1

Over-Subscription Planning with Numeric Goals

J. Benton
Computer Sci. & Eng. Dept.
Arizona State University
Tempe, AZ 85287-5406
j-benton@asu.edu

Abstract

By relaxing the hard-goal constraints from clas-
sical planning and associating them with reward
values, over-subscription planning allows users
to concentrate on presenting what they want and
leaves the task of deciding the best goals to
achieve to the planner. In this paper, we extend the
over-subscription planning problem and its lim-
ited goal specification to allow numeric goals with
continuous utility values and goals with mixed
hard and soft constraints. Together they consid-
erably extend the modeling power of goal spec-
ification and allow the user to express goal con-
straints that were not possible before. To handle
these new goal constraints, we extend 8apa®
planner’s planning graph based techniques to help
it choose the best beneficial subset of goals that
can include both hard or soft logical and numeric
goals. We also provide empirical results in several
benchmark domains to demonstrate that our tech-
nigue helps return quality plans.
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both hard and soft goal constraints. We first present a mo-
tivating example before discussing our techniques to handle
the new extensions.

Mars Rover: A Rover is sent to Mars to collect soil/rock
samples and take pictures at different locations. The rover
should first land safely, roll off the lander and then go to dif-
ferent locations to gather scientific data. While the objective
is to collect as much data as possible given energy and time
limitations, only a subset of the data can be gathered. The
quality of the plan will be measured by the amount of sam-
ples collected at different locations and the amount of picture
data transferred back to earth. Obviously, more samples and
picture data give better values and thus it is more natural to
model the goals of collecting them as numeric goals with the
utility given according to the amount actually collected.

The example above brings up two issues: (1) there are
certain types of goals that are better represented as numeric
goals with a range of utility values (e.g. amount of sam-
ple/data); (2) there are goals that are critical to the success
of the plans (e.g. landing safely) and there are goals that are
not critical but beneficial (e.g. collecting samples). Besides
the rover domain, those types of goals are also common in
many other real-world planning problems such as transporta-
tion or travel planning. We extend the goal structure by al-
lowing numeric goals (e.g. constraints on some continuous

problems get _m?]re dcomplica’agd Wi;h Lemp?ral and Lesouglc oal constraints by supporting both hard (critical) and soft
constraints, it is harder to predict which goals are achievabley,aneficial) goals. Those additional types of goal constraints

Recently, motivated by the requirements of different NASAq%omplement traditional logical goals and allow the user more
. eedom in expressing what they desire from the final plan.
ﬁ;Jiggi(?r? g#}tl’t?{lgo%%d Zscicl?i—i?tr%g%cpelgrmg]gvfeorr-suk';/ls?:rr? tIT(?r\]/er While extending the current framework of hard and soft
. e P goals to support a mixture of them is not overly challenging,
planning problem. In this type of problem, the planner is not

. i X ; effective handling of the numeric goals with continuous util-
required to achieve all the goals but instead achievdé® i \ajes does pose several challenges. In particular, we need

subse_t of goals_glven the resource limitations. _ .. to reason about theéegree of satisfactionf goals. To illus-

_While the ability to represent goals as soft constraints Withyate if the goal isSample > 5 grams, it can be satisfied by
(fixed) utility values makes it much easier to model goals INGample = 6 as well asS‘a?nple — 10 at different degrees.
many applications, the restriction to only support soft logicalye need techniques to:

goals has limitations in metric temporal planning domains. In
this paper, we extend the framework to handle numeric goals 1. Assign utilities to different degrees of satisfaction.

having variable utility values and mixed goal sets containing 2. Track costs of achieving goals of different degrees of

