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Abstract

The particle filter has emerged as a useful tool for
problems requiring dynamic state estimation. The
efficiency and accuracy of the filter depend mostly
on the number of particles used in the estimation
and on the propagation function used to re-allocate
these particles at each iteration. Both features are
specified beforehand and are kept fixed in the reg-
ular implementation of the filter. In practice this
may be highly inappropriate since it ignores errors
in the models and the varying dynamics of the pro-
cesses. This work presents a self adaptive version
of the particle filter that uses statistical methods to
adapt the number of particles and the propagation
function at each iteration. Furthermore, our method
presents similar computational load than the stan-
dard patrticle filter. We show the advantages of the
self adaptive filter by applying it to a synthetic ex-
ample and to the visual tracking of targets in a real
video sequence.

Introduction

Section 3 presents our method to adaptively estimate the num-
ber of particles. Section 4 presents our method to adaptively
improve the propagation function. Section 5 shows the re-
sults of applying the self adaptive filter to a visual tracking
task. Finally, Section 6 presents the main conclusions of this
work.

2 Particle Filter

In Bayesian terms, the posterior distribution of the state can
be expressed as:

p(x/ye) = Bp(ye/we) p(1/Ye-1) 1)

whereg is a normalization factory, represents the state of
the system at time; and g, represents all the information
collected until timet. Equation (1) assumes that totally
explains the current observatign

The particle filter provides an estimation of the poste-
rior in Equation (1) in 3 main steps: sampling, weighting,
and re-sampling. The sampling step consists of taking sam-
ples (particles) from the so-called dynamic prior distribution,
p(z¢/¥:—1). Next, in the weighting step, the resulting parti-
cles are weighted by the likelihood terpfy:/x;). Finally,
a re-sampling step is usually applied to avoid the degeneracy

The particle filter is a useful tool to perform dynamic state esOf the particle set. The key point that explains the efficiency
timation via Bayesian inference. It provides great efficiency®f the filter comes from using a Markovian assumption and
and extreme flexibility to approximate any functional non-expressing the dynamic prior by:

linearity. The key idea is to use samples, also called particles,

to represent the posterior distribution of the state given a se- p(z:/§i—1) = /p(xt/xt_l)p(mt_l/gj't_l)dxt_l. @)

guence of sensor measurements. As new information arrives,
these particles are constantly re-allocated to update the esfFhis expression provides a recursive implementation of the
mation of the state of the system. filter that allows it to use the last estimatigiiz; 1/7;_1)

The efficiency and accuracy of the particle filter dependto select the particles: ; in the next iteration. These par-
mainly on two key factors: the number of particles used taticles are then propagated by the dynamics of the process
estimate the posterior distribution and the propagation funcp(z;/xi_,) to complete the sampling step.
tion used to re-allocate these particles at each iteration. The At each iteration the operation of the particle filter can be
standard implementation of the filter specifies both factors beseen as an importance sampling proddssiner, 1995 Im-
forehand and keeps them fixed during the entire operation gfortance sampling provides an efficient way to obtain sam-
the filter. In this paper, we present a self adaptive particle filples from a density(z), in cases where this function can be
ter that uses statistical methods to select an appropriate nuravaluated, but it is not affordable or possible to sample from
ber of particles and a suitable propagation function at eacht directly. The basic idea in importance sampling is to use
iteration. a proposal distributiog(z), also called importance function,

This paper is organized as follows. Section 2 providego obtain the samples;, and then weigh each sample using
background information about the standard particle filtera compensatory term given yx;)/q(x;). It is possible to



show[Tanner, 199bthat under mild assumptions the set of the true posterior distribution and the empirical distribution,

weighted-samples resembles the target distribyi{as). which is a well known nonparametric maximum likelihood
The sampling and weighting steps of the particle filter cor-estimate. KLD-Sampling is based on the assumption that the

respond to the basic steps of an importance sampling prdrue posterior can be represented by a discrete piecewise con-

cess. In this case, given that the true postepiar;/7;) is  stant distribution consisting of a set of multidimensional bins.

not known, the samples are drawn from an importance funcThis assumption allows the use of thé asymptotic conver-

tion that corresponds to the dynamic pridr; /7;—1). Using  gence of the likelihood ratio statistic to find a bound for the

this importance function, the compensatory terms are exactlgumber of particles N:

the non normalized weights used in the weighting step of the 1

particle filter. The methods presented in this paper use re- N>_—x2_, 1—s 3)

sults from the theory of importance sampling to provide a 2¢ ’

self adaptive version of the particle filter. wheree is the upper bound for the error given by the KL-

divergence(1 — §) is the quantile of the? distribution with

3 Adaptive Selection of the Number of k — 1 degrees of freedom, aridis given by the number of
Particles bins with support.
The problem with KLD-Sampling is the derivation of the

