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Abstract

The particle filter has emerged as a useful tool for
problems requiring dynamic state estimation. The
efficiency and accuracy of the filter depend mostly
on the number of particles used in the estimation
and on the propagation function used to re-allocate
these particles at each iteration. Both features are
specified beforehand and are kept fixed in the reg-
ular implementation of the filter. In practice this
may be highly inappropriate since it ignores errors
in the models and the varying dynamics of the pro-
cesses. This work presents a self adaptive version
of the particle filter that uses statistical methods to
adapt the number of particles and the propagation
function at each iteration. Furthermore, our method
presents similar computational load than the stan-
dard particle filter. We show the advantages of the
self adaptive filter by applying it to a synthetic ex-
ample and to the visual tracking of targets in a real
video sequence.

1 Introduction
The particle filter is a useful tool to perform dynamic state es-
timation via Bayesian inference. It provides great efficiency
and extreme flexibility to approximate any functional non-
linearity. The key idea is to use samples, also called particles,
to represent the posterior distribution of the state given a se-
quence of sensor measurements. As new information arrives,
these particles are constantly re-allocated to update the esti-
mation of the state of the system.

The efficiency and accuracy of the particle filter depend
mainly on two key factors: the number of particles used to
estimate the posterior distribution and the propagation func-
tion used to re-allocate these particles at each iteration. The
standard implementation of the filter specifies both factors be-
forehand and keeps them fixed during the entire operation of
the filter. In this paper, we present a self adaptive particle fil-
ter that uses statistical methods to select an appropriate num-
ber of particles and a suitable propagation function at each
iteration.

This paper is organized as follows. Section 2 provides
background information about the standard particle filter.

Section 3 presents our method to adaptively estimate the num-
ber of particles. Section 4 presents our method to adaptively
improve the propagation function. Section 5 shows the re-
sults of applying the self adaptive filter to a visual tracking
task. Finally, Section 6 presents the main conclusions of this
work.

2 Particle Filter
In Bayesian terms, the posterior distribution of the state can
be expressed as:

p(xt/~yt) = β p(yt/xt) p(xt/~yt−1) (1)

whereβ is a normalization factor;xt represents the state of
the system at timet; and ~yt represents all the information
collected until timet. Equation (1) assumes thatxt totally
explains the current observationyt.

The particle filter provides an estimation of the poste-
rior in Equation (1) in 3 main steps: sampling, weighting,
and re-sampling. The sampling step consists of taking sam-
ples (particles) from the so-called dynamic prior distribution,
p(xt/~yt−1). Next, in the weighting step, the resulting parti-
cles are weighted by the likelihood termp(yt/xt). Finally,
a re-sampling step is usually applied to avoid the degeneracy
of the particle set. The key point that explains the efficiency
of the filter comes from using a Markovian assumption and
expressing the dynamic prior by:

p(xt/~yt−1) =
∫

p(xt/xt−1) p(xt−1/~yt−1)dxt−1. (2)

This expression provides a recursive implementation of the
filter that allows it to use the last estimationp(xt−1/~yt−1)
to select the particlesxi

t−1 in the next iteration. These par-
ticles are then propagated by the dynamics of the process
p(xt/xi

t−1) to complete the sampling step.
At each iteration the operation of the particle filter can be

seen as an importance sampling process[Tanner, 1996]. Im-
portance sampling provides an efficient way to obtain sam-
ples from a densityp(x), in cases where this function can be
evaluated, but it is not affordable or possible to sample from
it directly. The basic idea in importance sampling is to use
a proposal distributionq(x), also called importance function,
to obtain the samplesxi, and then weigh each sample using
a compensatory term given byp(xi)/q(xi). It is possible to



show[Tanner, 1996] that under mild assumptions the set of
weighted-samples resembles the target distributionp(x).