 *This resear tisfaction.
*This research is supported in part by the NSF grant [1S-0308139 safistactio

and IBM Faculty Award. 3. Use the achievement costs and utilities in combination



L1 Sample

to estimate the final plan that maximizes the overall net Sample
benefit achievable from a given state. : S
We presentSapa'?* an extension ofSap&® [Do &
Kambhampati, 2004; van den Briet al, 2004 to support Lo2 Lo’
both numeric goals and mixed soft/hard goal s&apa"'rs Lt°
significantly extends the relaxed plan extraction procedure 12°
used inSap&°® to support numeric goals. sal. Ced
We first briefly discuss the search framework used in il
Sapé&°® in Section 2. We then show how to extend the cost o
propagation and relaxed plan extraction routines to handle s
metric quantities and the combination of soft and hard goals | _ ., Lovel Lovel 2 L:V’:IS

in Section 3. We present empirical results on extended ver- _ _

sions of some well-known planning benchmark domains in Figure 1: Rover example and the planning graph
Section 4 to show that the new techniques help find larger and

better quality plans. We conclude the paper with the relategtate visited beforé. Thus, instead of finding a single plan,

work and discussion. the algorithm keeps searching for incrementally better plans
in terms of the achieved net benefjt §)) value. The heuris-
2 Background tic valueh(S) is calculated by extending the cost propagation

i o __over the planning graph routine. It is followed by the relaxed

We start with the formal definition of the over-subscription plan extraction process iapd Do & Kambhampati, 2003
(aka partial-satisfaction) planning problem. We then pro-The search stops when the first node in the queue has value
ceed by describing th8apa® [Do & Kambhampati, 2004; 1,(S) = 0 (i.e. f(S) = ¢(S5)). For the rest of this section, we
van den Brielet al, 2004 planner and its framework that will discuss the three steps in estimating tH&) value.
heuristically searches for good quality plans for the problemgyample: Figure 1 shows an example in the Mars Rover

. . domain along with the complete planning graph structure for
2.1 Over-Subscription Planning (OSP) this examplé. The rover initially resides at locatioh, and
To formally define the over-subscription planning problemsneeds to collect samples &, and to take a picture af.
[Smith, 2004; van den Briedt al, 2004, the following no-  The rover can: (1) move between two locatiodd,(, .., );
tations will be used:F is a finite set of fluents andl is a  (2) calibrate the equipment before taking sample/pictare (
finite set of actions, where each action consists of a list of3) collect a sample at locatidn(S«;); and (4) take pictures
preconditions and a list of add and delete effe@tsC Fis  (Pi;). Action execution costs are depicted next to each action
the set of fluents describing the initial state &hd. 7 isthe in the complete planning graph for the example shown in
set of goals. Hence we define a planning problem as a tuplEigure 1. The first action layer of the graph contains three
P=(F, A,Z,G). The OSP problem is defined as follows: actions with their respective execution costsis,, = 10,

Definition OSP NeT BENEFIT: Given a planning problem Cito» =5, a”qCC =3 . _

P = (F,A,Z,G) and, for each action € A a“cost’c, >0  Cost-propagation over the planning graph: The planning

and, for each goal specificatigne G a “utility” u, > 0: find ~ graph propagates the achievement cost of each predicate and
a finite sequence of actions = (a4, ...,a,) starting from  execution cost of each action forward starting at the initial
7 that leads to a stateS maximizing the net benefit value level/time-point until fix-point. To simplify the discussion

w — c., WhereSg is the set of goals satisfied for this section, we will assume that all actions have unit du-
%:%E'Sg 9~ 2aea ¢ g ration.

Intuitively, the heuristic needs to realize that to be able to
Thus, in contrast to the classical planning problems, intake the picture aL, we first need to have the camera cal-
OSP no goal achievement is needed to qualify the plan arated and be af.,. For each actiom, its execution cost
valid (any sequence of actions is a valid plan). We thus pu’, is static and different from the cost to enable its execution
emphasis on findingood qualityplans where the objective cost(a), which is the cost to achieve all of its preconditions.
function is to maximize the tradeoff between total achievedThus,cost(Piy,) = cost(Ced)+cost(Ly) = Co+Chy, , =

goal utility and total incurred action cost (both additive). 5 + 3. We also want the heuristic to capture the fact that the
5 o cost to have a picture involves the cost to enable execution
2.2 Sap&’ : Heuristic search for OSP of Piy, and the cost to actually carry out that action. Thus:

Sapé&® adapts the heuristic (progression) search frameworkost(Pr,) = cost(Pir,) + Cpi,, = 8 +4. The propagation
to solve OSP problems. The quality of each search nodeules are:
S visited by the A* search algorithm in a forward plan-

