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Abstract

We describe methods to solve partially observable
Markov decision processes (POMDPs) with con-
tinuous or large discrete observation spaces. Real-
istic problems often have rich observation spaces,
posing significant problems for standard POMDP
algorithms that require explicit enumeration of the
observations. This problem is usually approached
by imposing ana priori discretisation on the obser-
vation space, which can be sub-optimal for the de-
cision making task. However, since only those ob-
servations that would change the policy need to be
distinguished, the decision problem itselfinducesa
lossless partitioning of the observation space. This
paper demonstrates how to find this partition while
computing a policy, and how the resulting discreti-
sation of the observation space reveals the relevant
features of the application domain. The algorithms
are demonstrated on a toy example and on a realis-
tic assisted living task.

1 Introduction
Partially observable Markov decision processes
(POMDPs)[1] provide a rich framework for planning under
uncertainty. In particular, POMDPs can be used to robustly
optimize the course of action of complex systems despite in-
complete state information due to poor or noisy sensors. For
instance, in mobile robotics[15], spoken-dialog systems[21;
25] and vision-based systems[7], POMDPs can be used
to optimize controllers that rely on the partial and noisy
information provided by various sensors such as sonars,
laser-range finders, video cameras and microphones. Un-
fortunately, to date, the use of POMDPs in such real-world
systems has been limited by the lack of scalable algo-
rithms capable of processing rich and continuous sensor
observations.

While model-freeapproaches such as neuro-dynamic pro-
gramming [3], Monte Carlo sampling[23] and stochastic
gradient descent[13; 2; 16] can tackle POMDPs with arbi-
trary observation spaces, they tend to require a large amount
of simulation or a priori knowledge to restrict the space of
policies (which reduces the need for simulation). Signif-
icant progress has also been made in developing approx-

imate scalable algorithms formodel-basedPOMDPs with
large state spaces[20; 19] and complex policy spaces[17; 19;
24], however model-based algorithms cannot tackle problems
with continuous nor large discrete observation spaces.

In this paper we study and propose new algorithms for
model-based POMDPs with continuous or large discrete ob-
servation spaces. We first demonstrate that the complexity of
observation spaces can often be significantly reduced with-
out affecting decision quality. Intuitively, observations pro-
vide information to the decision maker for choosing a future
course of action. When the same course of action is chosen
for two different observations, these observations are indis-
tinguishable from a decision making point of view, and can
therefore be aggregated. Hence, when a policy is composed
of a small set ofconditional plans(conditional on the obser-
vations), it is possible to partition the observation space in a
small number of regions corresponding to the relevant fea-
tures of the observation space for decision making. Many
systems tackle the feature detection problem separately from
the decision making problem, first building a set of features,
then computing a policy based on those observation features.
In this paper, we demonstrate how the decision problem can
be used to automatically define a set of relevant features that
are sufficient to find an optimal policy.

The paper first provides some background on POMDPs in
Sect. 2, followed by a discussion of the partitioning of the
observation space in Sect. 3. Sects. 4 and 5 discuss methods
for the one-dimensional and multi-dimensional cases, respec-
tively. Sect. 6 reports experiments with an assisted living task.

2 Partially Observable MDPs
Formally, a POMDP is specified by a tuple
〈S,A,Z, T, Z,R, γ, h〉 which consists of a setS of
statess capturing the relevant features of the world, a setA
of actionsa corresponding to the possible control decisions,
a setZ of observations corresponding to sensor readings,
a transition functionT (s, a, s′) = Pr(s′|s, a) encoding the
stochastic dynamics of the world, an observation function
Z(a, s′, z) = Pr(z|a, s′) indicating how sensor readings re-
late to physical states of the world, a reward functionR(s, a)
encoding the objectives of the system, a discount factorγ
(between 0 and 1) and a planning horizonh (assumed to be
infinite in this paper). We assume that states and actions
are discrete, but observations can be continuous or discrete.