The sampling and weighting steps of the particle filter cor-
respond to the basic steps of an importance sampling pro-
cess. In this case, given that the true posteriorp(xt/~yt) is
not known, the samples are drawn from an importance func-
tion that corresponds to the dynamic priorp(xt/~yt−1). Using
this importance function, the compensatory terms are exactly
the non normalized weights used in the weighting step of the
particle filter. The methods presented in this paper use re-
sults from the theory of importance sampling to provide a
self adaptive version of the particle filter.

3 Adaptive Selection of the Number of
Particles

The selection of the number of particles is a key factor in the
efficiency and accuracy of the particle filter. The computa-
tional load and the convergence of the filter depend on this
number. Most applications select a fixed number of parti-
cles in advance, using ad hoc criteria, or statistical methods
such as Monte Carlo simulations or some standard statistical
bound[Boers, 1999]. Unfortunately, the use of a fixed num-
ber of particles is often inefficient. The dynamics of most
processes usually produces great variability in the complex-
ity of the posterior distribution1. As a consequence, the initial
estimation of the number of particles can be much larger than
the real number of particles needed to perform a good esti-
mation of the posterior distribution or, worse, at some point,
the selected number of particles can be too small causing the
filter to diverge.

The effect of the number of particles on the accuracy of
the filter is determined by two factors: the complexity of the
true density and how closely the proposal density mimics the
true density. Both factors are very intuitive; the estimation
of a more complex pdf requires a greater number of sam-
ples to correctly represent the less predictable shape of the
function. Also, a greater mismatch between the proposal and
the true densities produces many wasted samples located in
irrelevant parts of the true distribution. Previous works to
adaptively determine an adequate number of particles have
failed to consider these two factors together[Foxet al., 1999;
Koeller and Fratkina, 1998; Fox, 2001].

Here, we propose two methods based in the theory of
Statistics that can be used to adaptively estimate the num-
ber of particles to represent the target posterior distribution
without adding a significant load to the normal operation of
the filter. At each cycle of the particle filter, these techniques
estimate the number of particles that, with a certain level of
confidence, limits the maximum error in the approximation.

3.1 KLD-Sampling Revised
The KLD-Sampling algorithm[Fox, 2001] is a method to
adaptively estimate the number of samples needed to bound
the error of the particle filter. The error is measured by
the Kullback-Leibler divergence (KL-divergence) between

1Here complexity is understood in terms of the amount of infor-
mation needed to code the distribution.

the true posterior distribution and the empirical distribution,
which is a well known nonparametric maximum likelihood
estimate. KLD-Sampling is based on the assumption that the
true posterior can be represented by a discrete piecewise con-
stant distribution consisting of a set of multidimensional bins.
This assumption allows the use of theχ2 asymptotic conver-
gence of the likelihood ratio statistic to find a bound for the
number of particles N:

N >
1
2ε

χ2
k−1,1−δ (3)

whereε is the upper bound for the error given by the KL-
divergence,(1− δ) is the quantile of theχ2 distribution with
k − 1 degrees of freedom, andk is given by the number of
bins with support.

The problem with KLD-Sampling is the derivation of the
bound using the empirical distribution, which has the implicit
assumption that the samples comes from the true distribution.
This is not the case for particle filters where the samples come
from an importance function. Furthermore, the quality of the
match between this function and the true distribution is one of
the main elements that determines the accuracy of the filter,
hence the suitable number of particles. The bound given by
KLD-Sampling only uses information about the complexity
of the true posterior, but it ignores any mismatch between the
true and the proposal distribution.

To fix the problem of KLD-Sampling we need a way to
quantify the degradation in the estimation using samples from
the importance function. The goal is to find the equivalent
number of samples from the importance and the true densities
that capture the same amount of information about the latter.

In the context of Monte Carlo (MC) integration,[Geweke,
1989] introduced the concept of relative numerical efficiency
(RNE), which provides an index to quantify the influence of
sampling from an importance function. The idea behind RNE
is to compare the relative accuracy of solving an integral us-
ing samples coming from both the true and the proposal den-
sity. Accuracy is measured according to the variance of the
estimator of the integral.