; , L 1. Initially, at ¢ = 0: (1) Vp € I : cost(p) = 0; (2)
ner is ranked using the valug(S) = ¢(S) + h(S) with: i N ) -
9(5) =2 cs, Ug — 2aca Ca- Starting from the initial state p ¢ 1 : cost(p) = o0; (3) Va € A cost(a) = oo.
7 with the net benefit valug(Z), Sap&°® keeps track of all 2. At level Iz (1) YVa € A - cost(a) =
the visited states' that have betteg(.S) values than the best > _pePrecond(a) COSt(P1-1); (2) Vp € F : cost(p) =
!States are represented just as in the Sapa plébef Kamb- 2\We assume that the readers are familiar with the planning graph,

hampati, 200R which was originally described iiBlum & Furst, 1997.
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Figure 2: The relaxed plan

mianEffect(a) COSt<al71)

Our heuristic is inadmissible due to the use of sum
propagation in calculating the cost to execute each actio
As we grow the graph, new actions and facts are introduc
and the cost to achieve facteoft(p)) and execute actions

e

In our ongoing example, only the goal set= {57} can be
removed becausest(Ag,) = cost(Maz1) + cost(Sai) =
346 > Util(S,) = 8. Figure 2 shows the relaxed plan
before and after refinement.

The net benefit of the final relaxed plan is:
Util({SQ,P2}> — COSﬁ({MO’Q,C, Sag,Pig}) =
(104+12) — (5+3+6+4) = 4. This is used as

the heuristic valueh(S) to guide the A* search algo-
rithm. In general, we defindRP(S) to be the relaxed
plan found for stateS and U(Apply(RP(S),S)) to be

the utility achieved by applying all actions in the relaxed
plan to state S. The heuristic value is then calculated as:
h(S) = (U(Apply(RP(S),S)) — U(S)) — cost(RP(S))
whereRP(S) is the final relaxed plan.

r§ Handling Numeric Goals with Utility

Sapé&°® only supports logical achievement goals of the form

(cost(a)) decreases due to new ways to achieve and suppoit= True (e.g. HasPicture(Ly)). However, if we have the
them. In Figure 1, we highlight the new facts and actionsgoal to collect at least» grams of a Mars soil sample at a
introduced at each level and the new achievement costs fajiven locatiory (i.e. sample(l) > m), we can more naturally

each fact. For examplel; first appears at level 1 with
cost(L1) = 10 (achievable by\f, ;). The value ofcost(L4)
decreases to 8 at level 2 due to the new acfity), in level

represent it as a numeric goal.

3.1 Numeric Goal Representation

1. While the set of achieved facts and supporting actions injplike logical goals that only have true/false values, there
level 2 and level 3 are the same, we did not stop growing thre an arbitrarily large number of values that can satisfy a

graph at level 2. This is becausest(S;) decreases at level
3 due to the reduction inost(L,) at level 2 (which leads to
the decrease itwst(Say)).

Extracting the relaxed plan: After terminating the cost-
propagation, the cost values can be used to extract the relax
plan RP, starting from all achieved goafs, as follows:

1. Starting from the last levelyg € G at levell select
actiona at the action level — 1 that supportg with the
lowest cost.

2. When actior is selected at levdl, then all precondi-
tionsp of a at the previous level will be added €.

3. Stop whenG C 7.

All the collected actions: and the causal links between
them make up the relaxed pldtP.

Refining the relaxed plan: For each goal, we build the
goal supporting set'S for each propositiop and actioru by
going backward using the extracted relaxed plan as follows:

e Vg€ G:GS(g) ={g}

e GS(a)=UGS(p):p € Ef fect(a)

o GS(p) =UGS(a): p € Precond(a)

Intuitively, for each actioru, GS(a) is the set of goals
thata supports. Thus, the achievement of any goakisi(a)

depends on the inclusion afin the relaxed plan while for
any goalg ¢ GS(a), g will still be achievable withoutz.