The selection of the number of particles is a key factor in thebound using the empirical distribution, which has the implicit
efficiency and accuracy of the particle filter. The computa-assumption that the samples comes from the true distribution.
tional load and the convergence of the filter depend on thighis is not the case for particle filters where the samples come
number. Most applications select a fixed number of partifrom an importance function. Furthermore, the quality of the
cles in advance, using ad hoc criteria, or statistical methodgiatch between this function and the true distribution is one of
such as Monte Carlo simulations or some standard statisticéiie main elements that determines the accuracy of the filter,
bound[Boers, 1999 Unfortunately, the use of a fixed num- hence the suitable number of particles. The bound given by
ber of particles is often inefficient. The dynamics of mostKLD-Sampling only uses information about the complexity
processes usually produces great variability in the complexef the true posterior, but it ignores any mismatch between the
ity of the posterior distributioh As a consequence, the initial true and the proposal distribution.
estimation of the number of particles can be much larger than To fix the problem of KLD-Sampling we need a way to
the real number of particles needed to perform a good estiquantify the degradation in the estimation using samples from
mation of the posterior distribution or, worse, at some pointthe importance function. The goal is to find the equivalent
the selected number of particles can be too small causing theumber of samples from the importance and the true densities
filter to diverge. that capture the same amount of information about the latter.

The effect of the number of particles on the accuracy of In the context of Monte Carlo (MC) integratiofGeweke,
the filter is determined by two factors: the complexity of the 1989 introduced the concept of relative numerical efficiency
true density and how closely the proposal density mimics théRNE), which provides an index to quantify the influence of
true density. Both factors are very intuitive; the estimationsampling from an importance function. The idea behind RNE
of a more complex pdf requires a greater number of samis to compare the relative accuracy of solving an integral us-
ples to correctly represent the less predictable shape of tHieg samples coming from both the true and the proposal den-
function. Also, a greater mismatch between the proposal angity. Accuracy is measured according to the variance of the
the true densities produces many wasted samples located @stimator of the integral.
irrelevant parts of the true distribution. Previous works to If we use MC integration to estimate the mean value of
adaptively determine an adequate number of particles havide state £y,¢(x)), the variance of the estimator is given by
failed to consider these two factors togetffeoxet al, 1999;  [Doucetet al, 2001 2:
Koeller and Fratkina, 1998; Fox, 2001 N

Here, we propose two methods based in the theory of VarlByo()] = Vary(x)/N “)
Statistics that can be used to adaptively estimate the nunwhereNN is the number of samples coming from the true dis-
ber of particles to represent the target posterior distributiontribution p(x), and the subscrigt expresses that the variance
without adding a significant load to the normal operation ofinvolved is computed using the target distribution.
the filter. At each cycle of the particle filter, these techniques When the samples come from an importance funaiarn,
estimate the number of particles that, with a certain level othe variance of the estimator corresponds to the variance
confidence, limits the maximum error in the approximation. of Importance Sampling (IS), which is given thGeweke,

1989:
3.1 KLD-Sampling Revised VarlEN g5 B 2 2\ /N o = 02 /N
The KLD-Sampling algorithn{Fox, 200] is a method to arlBrs(w)] = By((@ = Eplw))"w(z))/Nis = o1s/ gs
adaptively estimate the number of samples needed to bou'Wherew(x) corresponds tp(z) /q(x) the weights of IS and

the error of the particle filter. The error is measured by . is the number of samples coming from the importance
the Kullback-Leibler divergence (KL-divergence) betweenfuéition_ P g P

'Here complexity is understood in terms of the amount of infor-  2In the rest of the section, we concentrate on one iteration of the
mation needed to code the distribution. filter and we drop the subscript



To achieve similar levels of accuracy, the variance of boti3.3  Testing the Bounds
estimators should be equal. This allow us to find a relationrigure 1 shows the distributions used to test the bounds.
that quantifies the equivalence between samples from the trughe true distribution corresponds ) = 0.5N(3,2) +
and the proposal density, 0.5MN(10,2) and the importance function tg(z) =
N— Nis Vary(z) 6 0.5/N(2,4) + 0.5/N(7,4). In all the trials, the desired error
- o2g ©)  was set td.01 and the confidence level 85%.