While it is common for observations to be continuous
because sensors often provide continuous readings, states
are often abstract, unobservable quantities. In the case of
user modeling problems and event recognition problems,
sates are often discrete. For continuous observations,
Z(a, s′, z) = pdf(z|a, s′) is a probability density function.
Since states are not directly observable, the decision maker’s
belief about the current state is represented by a probability
distributionb(s) = Pr(s) calledbelief state. After executing
a and observingz, the belief stateb is revised according to
Bayes’ theorem:ba

z(s′) ∝ ∑
s b(s)T (s, a, s′)Z(a, s′, z).

To illustrate the concepts we will present, we use the clas-
sic Tiger problem[5], in which the decision maker is faced
with two doors. A small reward lies behind one door, but a
large cost (a tiger) lies behind the other. The decision maker
can either open a door, or listen for the tiger. Listening gives
the decision maker information from which she can infer the
location of the tiger. In the original, discrete, version of this
problem, two possible observations result from listening (left
or right), and these observations correspond with the true lo-
cation of the tiger with probability0.85. In the continuous
version we will discuss here, the decision maker has access
to the original microphone array measurement that (noisily)
locates the tiger in the continuous horizontal dimension (from
the far left to the far right).

At each time step, the decision maker picks an action to
execute based on the information gathered in past actions and
observations. We can represent the decision maker’s possi-
ble strategies by a setCP of conditional planscp which cor-
respond to decision trees. Fig. 1(a) shows the decision tree
of a k-step conditional plan for the Tiger POMDP with dis-
crete observations. Nodes are labeled by actions and edges
are labeled by observations. The execution of a conditional
plan starts at the root, performing the actions of the nodes tra-
versed and following the edges labeled with the observations
received from the environment. For example, the conditional
plan in Fig. 1(a), will lead to opening a door if two successive
observations confirm the same tiger location. We can define
recursively ak-step conditional plancpk = 〈a, osk−1〉 as a
tuple consisting of an actiona with an observation strategy
osk−1 : Z → CPk−1 that maps observations to(k − 1)-step
conditional plans. For POMDPs with continuous observa-
tions, conditional planscp are decision trees with infinitely
many branches and observation strategiesos are continuous
functions. The value functionαcp(b) of a conditional plancp
is the expected sum of discounted rewards that will be earned
when starting in belief stateb. This value function is often
called anα-vector since it is linear with respect to the be-
lief space and therefore parameterized by a vectorαcp(s) that
has one component per state (i.e.,αcp(b) =

∑
s b(s)αcp(s)).

Fig. 1(b) shows the 5α-vectors corresponding to the condi-
tional plans shown in Fig. 1(a). Theα-vectors corresponding
to the conditional plans starting with an open door action (α4

andα5) have high value at one extreme of the belief space
(when the certainty about the tiger location is high), but very
low value at the other extreme.

A collection of conditional plans forms a policyπ. The
value functionV π of a policyπ is the best value achieved by
any of its conditional plans (i.e.,V π(b) = maxcp∈π αcp(b)).
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Figure 1: a) Tree representation of a three-step conditional
plan for the simple tiger problem, starting with a uniform be-
lief about the tiger location. b) Corresponding value function
of composed of 5α-vectors

Fig. 1(b) shows the value function of a policy for the Tiger
problem, composed of 5 conditional plans, each of which
is highest for some part of the belief space. The goal is
to find an optimal policyπ∗ with the highest value (i.e.,
V π∗

(b) ≥ V π(b) ∀π). The optimal value functionV ∗(b)
for an infinite planning horizon can be computed byvalue it-
erationwhich computes successive approximationsV k(b) by
dynamic programming