In Figure 2, we show the goal supporting sets for all actions

and related propositions (e.g7S(C) = {S1,52}) and the
corresponding utility values (e.@/til(S2) = 10) of the three
goals in the relaxed plan. For each set C G, let Ag., =

a : GS(a) C S¢ be the set of actions supporting only goals
in S¢. We will removeS¢ along withAg_, from the relaxed
plan if Soe a4, cost(a) > Lges, Util(g) (i.e. cost> utility).

given numeric goal. We assign a rangecohtinuous utility
valuesfor numeric goals to representlagree of satisfaction
Specifically, numeric goals and their utility values are set up
as follows:

%jefinition NUMERIC GOAL: A numeric goal is a relation

f € D in which f is a mathematical formula involving an
arbitrary number of numeric variables afitl = [I,u] is an
interval open or closed at either end and is bounded by two
real valued < u (I, u can be infinity).

For example, the goal of keeping travel cost betw&Hi
and $500 can be represented adiotel + AirTicket €
[100, 500).

For each numeric goal € D, the utility valueu(g) is
specified by a linear function. For example, if the goal is to
collect at least 0 grams of Mars sample (i.¢. = Sample >
10), then the utility of this goal can be(f) = 10° x Sample
(i.e. it is worth 1 million dollars for each gram of Mars’ soil
if we have at least 10 grams, but O dollars otherwise).

3.2 Cost Propagation with Numeric Goals

To incorporate numeric goals into our current heuristic frame-
work, we first have to be able to estimate the cost to achieve
them. Unlike logical goals, there are multiple degrees of sat-
isfaction for a numeric goaj. Therefore, the procedure that
tracks the achievement cost f@is necessarily more compli-
cated. Specifically:

o For logical values we track the time poifjtat which a
propositionp can first be achievegh (= True) and the
achievement cost foy at time pointst > ¢,. For nu-
meric values we need to trackangeof possible values
(L}, U;’] for a numeric variabley; at each;jt" update
to the lower bound value ankt” update to the upper
bound value.



< Dur-1 — «—Dur=1.25 — < Dur=15 means that an action in the RTPG can be applied concurrently

Sample 1 (Sat) | | sample 2 sa2) | with itself an arbitrary number of times, causing the num-
Cost1 Grend AR i S i vt ber of time points in the graph to increase significantly. To
- - - avoid this problem, we disallow such concurrency as a prac-
sat 1] sat O] sar o | tical compromise.
sz o2 | sz ©2 | s o2 | Figure 3 shows a RTPG for our example. We re-apply the
— - numeric effects of actions directly after their duration com-
| Com  ©4 | Com o | pletes. At timet = 1, actionSa; completes and we add the
0 T 125 2 25 3 575 4 ¢ upper bom_Jnd valudJi* =1 of v; to indicate that the col-
vi:  [0,0] 01 [0,3] 04 [06 [07] [0,9] lected weight of the soil sample has increased by 1. Also at
costip%i): 0 13 4 6 7 9 this time point, the precondition @fom can be satisfied by
V2" [0,0] [0.1] [.6] the boundU]* = 1, so we apply the numeric effects of the
cosipli: 0 4 o action, adding the upper boundf> = 1 on theweight of

) . _ the soil sample. At = 1.25, Sa; completes and we add the
Figure 3: The RTPG for our example. Our actions are definegipper bound valu&J' = 1+ 2 = 3 increasing the previ-
above it. ous upper bound af; the second time by 2 according to the

] . . ) i numeric effect ofSa,. This continues until we reach our nu-

¢ In tracking costs to achieve logical literals, actions aremeric goalv, > 5 (when Uy* = 6) > 5). In Figure 3, we
only re-applied(e.g. Sa; at action level 2 in Figure 1)  show the upper and lower bound values fgrandv, as we
when the cost to execute (i.e. cost to achieve their pregrow the graph. Because we do not have actions that decrease
conditions) them decreases. However, actions havinghe values ofy;, or v, in this simple example, the lower bound
numeric effects om; need to be applied whenever pos- ya|yes of those two variables remain unchanged.
sible (e.g. Sa, in Figure 3) because thelrveffects CON- The RTPG handles numeric expressions in effects
tinue to change the uppetf’) or lower (;*) bound  ang preconditions by applying the formulas to each
values of the quantity;. bound. For instance, if the bounds of three variables