Replacing (6) in (3) allows us to correct the bound given : : : :
by KLD-Sampling when the samples do not come from the T e e
true distribution but from an importance function: )

— True distribution p(x
— - —Proposal q(x)

2
Oig 1

N > — 2 . 7 oa-
IS Var,(z) 26Xk-1,1—5 (7) -
Using MC integrationy ar, () ando?4 can be estimated =
by:
N o
Y r2w
Vary(@) = Byfa?) - Eyfa)? ~ 2550 g 0y
Dim1 Wi ; : T )
and X
N 2. 9 N2 N2 2
o2y & Zi:z\lr Tiwi 23im j’j\l’t wi By () +Zi:1 1}”\; Ep() Figure 1: Inefficient allocation of samples due to a mismatch be-
Do W Do Wi Yoict U}Zg) tweenp(z) andg(x).

with E,(z) = Y0, xw;/ > ., w;. Equation (8) shows Figure 2a shows the number of particles predicted by the
that using appropriate accumulators, it is possible to calculatdifferent bounds. The predicted number of particles is highly
the bound incrementally keeping th N') complexity of the  consistent. Also, the revised versions of KLD-Sampling con-
filter. sistently require a larger number of particles than the original
. . . algorithm. This is expected because of the clear mismatch
3.2 Asymptotic Normal Approximation between the proposal and the true densities.
Usually, the particle filter keeps track of the posterior density Figure 2b shows the resulting KL-divergence for each
with the goal of estimating the mean or higher order momentgase. It is interesting to note how the practical results match
of the state. This suggests an alternative error metric to detegiosely the theoretical ones. Using the original version of
mine the number of particles. Instead of checking the aCCUKLD-Samp"ng' the error in the estimation is significantly
racy of the estimation of the posterior, it is possible to checkgreater than the one specified. However, when the same
the accuracy of a particle filter in the estimation of a momenfpredicted number of particles is sampled from the true dis-
of this density. tribution (solid-line), the resulting error matches closely the

Under weak assumptions and using the strong law of larggne specified. This shows clearly that constraining the sam-
numbers, it is possible to show that at each iteration the esthjing to the right assumption, the original bound predicted
mation of the mean given by the particle filter is asymptoti-hy KLD-Sampling is correct. In the case of the revised ver-
cally unbiasedDeGroot, 1989 Furthermore, if the variance sjons of KLD-Sampling the resulting error using Equation (7)
of this estimator is finite, the central limit theorem justifies matches closely the one specified. In the same way, the error
an asymptotic normal approximation fof@eGroot, 1988  provided by the bound in Equation (11) also matches closely

which is given by: the level specified.
Epp(x) ~ N(Ep(z),075/Nis) 9) ) _ _
where/ (1, o) denotes the normal distribution with mean 4 Adaptive Propagation of the Particles
and standard deviation The regular implementation of the particle filter propagates

Using this approximation, it is possible to build a one sidedthe particles using the dynamic pripfz;/¢;_1). This strat-
confidence interval for the number of particles that limits theegy has the limitation of propagating the samples without

error in the estimation of the mean: considering the most recently available observatign,im-
Epp(z) — Ep(x)

P(] <o) >(1-a) (10) portance sampling suggests that one can use alternative prop-
E,(x) == agation functions that can provide a better allocation of the
where| - | denotes absolute valug, (z) is the true mean Samples, for example, a suitable functionalyef Unfor-
value of the state; corresponds to the desired error; dad- tunately, the use of an arbitrary importance function signif-
a) corresponds to the confidence level. icantly increases the computational load of the particle filter.

Following the usual derivation of confidence intervals,'”this case, as opposed to the standard particle filter, the esti-

Equation (10) produces the following bound for the numberMation of each weight requires the evaluation of the dynamic
of particles: prior. This section shows a method to build an importance

function that takes into account the most recent observation

(11) . withoutincreasing the computational complexity of the fil-

Nis 2 w75
! €2 Ep(x4)? ter.
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Figure 2:a) Number of particles given by each bound. b) Resulting KL-divergence.

4.1 Previous Work

In the literature about particle filters and importance sam-
pling, it is possible to find several techniques that help to

allocate the samples in areas of high likelihood under the ta

get distribution. The most basic technique is rejection sam-
pling [Tanner, 1995 The idea of rejection sampling is to

accept only the samples with an importance weight above

suitable value. The drawback is efficiency: there is a high
rejection rate in cases where the proposal density does not

match closely the target distribution. Ivest, 1993, West

drawn from mixture componentgz; /=¥ ;) associated with
areas of high probability under the likelihood function.