If we use MC integration to estimate the mean value of
the state (EMC(x)), the variance of the estimator is given by
[Doucetet al., 2001] 2:

V ar[EN
MC(x)] = V arp(x)/N (4)

whereN is the number of samples coming from the true dis-
tributionp(x), and the subscriptp expresses that the variance
involved is computed using the target distribution.

When the samples come from an importance functionq(x),
the variance of the estimator corresponds to the variance
of Importance Sampling (IS), which is given by[Geweke,
1989]:

V ar[EN
IS(x)] = Eq((x−Ep(x))2 w(x)2)/NIS = σ2

IS/NIS ,
(5)

wherew(x) corresponds top(x)/q(x) the weights of IS and
NIS is the number of samples coming from the importance
function.

2In the rest of the section, we concentrate on one iteration of the
filter and we drop the subscriptt.



To achieve similar levels of accuracy, the variance of both
estimators should be equal. This allow us to find a relation
that quantifies the equivalence between samples from the true
and the proposal density,

N =
NIS V arp(x)

σ2
IS

(6)

Replacing (6) in (3) allows us to correct the bound given
by KLD-Sampling when the samples do not come from the
true distribution but from an importance function:

NIS >
σ2

IS

V arp(x)
1
2ε

χ2
k−1,1−δ. (7)

Using MC integration,V arp(x) andσ2
IS can be estimated

by:

V arp(x) = Ep(x2)− Ep(x)2 ≈
∑N

i=1 x2
i wi∑N

i=1 wi

− Ep(x)2

and

σ2
IS ≈

∑N
i=1 x2

i w2
i∑N

i=1 wi

−2
∑N

i=1 xi w2
i Ep(x)∑N

i=1 wi

+
∑N

i=1 w2
i Ep(x)2∑N

i=1 wi

(8)
with Ep(x) =

∑n
i=1 xi wi/

∑n
i=1 wi. Equation (8) shows

that using appropriate accumulators, it is possible to calculate
the bound incrementally keeping theO(N) complexity of the
filter.

3.2 Asymptotic Normal Approximation
Usually, the particle filter keeps track of the posterior density
with the goal of estimating the mean or higher order moments
of the state. This suggests an alternative error metric to deter-
mine the number of particles. Instead of checking the accu-
racy of the estimation of the posterior, it is possible to check
the accuracy of a particle filter in the estimation of a moment
of this density.

Under weak assumptions and using the strong law of large
numbers, it is possible to show that at each iteration the esti-
mation of the mean given by the particle filter is asymptoti-
cally unbiased[DeGroot, 1989]. Furthermore, if the variance
of this estimator is finite, the central limit theorem justifies
an asymptotic normal approximation for it[DeGroot, 1989],
which is given by:

EPF (x) ∼ N (Ep(x), σ2
IS/NIS) (9)

whereN (µ, σ2) denotes the normal distribution with meanµ
and standard deviationσ.

Using this approximation, it is possible to build a one sided
confidence interval for the number of particles that limits the
error in the estimation of the mean:

P (| EPF (x)− Ep(x)
Ep(x)

|≤ ε) ≥ (1− α) (10)

where| · | denotes absolute value;Ep(x) is the true mean
value of the state;ε corresponds to the desired error; and(1−
α) corresponds to the confidence level.

Following the usual derivation of confidence intervals,
Equation (10) produces the following bound for the number
of particles:

NIS ≥
Z2

1−α/2 σ2
IS

ε2 Ep(xt)2
(11)

3.3 Testing the Bounds
Figure 1 shows the distributions used to test the bounds.
The true distribution corresponds top(x) = 0.5N (3, 2) +
0.5N (10, 2) and the importance function toq(x) =
0.5N (2, 4) + 0.5N (7, 4). In all the trials, the desired error
was set to0.01 and the confidence level to95%.
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Figure 1: Inefficient allocation of samples due to a mismatch be-
tweenp(x) andq(x).