Example: To illustrate the techniques to track achievement”l’d”%v3 aré vy : [(I), 2?]’ vz - [1,5] and vs - [_1{. 3]

costs for numeric goals, we will use a variation of our ongo-"’.‘nd we want to calculatg = vs + v1 * vz, We first

ing Mars Rover example. We solely concentrate on metridnd v1 * vz = [min(0 * 1,0 % 5,20 * 1,20 * 5),

quantities in this example (illustrated in Figure 3). There ardaz(0 * 1,0 % 5,20 1,20 x 5)] = [0,100] then

two sample-collecting actionsamplel(Sa;) collects a sin- f=vs+[0,100] = [0+ —1,100 + 3] = [-1,103].

gle gram of soil samplesample2(Sa,) collects 2 grams of  Tracking achievement costs:We letb;* refer thej*" upper

soil sample. The effects of these actions occur at the endr lower bound ofv; in the RTPG. The RTPG associates for

of execution. The third actiomsommunicat§Com), com-  each bound vaIu”eb;?i, a propagated costpst(b:"). The cost

municates the sample information to a lander at the start ofalue estimates how costly it is to achieve a certain numeric

execution. We use two continuous variablesto track the  value. The idea is that for each valuethat satisfies some

weight of the collected soil sample in the Rover’s store anchumeric goal, the tradeoff between the cost of achieving

vy to track the total amount of communicated sample. Theand the utility that: incurs will be used as heuristic guidance.

goal g is to achievev, > 5 and the goal utility formula is  cost propagation is not trivial in the presence of numeric

u(g) = vy x 3 (i.e. if vy < 5we get a utility of zero, other-  expressions. Before turning to this case, let us concentrate our

wise the utility is found using(g)). _ _discussion on simple numeric effects (i.e. effects using only
While the connection between time and numeric goals igonstant values). Numeric updates (e.g. increases and de-

not obvious in OSP problems, one important component otreases) will generate a new bound value with respect to the

action cost is the amount of time consumed by each actiorprevious one. Because of this, we base the cost of each bound

Goal utilities also normally depend on the time the goalson the previous bound’s cosbst(b;?i_l). Specifically, when

are achieved. LikeSapa®, the Sapa'** planner handles o actions adds an upper or lower bound for a variabjeis-

actions with different durations and thus we do not mak&nq an increase (+=) or decrease (-=) numeric effect, the prop-

the assumption that all actions have uniform duration (as iRygated cost of the bounddsst(b?) = cost(a)+ cost(b:,).

prevpus section). . . This lets us track the cost of executing several actions that
Tracking the upper and lower bounds: The first step in may be required to reach a numeric goal or precondition.
estimating the achievement costs for numeric goals is t®Bounds found using an assign (:=) numeric effect only de-
track the possible values for numeric variables at differenpend upon the action itself. So, the propagated cost is
time points. Previous work in tracking upper/lower boundScost(byi) = cost(a). In our example shown in Figure 3, the
for numeric variables using the planning graph was doneost of the new bound found by the numeric effecSaf, at

for non-temporal pIannm@Koehler, 1998; Hoffman, 2003; ¢ = 1.25 is cost(US!) = cost(Sas) + cost(U*) = 3. When
Sanchez & Mali, 2008 There, actions are either always ex- the numeric effect 0Sa; is re-applied at = 2 and causes
ecuted serially or marked mutually exclusive of one another

if their numeric effects give varying results when ord_ered dif-  3The RTPG can find multiple upper and lower bound values for
ferently. InSapé*»* , the semantics of the planner disallows a variableu; at the same time point. We index the bounds in this
interacting actions to be concurrent, whereas the relaxed tenmanner so that we may refer to previously found bounds without
poral planning graph (RTPG) allows this. In our context, thisregard to the time point that they may appear in the RTPG.



the third update on the value of we havecost(U3') = andt = 2.5, we keep updating the upper bound«gfand
cost(Say) + cost(Us') = 4. vy to values as shown in Figure 3. When activatitigm