Under the importance sampling approach, it is possible to
generate a new set of coefficiepisthat takes into account

by sampling from the importance functipfw;_ /¢;). In this
way, the set of samples from the dynamic priop(x /7;_1)

5‘7 generated by sampling from the mixture,

> B pla/zp ) (13)
k=1

presents a kernel-based approximation to build a suitable imand then adding to each particlé a compensatory weight
portance function. However, the computational complexitygiven by,

of the method is unaffordable. In the context of mobile robot
localization, Thrun et al Thrunet al,, 2004 propose to sam-

ple directly from the likelihood function, but in many appli-

cations this is not feasible or prohibitive.
Pitt and Shephard propose the auxiliary particle fileitt

wi = plaf 1 /§i-1)
t — —
p(xf_1 /)

The resulting set of weighted samples, wi }7_, still comes
from the dynamic prior, so the computational complexity of

. with zf ~ p(a/xf ;) (14)

and Shephard, 1999They augment the state representationhe resulting filter is stilD(IV). The extra complexity of this
with an auxiliary variable. To sample from the resulting joint gperation comes from the need to evaluate and to draw sam-
density, they describe a generic scheme with computationgjjes from the importance function=!_, /7). Fortunately,
complexity ofO(V). The disadvantage is the additional com- the calculation of this function can be obtained directly from

plexity of finding a convenient importance function. Pitt and the gperation of the regular particle filter. To see this clearly,
Sheppard provide just general intuitions about the form of ggnsjder the following:

this function. In this paper we improve on this point by pre-

senting a method to find a suitable importance function.

4.2 Adaptive Propagation of the Samples

X P(yt/ﬂct, l’tfhﬂ'tfl)p(fﬁt, CUtfl/:thl)
o< pye/xe) p(ae/Ti—1, Gr1)P(T1—1/Yi—1)
o< p(ye/xe)p(@e/T1-1)p(Tt-1/Ye—1) (15)

p(mt,xtq/y*t)

Sampling from the dynamic prior in Equation (2) is equiva- Equation (15) shows that, indeed, the regular steps of the

lent to sample from the following mixture distribution:
p(@e/Ge—1) = Z Br plai/xy_y) 12)
k=1

where the mixture coefficientss, are proportional to

particle filter generate an approximation of the joint density
p(@e, xe—1/:). After re-sampling fronp(z;—1/4;-1), prop-
agating these samples witljz;/z;_1), and calculating the
weightsp(y: /z;), the set of resulting sample pairs,(z}_,)
with correcting weighte(y; /z¢) forms a valid set of sam-
ples from the joint density(x;, x:—1 /). Considering that

p(zi—1/¥:—1). The key observation is that under this schemep(z;_1/7;) is just a marginal of this joint distribution, the set
the selection of each propagation density depends on the mixf weighted-samples:_, are valid samples from it.

ture coefficients3,’s, which do not incorporate the most re-
cent observatiop;. From an MC perspective, it is possible to that allows the particle filter to usg in the allocation of
achieve a more efficient allocation of the samples by includthe samples. FirstV particles are used to generate the im-
ing y; in the generation of the coefficients. The intuition is portance functiorp(z;—1/4:). Then, starting from this im-
that the incorporation of; increases the number of samples portance function, anothé¥ particles are used to generate