Figure 2a shows the number of particles predicted by the
different bounds. The predicted number of particles is highly
consistent. Also, the revised versions of KLD-Sampling con-
sistently require a larger number of particles than the original
algorithm. This is expected because of the clear mismatch
between the proposal and the true densities.

Figure 2b shows the resulting KL-divergence for each
case. It is interesting to note how the practical results match
closely the theoretical ones. Using the original version of
KLD-Sampling, the error in the estimation is significantly
greater than the one specified. However, when the same
predicted number of particles is sampled from the true dis-
tribution (solid-line), the resulting error matches closely the
one specified. This shows clearly that constraining the sam-
pling to the right assumption, the original bound predicted
by KLD-Sampling is correct. In the case of the revised ver-
sions of KLD-Sampling the resulting error using Equation (7)
matches closely the one specified. In the same way, the error
provided by the bound in Equation (11) also matches closely
the level specified.

4 Adaptive Propagation of the Particles
The regular implementation of the particle filter propagates
the particles using the dynamic priorp(xt/~yt−1). This strat-
egy has the limitation of propagating the samples without
considering the most recently available observation,yt. Im-
portance sampling suggests that one can use alternative prop-
agation functions that can provide a better allocation of the
samples, for example, a suitable functional ofyt. Unfor-
tunately, the use of an arbitrary importance function signif-
icantly increases the computational load of the particle filter.
In this case, as opposed to the standard particle filter, the esti-
mation of each weight requires the evaluation of the dynamic
prior. This section shows a method to build an importance
function that takes into account the most recent observation
yt without increasing the computational complexity of the fil-
ter.
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Figure 2:a) Number of particles given by each bound. b) Resulting KL-divergence.

4.1 Previous Work

In the literature about particle filters and importance sam-
pling, it is possible to find several techniques that help to
allocate the samples in areas of high likelihood under the tar-
get distribution. The most basic technique is rejection sam-
pling [Tanner, 1996]. The idea of rejection sampling is to
accept only the samples with an importance weight above a
suitable value. The drawback is efficiency: there is a high
rejection rate in cases where the proposal density does not
match closely the target distribution. In[West, 1993], West
presents a kernel-based approximation to build a suitable im-
portance function. However, the computational complexity
of the method is unaffordable. In the context of mobile robot
localization, Thrun et al.[Thrunet al., 2000] propose to sam-
ple directly from the likelihood function, but in many appli-
cations this is not feasible or prohibitive.

Pitt and Shephard propose the auxiliary particle filter[Pitt
and Shephard, 1999]. They augment the state representation
with an auxiliary variable. To sample from the resulting joint
density, they describe a generic scheme with computational
complexity ofO(N). The disadvantage is the additional com-
plexity of finding a convenient importance function. Pitt and
Sheppard provide just general intuitions about the form of a
this function. In this paper we improve on this point by pre-
senting a method to find a suitable importance function.

4.2 Adaptive Propagation of the Samples

Sampling from the dynamic prior in Equation (2) is equiva-
lent to sample from the following mixture distribution:

p(xt/~yt−1) ≈
n∑

k=1

βk p(xt/xk
t−1) (12)

where the mixture coefficientsβk are proportional to
p(xt−1/~yt−1). The key observation is that under this scheme
the selection of each propagation density depends on the mix-
ture coefficientsβk ’s, which do not incorporate the most re-
cent observationyt. From an MC perspective, it is possible to
achieve a more efficient allocation of the samples by includ-
ing yt in the generation of the coefficients. The intuition is
that the incorporation ofyt increases the number of samples

drawn from mixture componentsp(xt/xk
t−1) associated with

areas of high probability under the likelihood function.
Under the importance sampling approach, it is possible to

generate a new set of coefficientsβ∗k that takes into accountyt

by sampling from the importance functionp(xt−1/~yt). In this
way, the set of samplesxi

t from the dynamic priorp(xt/~yt−1)
is generated by sampling from the mixture,

n∑

k=1

β∗k p(xt/xk
t−1) (13)

and then adding to each particlexi
t a compensatory weight

given by,

wi
t =

p(xk
t−1/~yt−1)

p(xk
t−1/~yt)