In our ongoing example, each numeric effect and precondiatt = 2.5, we have the seB,, ={U;* = 6} representing
tion involves only two or fewer variables. However, in a more the bounds used for the expression:= v;. We get a new
general scenario, numeric goals, action preconditions and a€ound that satlsflesvthe numeric 905“ withst (Uy* = 6) =
tion effects can be a formula involving an arbitrary number ofcost(Com) +cost(Ug' = 6) —cost(Uy" = 1) = 9. Att = 3
numeric variables. These inter-dependencies between vaffe update oba, completes, givingost(Us' = 7) = 7 and
ables further complicates cost propagation on bounds. Thatt = 3.75, the numeric effect ofa, givescost(Ug' = 9) =
is, when we calculate new bound values from expressions, wé ] ]
need to find the cost of the new bound based upon the costs Notice that even after numeric goafs € [L,U] are
of the values involved in the expression. To do this, we defingatisfied by the bound values grat a given time point (i.e.
for each variabley;, a sets,, of all bound values involved [L,U]N[I/,u/] # 0 att), we allow the RTPG to continue to
in computing a new bound for variablg. For example, we expand until fix-point.

have an expressiofi = vs + vy * vz and define an effeaty  Relaxed Plan Extraction with Numeric Goals: After doing
+= f. When applying this effect, we track each of the boundscost-propagation over the RTPG, the cost information can be
used to generate the minimum and maximum values from thigsed to extract a relaxed plan using an approach similar to
formula (in this case [-1, 103]). We apply the effect using thethat discussed in Section 2.2. The challenge here is in de-
resulting bounds. For the new upper bouna.gfwe have the  ciding for each numeric goaf € [I,u], how to select the
setB,, = {U" = 20,U" = 5,U" = 3} to indicate the de- most beneficial value; of f that is achievable through the
pendencies between the upper bound,oénd the particular  planning graph and extract the action that supports that
bound values ob1, v, andv; used to achieve this new upper vajue. When selecting an actiawe add all of its logical and
bound. numeric preconditions into the goal 98t Also, we ensure
During cost propagation, bounds used to satisfy a precorthat the cost of numeric bounds used to satisfy the numeric
dition are included in the cost of an action. For each vari-goal constraints are included with the relaxed plan. This is
able used in expressions, we allow only a single bound oo we can accurately determine the achievement cost for each
that variable to be included when calculating costs of newbound.
bounds (i.e. avoid including more than one bound for each To handle relaxed plan extraction for numeric goals,
variable when a variable is used both to support a preconwe choose the bound values that provide the best tradeoff
dition and as part of an expression in a numeric effect). Tdetween goal utility valufewith the achievement cost. Thus,
do this, we letP, be the set of all bound values used to sat-for each achievable valug, € [L;*,U;?] that satisfies the
isfy the numeric preconditions of an actien In our exam-  goal constraint org, we select the one that gives the greatest
ple, Poom = {U" = 1} starting att = 1. We also define  {/(v,) — cost(v,) value. The actiom that supports, is then
P.NB,, to be a set operation over the variables representeselected and added to the relaxed plan. If given a goal interval
by the bounds irP, andB,,, where the result gives us only v; € [I,u] we never find a value € [/, u] while expanding
the bounds irP, that are not equal to the bounds3p,. More ~ the RTPG, but do find two values < [ andv, > u, we
formally, AN\B = {b% : b € A A 3b}%,; € B} say the goal is subsumed. In this case, we allow the first
) ) . v subsuming value to support the goal. However, since we
For instance, if we have the séts = {L|* = 1,U}* =2}  cannot estimate the utility on this bound, we let its utilitytbe

?Eglgv_i T}{UTE);\is:rgéLlﬁtz p:roachiJell); t?el%g]aennsﬂ%olféﬁ]:ving Heuristic estimation: For each numeric goal supporting

the1 co_sts df bounds i, that are already present in an ac- _boungj_ that we select, we mcIude the cost to support it and

i hen we also us athem B, to calcyulgte bound cost its utility value in the net benefit calculation. In our on-