The previous description provides an adaptive algorithm



the desired posterigi(z:/4:). The relevant compensatory  Figure 3 shows the results of tracking the targets using the
weights are calculated according to Equation (14) and theelf adaptive particle filter. The bounding boxes correspond
likelihood termP(y;/x.). The resulting filter has a computa- to the most probable hypotheses in the sample set used to
tional complexity ofO(2N). estimate the posterior distributions of the states. In the esti-
In the previous algorithm the overlapping between a regmation of the number of particles, we just consider:thand
ular iteration of the regular particle filter and the processy coordinates of the center of the bounding boxes, assuming
of generating the importance function provides a convenienindependence to facilitate the use of Equation (7). We set
way to perform an online evaluation of the benefits of up-the desired error t6.01 and the confidence level i5%. A
dating the dynamic prior with information from the last ob- minimum number of 1000 samples is always used to ensure
servation. While in cases of a poor match between the dythat convergence has been achieved. In the adaptation of the
namic prior and the posterior distribution the updating of thepropagation function we set the threshold for the entropy of
dynamic prior can be beneficial, in cases where these distrihe weights in 2.
butions agree, the updating does not offer a real advantage, Figure 4-left shows the number of particles needed to esti-
and the extra processing should be avoided. To our curremhate the posterior distribution of the ball at each frame with-
knowledge, this issue has not been addressed before. out adapting the propagation function. Figure 4-right shows
The basic idea is to quantify at each iteration of the parthe number of particles in the case of adapting the importance
ticle filter the trade-off between continuing drawing samplesfunction. The tracking engine decides to adapt the importance
from a known but potentially inefficient importance function function at all the frames where the ball travels from one child
p(xi—1/¥:—1) versus incurring in the cost of building a new to the other (Frames 3-7).
importance functiop(z,_1/7;) that provides a better alloca-  In the case of tracking the child, the result shows that there
tion of the samples under the likelihood function. The impor-is not a major difference between the self adaptive particle
tant observation is that, once the regular particle filter reachefiiter and the regular filter. The self adaptive filter needs a
an adequate estimate, it can be used to estimate both the pesughly constant number of particles during the entire se-
terior distributionp(z, /7;) and the updated importance func- quence without needing to adapt the importance function.
tionp(zs—1/7:). This is expected because the child has only a small and slow
The last step of the algorithm is to find a metric that pro-motion around a center position during the entire sequence.
vides a way to quantify the efficiency in the allocation of the Therefore the stationary Gaussian motion model is highly ac-
samples. Considering that the efficiency in the allocation oturate and there is not a real advantage of adapting the num-
the samples depends on how well the dynamic prior resenber of particles or the propagation function.
bles the posterior distribution, an estimation of the distance |n the case of the ball, the situation is different. During
between these two distributions is a suitable index to quanthe period that the ball travels from one child to the other
tify the effectiveness of the propagation step. We found gFrames 3 to 7), it has a large and fast motion, therefore the
convenient way to estimate the Kullback-Leibler divergenceGaussian motion model is a poor approximation of the real
(KL-divergence) between these distributions, and in generahotion. As a consequence there is a large mismatch between
between a target distributigriz) and an importance function the dynamic prior and the posterior distribution. This pro-
q(x): duces an inefficient allocation of the samples and the estimate
KL(p(x),q(z)) =log(N) — H(w;). (16)  without adapting the importance function needs a larger set of

Equation (16) states that for a large number of pamdessamples to populate the relevant parts of the posterior. In con-

the KL-divergence between the dynamic prior and the poste’t_rast, when adapting the importance function during Frames

rior distribution can be estimated by calculating how far the3 t0 7 it is possible to observe a significant reduction in the
entropy of the distribution of the weight&](+0;), is from the number of samples due to a better allocation of them.
entropy of a uniform distributioni¢g(N)). This is an intu-

itive result because in the ideal case of importance samplindg  Conclusions

wherep(z) = ¢(z), all the weights are equal. In consequence

the entropy of the weights is a suitable value to quantify the" thiS Paper we present a self adaptive version of the parti-
efficiency in the allocation of the samples. cle filter that uses statistical techniques to estimate a suitable

number of particles and to improve the propagation function.
.. In terms of the estimation of the number of particles, the vali-
5 Application dation of the bounds using a synthetic example shows that the
To illustrate the advantages of the self adaptive particle filterempirical results match closely the theoretical predictions. In
we use a set of frames of a video sequence consisting of twparticular, the results indicate that by considering the com-
children playing with a ball. The goal is to keep track of the plexity of the true density and how closely the proposal den-
positions of the ball and the left side child. Each hypothesissity mimics the true density, the new bounds show a clear im-
about the position of a target is given by a bounding box deprovement over previous techniques such as KLD-Sampling.
fined by its height, width, and the coordinates of its center. The mechanisms used by the self adaptive filter to adapt
The motion model used for the implementation of the parti-the importance function and to identify when the adaptation
cle filter corresponds to a Gaussian function of zero mean anof the importance function may be beneficial proved to be
diagonal covariance matrix with standard deviation8for ~ highly relevant. Using these mechanisms to track targets in
the center of each hypothesis ahdl for the width and height.  a real video sequence, the self adaptive filter was able to ef-



Figure 3: Tracking results for the ball and the left side child for frame 1, 5, and 14. The bounding boxes correspond to the mo
probable hypotheses in the sample set used to estimate the posterior distributions.
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Figure 4: Number of particles used at each iteration to track the ball. Left: without adapting the importance function. Right:
Adapting the importance function.
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