V k+1(b) = max
a

Ra(b) + γ
∑

z

Pr(z|b, a)V k(ba
z)

where Ra(b) =
∑

s b(s)R(s, a), Pr(z|b, a) =∑
s,s′ b(s) Pr(s′|s, a) Pr(z|a, s′) and ba

z is the revised
belief state after executinga and observingz. WhenV k is
formed by the set ofαcp, a new set ofαcp′ for V k+1 can be
constructed bypoint-based dynamic programming backups.
A point-based backup computes the best conditional plan
cp′∗ = 〈a∗, os∗〉 (and correspondingα-vector) from a set of
conditional planscp for a given belief stateb:

α〈a∗,os∗〉(b) = Ra∗
(b) + γ

∑

z

Pr(z|b, a∗)αos∗(z)(ba∗
z ) (1)

s.t. os∗(z) = argmaxcp αcp(ba∗
z ) (2)

a∗ = argmaxa Ra(b) + γ
∑

z Pr(z|b, a)αos∗(z)(ba
z)(3)

In practice, we cannot perform such point-based back-
ups for every belief state since the belief space is contin-
uous. However, as noted by Smallwood and Sondik[22],
finite-horizon optimal value functions are composed by a fi-
nite number ofα-vectors, which means that we only need
to compute a finite number of point-based backups, one per
α-vector to be constructed. Exact algorithms such as Linear
Support[6] and Witness[12] perform this finite set of point-
based backups at carefully chosen belief points. Alterna-
tively, approximate algorithms such as Point-Based Value It-
eration[27; 17; 24] heuristically sample a set of belief points
at which they perform point-based backups.

3 Policy-directed Observation Aggregation
In a decision process, observations provide information to the
decision maker for deciding the future course of action. When
the observation space is rich (i.e., continuous observations or
many discrete observations), the decision maker can devise



rich policies with a different course of action for each pos-
sible observation. However, for many POMDPs, there often
exists good policies that are quite simple. These policies tend
to select the same course of action for many different obser-
vations that share similar features. For POMDPs with contin-
uous observations, this will allow us to implicitly discretise
the observation space without introducing any error. From
the point of view of the application domain, this also gives
us insights regarding the relevant features of the observation
space. In this section we discuss how simple policies allow
us to aggregate many observations, effectively reducing the
complexity of the observation space.

Recall that a conditional plancp = 〈a, os〉 is a tuple con-
sisting of an actiona and an observation strategyos. The
observation strategyos(z) = cp′ indicates for each observa-
tion z the conditional plancp′ encoding the future course of
action. Intuitively, all the observations that select the same
conditional plan are indistinguishable and can be aggregated.
We can therefore view observation strategies as partitioning
the observation space into regions mapped to the same condi-
tional plan.1 In the continuous observation tiger problem, for
example, as long as a sound is heard coming “from the left”,
the best choice of action may be to open the right door. Al-
though the precise location of the sound here is not important,
the decision boundary is (e.g. how far right can the sound be
heard before the decision maker would listen again).

In each point-based backup, we compute an observation
strategyos which partitions the observation space into re-
gionsZcp that select the same conditional plancp. Let’s ex-
amine how these regions arise. Recall from Eq. 2 that for
each observationz, the conditional plan selected is the one
that maximizesαcp(ba

z). Hence, we defineZcp∗ = {z|cp∗ =
argmaxcpαcp(ba

z)} to be the set of observations for which
cp∗ is the best conditional plan to execute inba

z .
For each regionZcp, we can compute the aggregate prob-

ability Pr(Zcp|a, s′) that any observationz ∈ Zcp will be
made if actiona is taken and states′ is reached by inte-
grating pdf(z|a, s′) over regionZcp (i.e., Pr(Zcp|a, s′) =∫

z∈Zcp
pdf(z|a, s′)dz.2 The aggregate probabilities can be

used to perform point-based dynamic programming backups

α〈a∗,os∗〉(b) = Ra∗
(b) + γ

∑

cp

Pr(Zcp|b, a∗)αcp(ba∗
Zcp

) (4)

with Pr(Zcp|b, a∗) =
∑

s,s′ b(s) Pr(s′|s, a∗) Pr(Zcp|a∗, s′)
andba∗

Zcp
(s′) ∝ ∑

s b(s) Pr(s′|s, a∗) Pr(Zcp|a∗, s′). This is
equivalent to Eq. 1, except that we have replaced the sum over
observationsz with a sum over regionsZcp, in each of which
a particular conditional plan is dominant.