, with xi
t ∼ p(xt/xk

t−1) (14)

The resulting set of weighted samples{xi
t, w

i
t}n

i=1 still comes
from the dynamic prior, so the computational complexity of
the resulting filter is stillO(N). The extra complexity of this
operation comes from the need to evaluate and to draw sam-
ples from the importance functionp(xi

t−1/~yt). Fortunately,
the calculation of this function can be obtained directly from
the operation of the regular particle filter. To see this clearly,
consider the following:

p(xt, xt−1/~yt) ∝ p(yt/xt, xt−1, ~yt−1) p(xt, xt−1/~yt−1)
∝ p(yt/xt) p(xt/xt−1, ~yt−1)p(xt−1/~yt−1)
∝ p(yt/xt)p(xt/xt−1)p(xt−1/~yt−1) (15)

Equation (15) shows that, indeed, the regular steps of the
particle filter generate an approximation of the joint density
p(xt, xt−1/~yt). After re-sampling fromp(xt−1/~yt−1), prop-
agating these samples withp(xt/xt−1), and calculating the
weightsp(yt/xt), the set of resulting sample pairs (xi

t, xi
t−1)

with correcting weightsp(yt/xi
t) forms a valid set of sam-

ples from the joint densityp(xt, xt−1/~yt). Considering that
p(xt−1/~yt) is just a marginal of this joint distribution, the set
of weighted-samplesxi

t−1 are valid samples from it.
The previous description provides an adaptive algorithm

that allows the particle filter to useyt in the allocation of
the samples. First,N particles are used to generate the im-
portance functionp(xt−1/~yt). Then, starting from this im-
portance function, anotherN particles are used to generate



the desired posteriorp(xt/~yt). The relevant compensatory
weights are calculated according to Equation (14) and the
likelihood termP (yt/xt). The resulting filter has a computa-
tional complexity ofO(2N).

In the previous algorithm the overlapping between a reg-
ular iteration of the regular particle filter and the process
of generating the importance function provides a convenient
way to perform an online evaluation of the benefits of up-
dating the dynamic prior with information from the last ob-
servation. While in cases of a poor match between the dy-
namic prior and the posterior distribution the updating of the
dynamic prior can be beneficial, in cases where these distri-
butions agree, the updating does not offer a real advantage,
and the extra processing should be avoided. To our current
knowledge, this issue has not been addressed before.

The basic idea is to quantify at each iteration of the par-
ticle filter the trade-off between continuing drawing samples
from a known but potentially inefficient importance function
p(xt−1/~yt−1) versus incurring in the cost of building a new
importance functionp(xt−1/~yt) that provides a better alloca-
tion of the samples under the likelihood function. The impor-
tant observation is that, once the regular particle filter reaches
an adequate estimate, it can be used to estimate both the pos-
terior distributionp(xt/~yt) and the updated importance func-
tion p(xt−1/~yt).

The last step of the algorithm is to find a metric that pro-
vides a way to quantify the efficiency in the allocation of the
samples. Considering that the efficiency in the allocation of
the samples depends on how well the dynamic prior resem-
bles the posterior distribution, an estimation of the distance
between these two distributions is a suitable index to quan-
tify the effectiveness of the propagation step. We found a
convenient way to estimate the Kullback-Leibler divergence
(KL-divergence) between these distributions, and in general
between a target distributionp(x) and an importance function
q(x):

KL(p(x), q(x)) ≈ log(N)−H(ŵi). (16)

Equation (16) states that for a large number of particles,
the KL-divergence between the dynamic prior and the poste-
rior distribution can be estimated by calculating how far the
entropy of the distribution of the weights,H(ŵi), is from the
entropy of a uniform distribution (log(N)). This is an intu-
itive result because in the ideal case of importance sampling,
wherep(x) = q(x), all the weights are equal. In consequence
the entropy of the weights is a suitable value to quantify the
efficiency in the allocation of the samples.