'IF%B'SV\{[hee coset ofsa?bofnd value)(i)f variablehat is chan Oed. going example the net benefit of the relaxed plan would
' . Ve 980 pe U({u(vy = 6)}) — (C(Saz) + C(Com) + C(UY =

by an increase (+=) or decrease (-=) effect of an actids 6)—C(U =1)) = (6%3) — (2+4+6-1)=7

cost(bj') = cost(a) + cost(bj,) + 3 4ep, \p, cost(d) — ! '

> eep.fin, cost(e). It follows that the cost of a bound 3.3 Combining Hard & Soft Goals

found by an assign effect=() on actiona is cost(bj’) =  In oulr IWO'rkllwe siuppo(;t Eard and soft g?alz_for botr:]I t_rad:]-
_ _ ' tional logical goals and the numeric goals discussed in the

cost(a) + Zd_es“i_\m cost(d) ZEGP“QB_% cost(e). previous section. In the case of humeric goals, a single goal

As shown in Figure 3, at = 0 both actionsSa; andSaz  may involve both hard and soft constraints. For example the
are added to the RTPG. The delayed numeric effecfaf  goal of having the Rover collect between 5 to 10 grams of
increases; by 1 att = 1 and incurscost(U' = 1) = 1. At Mars soil (SC = SoilCollected € [5,10]), can be modeled
this time point, the preconditiom > 1 of Com is satisfiable  so thatSC' > 5 is a hard constraint (i.e. should collect at least
and we havePc,, = {U]* = 1}. Thecost(Uj* = 1)is 5 grams) and’C < 10 is a soft constraint (i.e. 10 is enough
included to findcost(Com). So, whenCom is put in the  put more than that is not harmful).

graph att = 1, we havecost(Com) = 4. Its instantaneous  To support both hard and soft goals in the best first search

effectv, := v; leads to a new bound fap, with cost(U7* = framework for over-subscription problem, we need to change
1) = cost(Com) = 4. Att = 1.25, Say’s delayed numeric
effect is activated and increasesby 2 to a new bound with “Recall that the utility values are given by a linear formula over

costecost(Uy' = 3) = 3. As we increase the time to= 2  the goal variableg.



both the search-termination criterion and the heuristic estima- Rovers
tion routine in the search framework discussed in Section 2.2. 140000
Specifically: —o—With Bound Cost

. .. 120000 i
Search node evaluation\When all goals are soft, any visited = Without Bound Cost
node encodes a legal plan. In the presence of hard goals, only _ 100000 1
nodes that satisfy all hard goals can be represented a valid 80000 -
plan.

Heuristic estimation:

e For a given node, if we cannot achieve some hard goal
when building the planning graph until fix-point for cost
propagation, then the node is a deadend. o——

. 123 45 7 8 910111213 141516 17 18 19

e When refining the relaxed plan, we only remove soft Problems

goals and actions (solely) supporting them.

Notice that with the mixed soft’/hard goal combination, it's

possible to return plans that have negative net benefit (tq- ; -
tal action cost is higher than the total achieved goal utility)(.)[0 represent numeric quantities for the number of packages

Those plans with negative net benefit will not be found if all at each location and the maximum capacity of each vehicle.

. . Goals are then intervals of the number of packages we want
the goals are soft constraints because an empty plan with ze[g o ticyiar location. For example, we may start with
net benefit is a valid plan in that case. :

packages at location and want to deliver between 5 and 7

. . packages td, and at least 2 packages to Delivering a

4 Empirical Evaluation package to a certain location may be more beneficial than to
We have implemented the support for numeric goals on tophe other (e.g. delivering 5 packages{ayives more utility

of the Sap&® planner and also extended its best-first-searchhan delivering the same number of packages}oThe cost
framework to support the combination of hard and soft goalsof delivering packages varies depending upon the distance be-
We call the new planneSapa'?* . To test the implemen- tween locations.