4 One-Dimensional Observation Space
We now discuss how to find the implicit discretization of the
observation space induced by a set of conditional plans (orα-
vectors) when the observation space is one-dimensional con-
tinuous. For this special case, the regions,Zcp, over which

1Note that the observations that are mapped to the same condi-
tional plan may not form a contiguous region though.

2If Zcp is not a contiguous region, then several integrals must be
computed, one for each contiguous sub-region.

observations can be aggregated are segments of a line corre-
sponding to a range of observations for which the same con-
ditional plan is optimal. Segment boundaries are observations
for which there are two (or more) conditional plans yielding
the highestαcp(ba

z). To make clear thatz is the only variable
here, defineβb,a

cp (z) to be a function inz that corresponds to
αcp(ba

z) whereb anda are fixed (i.e.,βb,a
cp (z) ≡ αcp(ba

z)). We
can find these boundaries by solvingβb,a

cpi
(z) − βb,a

cpj
(z) = 0

for every paircpi, cpj of conditional plans.3 Analytically
solving this equation will be difficult in general, and is not
possible for observation functions in the exponential family
(e.g. Gaussians). However, efficient numerical solutions can
be used for many well-behaved functions. We used the Math-
ematica functionIntervalRoots , that finds all the roots
of an arbitrary one-dimensional function in a given interval
by interval bisection combined with gradient-based methods.
Once all potential regions are identified, the aggregate proba-
bilities P (Zcp|b, a) can be computed by exact integration (or
Monte Carlo approximation) for each conditional plancp.

Consider again the continuous Tiger problem introduced in
Sect. 2. We now illustrate how to find the observation regions
induced by a set of conditional plans and how to use them in
a point-based backup. Suppose that the doors are located at
z = 1 andz = −1, and the decision maker is atz = 0. Due
to a lack of accuracy, the binary microphone array reports
the tiger’s location corrupted by some zero-mean, normally
distributed noise of standard deviationσ = 0.965. Listening
costs 1, while meeting the tiger costs 100, but opening the
correct door is rewarded with 10. The discount isγ = 0.75.

Suppose we have 3 conditional plans with correspond-
ing α-vectors shown in Fig. 2(b) and we would like to per-
form a point-based backup. When considering belief state
b(tiger location = left) = 0.85 and actiona = listen,
Fig. 2(a) shows theβ functions of each conditional plan.
Since the observation function is Gaussian, theβ-function is
a linear combination of Gaussian distributions. By finding
the roots ofβb,a

cp1
(z)− βb,a

cp2
(z) andβb,a

cp1
(z)− βb,a

cp3
(z), we ob-

tain the boundariesz = 0.28 andz = 1.33 delimiting the
observation regionsZcp1 , Zcp2 andZcp3 .

We can thus form a discrete observation function
Pr(Zcp|s, a) by integrating the original Gaussian observa-
tion distributions over each region. We analytically integrate
each Gaussian over each region using the complementary er-
ror function erfc.4 Fig. 2(c) shows the two Gaussian observa-
tion distributions, and the aggregate observation probabilities
for each region. Using Eq. 4, we can then compute the value
of the conditional plancp′ = 〈a, σ〉 wherea = listen and
σ(z) = cpi if z ∈ Zcpi

.
In contrast, the original discrete version of the tiger prob-

lem partitions the observation space in two halves atz =
0, resulting in a discrete, binary observation function with
P (observe = right|tiger location = right) = 1

2
erfc( −1√

2σ
). A

dynamic partition induced by the current set of conditional

3This method may find more boundaries than are necessary, for
a thirdβcpk may have higher value than bothβcpi andβcpj at their
intersection points.