5 Application
To illustrate the advantages of the self adaptive particle filter,
we use a set of frames of a video sequence consisting of two
children playing with a ball. The goal is to keep track of the
positions of the ball and the left side child. Each hypothesis
about the position of a target is given by a bounding box de-
fined by its height, width, and the coordinates of its center.
The motion model used for the implementation of the parti-
cle filter corresponds to a Gaussian function of zero mean and
diagonal covariance matrix with standard deviations of20 for
the center of each hypothesis and0.5 for the width and height.

Figure 3 shows the results of tracking the targets using the
self adaptive particle filter. The bounding boxes correspond
to the most probable hypotheses in the sample set used to
estimate the posterior distributions of the states. In the esti-
mation of the number of particles, we just consider thex and
y coordinates of the center of the bounding boxes, assuming
independence to facilitate the use of Equation (7). We set
the desired error to0.01 and the confidence level to95%. A
minimum number of 1000 samples is always used to ensure
that convergence has been achieved. In the adaptation of the
propagation function we set the threshold for the entropy of
the weights in 2.

Figure 4-left shows the number of particles needed to esti-
mate the posterior distribution of the ball at each frame with-
out adapting the propagation function. Figure 4-right shows
the number of particles in the case of adapting the importance
function. The tracking engine decides to adapt the importance
function at all the frames where the ball travels from one child
to the other (Frames 3-7).

In the case of tracking the child, the result shows that there
is not a major difference between the self adaptive particle
filter and the regular filter. The self adaptive filter needs a
roughly constant number of particles during the entire se-
quence without needing to adapt the importance function.
This is expected because the child has only a small and slow
motion around a center position during the entire sequence.
Therefore the stationary Gaussian motion model is highly ac-
curate and there is not a real advantage of adapting the num-
ber of particles or the propagation function.

In the case of the ball, the situation is different. During
the period that the ball travels from one child to the other
(Frames 3 to 7), it has a large and fast motion, therefore the
Gaussian motion model is a poor approximation of the real
motion. As a consequence there is a large mismatch between
the dynamic prior and the posterior distribution. This pro-
duces an inefficient allocation of the samples and the estimate
without adapting the importance function needs a larger set of
samples to populate the relevant parts of the posterior. In con-
trast, when adapting the importance function during Frames
3 to 7 it is possible to observe a significant reduction in the
number of samples due to a better allocation of them.

6 Conclusions
In this paper we present a self adaptive version of the parti-
cle filter that uses statistical techniques to estimate a suitable
number of particles and to improve the propagation function.
In terms of the estimation of the number of particles, the vali-
dation of the bounds using a synthetic example shows that the
empirical results match closely the theoretical predictions. In
particular, the results indicate that by considering the com-
plexity of the true density and how closely the proposal den-
sity mimics the true density, the new bounds show a clear im-
provement over previous techniques such as KLD-Sampling.

The mechanisms used by the self adaptive filter to adapt
the importance function and to identify when the adaptation
of the importance function may be beneficial proved to be
highly relevant. Using these mechanisms to track targets in
a real video sequence, the self adaptive filter was able to ef-
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Figure 3: Tracking results for the ball and the left side child for frame 1, 5, and 14. The bounding boxes correspond to the most
probable hypotheses in the sample set used to estimate the posterior distributions.
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Figure 4: Number of particles used at each iteration to track the ball. Left: without adapting the importance function. Right:
Adapting the importance function.

ficiently track targets with different motions using a general
Gaussian motion model. Furthermore, by avoiding the need
of overestimating the number of particles and by allocating
these particles in areas of high likelihood, the self adaptive fil-
ter proved to operate with a similar computational complexity
to the regular particle filter.
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