Chrisman. Reinforcement learning
with perceptual aliasing: The perceptual distinctions ap-
proach. InProceedings of the Tenth National Conference
on Artificial Intelligence, pages 183–188, 1992.

[Claus and Boutilier, 1998] Caroline Claus and Craig
Boutilier. The dynamics of reinforcement learning in
cooperative multiagent systems. InProceedings of the
Fifteenth National Conference on Artificial Intelligence,
pages 746–752, 1998.

[Conitzer and Sandholm, 2003] Vincent Conitzer and Tuo-
mas Sandholm. Awesome: A general multiagent learn-
ing algorithm that converges in self-play and learns a best
response against stationary opponents. InProceedings of
the 20th International Conference on Machine Learning,
pages 83–90, 2003.

[de Farias and Megiddo, 2004] Daniela Pucci de Farias and
Nimrod Megiddo. How to combine expert (or novice) ad-
vice when actions impact the environment. InAdvances in
Neural Information Processing Systems 16, 2004.

[Fudenberg and Levine, 1995] Drew Fudenberg and David
Levine. Universal consistency and cautious fictitious play.
Journal of Economic Dynamics and Control, 19:1065–
1089, 1995.

[Fudenberg and Levine, 1999] Drew Fudenberg and David
Levine. Conditional universal consistency.Games and
Economic Behavior, 29:104–130, 1999.

[Hart and Mas-Colell, 2000] Sergiu Hart and Andreu Mas-
Colell. A simple adaptive procedure leading to correlated
equilibrium. Econometrica, 68:1127–1150, 2000.

[Hoeffding, 1956] Wassily Hoeffding. On the distribution of
the number of successes in independent trials.Annals of
Mathematical Statistics, 27:713–721, 1956.

[Jafariet al., 2001] Amir Jafari, Amy Greenwald, David
Gondek, and Gunes Ercal. On no-regret learning, ficti-
tious play, and nash equilibrium. InProceedings of the
Eighteenth International Conference on Machine Learn-
ing, pages 226–223, 2001.

[Kalai and Lehrer, 1993] Ehud Kalai and Ehud Lehrer. Ra-
tional learning leads to nash equilibrium.Econometrica,
61(5):1019–1045, 1993.

[Leyton-Brownet al., 2003] Kevin Leyton-Brown, Eugene
Nudelman, Galen Andrew, Jim McFadden, and Yoav
Shoham. A portfolio approach to algorithm selection. In
Proceedings of the Eighteenth International Joint Confer-
ence on Artificial Intelligence, 2003.

[Littman and Stone, 2001] Michael Littman and Peter Stone.
Implicit negotiation in repeated games. InProceedings
of The Eighth International Workshop on Agent Theories,
Architectures, and Languages, pages 393–404, 2001.

[Littman, 1994] Michael L. Littman. Markov games as a
framework for multi-agent reinforcement learning. InPro-
ceedings of the 11th International Conference on Machine
Learning, pages 157–163, 1994.

[Neyman, 1985] Abraham Neyman. Bounded complex-
ity justifies cooperation in finitely repeated prisoner’s
dilemma.Economic Letters, pages 227–229, 1985.

[Nikovski and Nourbakhsh, 2000] Daniel Nikovski and Illah
Nourbakhsh. Learning probabilistic models for decision-
theoretic navigation of mobile robots. InProceedings of
the International Conference on Machine Learning, pages
266–274, 2000.

[Nudelmanet al., 2004] Eugene Nudelman, Jenn Wortman,
Kevin Leyton-Brown, and Yoav Shoham. Run the gamut:
A comprehensive approach to evaluating game-theorectic
algorithms.AAMAS, 2004.

[Papadimitriou and Yannakakis, 1994] Christos H. Papadim-
itriou and Mihalis Yannakakis. On complexity as bounded
rationality. InSTOC-94, pages 726–733, 1994.

[Powers and Shoham, 2005] Rob Powers and Yoav Shoham.
New criteria and a new algorithm for learning in multi-
agent systems. InAdvances in Neural Information Pro-
cessing Systems 17. MIT Press, 2005.

[Tesauro, 2004] Gerald Tesauro. Extending q-learning to
general adaptive multi-agent systems. InAdvances in Neu-
ral Information Processing Systems, volume 16, 2004.

[Watkins and Dayan, 1992] Chris Watkins and Peter Dayan.
Technical note: Q-learning. Machine Learning,
8(3/4):279–292, May 1992.