4erfc(x) = 2√
π

R∞
x

e−t2dt.



plans has the advantage that no information is lost. Fig. 2(d)
compares the value of the policies obtained with our dynamic
discretization scheme and the naive binary discretization as
we vary the varianceσ2. The dynamic discretization outper-
forms the fixed binary discretization for all variances. The
solutions are the same for almost perfectly observable cases
(σ ≤ 0.1) and approach one another for almost unobservable
cases (σ →∞).
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Figure 2: Tiger example. a)βcp(ba

z) for b(tiger location =
left) = 0.85 anda = listen, showing regions over which
each conditional plan will be selected. b)α-vectors of 3 con-
ditional plans. c) Observation function and aggregate proba-
bilities of each observation region for each state. d) Average
discounted reward achieved over 10 trials of 100 simulated
runs of 50 steps each, for different observation variances in
the continuous 1D tiger problem.

5 Multi-dimensional observation space
In many applications, observations are composed of several
sensor readings. For example, a mobile robot may have a
number of sonar, laser or tactile sensors, which together give
rise to multi-dimensional observations. When the observation
space is multi-dimensional, analytically finding the regions
and computing their aggregate probability will be difficult for
many observation functions.

We examine two approaches. The first, discussed in
Sect. 5.1, considers the special case of POMDPs with obser-
vations composed of conditionally independent variables. For
this special case, it is possible to define an equivalent POMDP
where the observation variables are processed sequentially in
isolation, essentially reducing the observation space to one
dimension. For arbitrary multi-dimensional observations, we
present a general sampling-based technique in Sect. 5.2.

5.1 Conditionally Independent Observations
In some applications, the random variables corresponding
to the individual sensor measurements may be conditionally
independent given the last action executed and the state of

the world. In this case, it is possible to factor the obser-
vation function into a product of small observation func-
tions, one for each random variable (i.e.,Pr(z1, z2|a, s′) =
Pr(z1|a, s′) Pr(z2|a, s′)). For example, consider a mobile
robot with sonars pointing forwards and to the side. The read-
ings from each sonar are conditionally independent given the
location of the robot and a map of the robot’s environment.

This factorization can be exploited to process the observa-
tions sequentially. Forn conditionally independent observa-
tion variables, we divide each time step inton sub-steps such
that only one observation variable is observed per sub-step.
This can be easily accomplished by constructing a POMDP
with an additional state variable,substep, that keeps track of
the current sub-step. The observation function encodes the
probabilities of a single, but different, observation variable at
each sub-step. The transition function is the same as in the
original POMDP whensubstep=1, but becomes the identity
function otherwise. The rewards are gathered and the dis-
count factor applied only whensubstep=1.

When all observation variables are conditionally indepen-
dent, this effectively reduces the dimensionality of continu-
ous observations to one, allowing the approach of Sect. 4 to
be used. For discrete observation variables, an exponential
reduction is also achieved since the domain of a single vari-
able is exponentially smaller than the cross-domain of several
variables. Note however that the complexity of the equivalent
POMDP remains the same since the reduction is achieved by
multiplying the horizon and the number of states byn.

5.2 Sampling

For arbitrary multi-dimensional observations, an effective ap-
proximation technique for computing the aggregate proba-
bilities consists of sampling. Recall from Sect. 3 that for
each conditional plancp, we can aggregate in one region
Zcp all the observationsz for which cp yields the highest
value (i.e.,βb,a

cp (z) ≥ βb,a
cp′ (z) ∀cp′ ∈ CP). Hence, for each

〈a, s′〉-pair, we samplek observations frompdf(z|a, s′) and
set Pr(Zcp|a, s′) to the fraction of observations for which
βb,a

cp (z) is maximal, breaking ties by favoring the conditional
plan with the lowest index.