tation, we have created a test suite by extending the prob-

lem sets of theMars Roverand Logistic domains. Both 4.2 Results

were used in previous planning competitions (IPC2002 and|| results were collected using a 2.67Ghz P4 machine with, 1
IPC2000). The experiments aim at testing whether or notsg of RAM and 512 MB allocated to the planner. Given that
the cost-propagation techniques for numeric goals can helgapd1»s employs an anytime search algorithm and contin-
Sapa'r* find reasonable size plans with good quality for the es to look for better quality plans as it is given more time, we
extended OSP problems. set the time limit of 1200 seconds for all the tésté/e com-
. . . . pare the final plan quality (i.e. the cumulative utility of goals
4.1 Configuration of Testing Domains ~ achieved minus the cumulative action cost) on two heuristic
All test suites involve durative actions consuming metric re-approaches: (1) based on the cost-propagation as described in
sources. Action costs are added to the action representgnis paper; (2) only propagate the upper/lower bounds on nu-
tion and appear as a function of the time and resources comneric variables to check for numeric goal satisfaction, but do
sumed by that action (e.gcost(travel) = HotelRate *  not propagate the goal achievement cost. The plan qualities
Duration(travel) + AirTicket). Utilities of goals are ran-  are measured by the total achieved goal utility minus the total
domly generated within some reasonable bounds. Logicaiction cost. We were unable to make comparison with exter-
goals have fixed utilities while utilities of numeric goals are nal planners because we are not aware of any other planner
represented using linear functions. The goals have the sanigat is capable of solving the same problems.
probability to be eithehard or soft (applied to both logical  Figure 4 shows the comparison results between two ap-
and numeric goals). Specific types of goals in the domaingroaches listed above for the Rovers domain. The results
are created with various probabilities. In general the potentiaglearly show that the cost-propagation helpapd'?s re-
number of numeric goals increases with the problem numbeturn better quality solutions in all but 3 problems (with one
with a minimum of at least one numeric goal. _ of lower quality). The average improvement on the solution
TheRoversdomain is extended and includes the weight of quality is 3.06 times better. The plans found are of reasonable
collected soil and rock samples. The goals are to send amsize with a average/longest plan length in terms of number of
alyzed data about samples at different locations back to thgctions is 30.5/77 (with cost propagation) and 20.9/67 (with-
lander. Utility of a sample is proportional to the weight col- out cost propagation).
lected for the sample. Rover’s store has a fixed weight capac- Figure 5 shows the results for the Logistics domain. Within
ity and each time a sample action is executed, a single gram {fe time limit, Sapd?* solves 19 of 20 problems with cost-
stored. If the Rover keeps collecting sample, then the cost gdropagation while only 10 (all with lower quality) without
sampling outweighs the overall utility of the collected samplecost-propagation. Among the 10 problems that both ap-

at some certain time. ] ~ proaches can solve, the average improvement in plan qual-
In the Logisticsdomain, we add numeric goals to deliver

a certain number of packages of the same type to its destina- 5Sapd*?* usually finds the first solution with positive benefit
tion using trucks and airplanes. The initial state is extendedalues in very short time

60000 -

Net Benefit

40000 -
20000 -

Figure 4: Comparison of utilities for our rovers domain



As discussed in the paper, our work is also related to ex-

Logistics .. . .
isting efforts on cost propagation over planning graphs (c.f.
600000 : [Do & Kambhampati, 2008 and propagating reachability in-
o ound C;’SC‘ formation over numeric goals (c.fSanchez & Mali, 2003;

500000 1= hout Bound Lost Hoffman, 2003). Our method of propagating the upper and
= 400000 1 lower bounds of numeric variables over the RTPG has its
& roots in work done by Koehler in the Metric-IPP planner
é’ 300000 - [1999.
2 200000 |

6 Conclusion

Many real-world planning scenarios are over-subscribed, and
require that the planner carefully balance the utility of the
achieved goals and the cost of actions in the plan. In this
paper we focused on extending over-subscription planning
Figure 5: Comparison of utilities for our logistics domain to handle numeric goals as well as a mix of hard and soft
goals. Our primary technical contributions involved effec-
tive approaches for reasoning about the expected net benefit
140000 of a partial plan in the presence of numeric goals that allow
8- With Bound Cost different degrees of satisfaction (with noncomitant utilities).
4= Without Bound Cost We have empirically demonstrated the effectiveness of our
heuristics in leading the planner to solutions with higher net
benefit. For the future, we are investigating extensions to our
heuristic to handle delayed satisfaction of goals (i.e. goals
whose utility depend upon achievement time).
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