This sampling technique allows us to build an approxi-
mate discrete observation functionPr(Zcp|a, s′) which can
be used to perform a point-based backup for a setCP of
conditional plans and a belief stateb. The number of ob-
servations sampled isk|S||A| for each point-based backup.
The quality of the approximation improves withk. In par-
ticular, using Hoeffding’s bound[9], we can guarantee that
Pr(Zcp|a, s′) has an error of at mostε with probability1− δ
whenk = ln(2|CP|/δ)/(2ε2). Interestingly,k doesn’t de-
pend on the dimensionality (nor any other complexity mea-
sure) of the observation space. It depends only on the num-
ber of regions, which is at most the number of conditional
plans. While this is true in a single DP backup, the num-
ber of conditional plans may increase exponentially (in the
worst case) with the number of observations at each DP
backup[12]. On the other hand, several algorithms[18; 8;
17; 24] can mitigate policy complexity by searching for good
yet small policies represented by a bounded number of condi-



tional plans orα-vectors. Perseus[24], a randomized point-
based value iteration algorithm, is such an algorithm since
the number ofα-vectors is bounded by the number of belief
points initially sampled. Hencek depends on policy com-
plexity, which generally depends on observation complexity,
but can be made independent by restricting policies to have a
bounded representation.

This sampling technique can also be used for POMDPs
with many discrete observations. In particular, when the
observations are factored into several random variables, the
number of observations is exponential in the number of vari-
ables, but as long as the number of conditional plans remains
small, the number of samples will also be relatively small.

Note also that we can often weaken the dependency be-
tween the number of samples and the size of the action and
state spaces. Instead of samplingk observations from each
of the |A||S| densitiespdf(z|a, s′), we can samplej obser-
vations from one proposal distributionp(z). This sample ofj
observations can be used to approximate eachPr(Zcp|a, s′)
as follows. First, we assign a weightpdf(z|a, s′)/p(z) to
each sampled observationz to obtain an unbiased sample of
pdf(z|a, s′). Then, for each conditional plancp, we find the
subset of sampled observationsz for which βb,a

cp (z) is max-
imal, and setPr(Zcp|a, s′) to the (normalized) sum of the
weights of the observations in that subset. The number of
sampled observationsj necessary to guarantee an error of at
most ε with probability 1 − δ depends on how similar the
proposal distributionp(z) is with each densitypdf(z|a, s′).
When the proposal is relatively similar to each of the densi-
ties thenj tends to be close tok, significantly reducing the
dependencies on|A| and|S|. However, as the differences be-
tween the proposal and each of the densities increase,j also
increases and may become arbitrarily large. In Sect. 6, we
usepdf(z|b, a) as a proposal distribution.

6 Experiments
This section presents experiments with a POMDP that as-
sists people with cognitive difficulties to complete activities
of daily living. Focusing on the task of handwashing, we
present a simplified POMDP for guiding patients with verbal
prompts as they wash their hands. The goal of such a system
is to minimize the human caregiver burden, and is part of an
ongoing research initiative applying intelligent reasoning to
assistive living[4]. In this paper, we present results from sim-
ulations of our methods on a simplified POMDP model for
the handwashing task. Fig. 3(a) shows the graphical model
of the handwashing POMDP. The POMDP’s actions are the
verbal prompts (corresponding to the canonical steps of hand-
washing:turn on water, wet hands, use soap, dry handsand
turn off water) and anull action where the system waits. The
states are defined by the variableshandsstate, which can be
{dirty, soapy, clean}, hand location, which can be{away,
tap, water, soap, towel}, handswet, which can be{wet, dry},
andwater, which can be{on, off}. We assume the hands start
dirty anddry, and the goal is to get themcleananddry, which
can only happen if they becomesoapyandwetat some inter-
mediate time. The water startsoff and must beoff for task
completion. The cost of a prompt is0.2, and a large reward
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Figure 3: a) POMDP model of handwashing. b) Example im-
age showing the regions induced by the observation function
alone,maxi P (x, y|hand location = i)

(20) is given when the hands are dry and clean and the water
is off. Smaller rewards are given for progressions through the
task: if the hands are clean (1), soapy (0.5) and wet (0.2), but
other variables are not as in the final goal state. The discount
wasγ = 0.85.

We model the system as being equipped with an impeller
in the water pipe, which returns0 when there is no water
flowing and1 when the water is on full. The sensor’s noise
is zero-mean Gaussian with standard deviationσ = 0.4825,
which gives it an85% accuracy (when the most likely state
of wateris considered). The position of the hands in the hori-
zontal plane is measured using a camera mounted in the ceil-
ing above the sink, connected to a computer vision system
that returns an estimate of the{x, y} position of the patient’s
dominant hand in the image using skin color[14]. Fig. 3(b)
shows an example image from the camera. The observation
function that relates these measured hand positions to the ac-
tual hand locationwas learned from a set of data taken from
the computer vision system. An actor simulated the repeated
handwashing trials for about 10 minutes. The vision system
tracked and reported the{x, y} position of the right (domi-
nant) hand, while a researcher annotated the data with the ac-
tual hand location.5 The functionsP (x, y|hand location =
i) were then learned by fitting a mixture of Gaussians to
the data annotated with the valuehand location = i.6

The mixture models were fit using a K-means initialization
followed by the expectation-maximization algorithm. Fig-
ure 3(b) shows the most likelyhand locations for each{x, y}
position induced by the learned mixtures of Gaussians. The
water flow observation function was not learned from data.

The water flow and hand position readings yield a 3D ob-
servation space. Although water flow and hand positions are
conditionally independent, the{x, y} coordinates of the mea-
sured hand positions are dependent. Hence, we cannot pro-
cess the observations sequentially as suggested in Sect. 5.1
and must resort to the sampling technique of Sect. 5.2. We
extended Perseus[24] with the sampling technique described

5The vision system only reports the hand position every 2 sec-
onds, or when the hand location changes and is located consistently
for 5 frames (1 second).

6The model orders were selected by minimizing the mini-
mum description length (MDL):−log(P (z|hand location)) +
1
2
MlogN , whereM is the number of parameters andN is the num-

ber of data points. This yielded between 2 mixture components for
each state. Theawaystate was fixed to have 1 mixture component.
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Figure 4: Example regions during a simulated trial at three
stages (from top to bottom, after 1, 3 and 4 actions): (a) shows
the best actions to take, the current belief state, and the current
location of the hand (star); (b) shows the regionsZcp, each
different shade corresponding to a different conditional plan
that will be followed if an observation is made in the region.

in Sect. 5.2 to compute an approximate discrete observation
function at each point-based backup. More precisely, 100 ob-
servations were sampled before each point-based backup to
approximate the aggregate probabilities of each observation
region induced by some conditional plan. We ran the algo-
rithm for 50 iterations with 227 sampled belief states. For
comparison purposes, we also ran the original Perseus al-
gorithm with a fixed discrete observation function obtained
by partitioning the plane of hand positions according to the
regions shown in Fig. 3(b) and by partitioning water flow
readings in two regions at0.5. This is a natural discretiza-
tion that arises from the observation function by consid-
ering the regions where eachpdf(x, y|hand location) and
pdf(impeller|water flow) are highest. The computed poli-
cies were then simulated, and actions were selected by moni-
toring the belief state and computing the best conditional plan
arg maxcp

∑
s b(s)αcp∗(s). The discounted rewards (aver-

aged over 10 trials of 100 simulated runs of 50 steps each) of
the policies obtained by dynamic partitioning are13.7± 1.4,
while those for fixed partitioning are4.7 ± 0.3, showing
that our sample-based dynamic partitioning technique outper-
forms the fixed discretization technique. The final conditional
plans were represented with64 α vectors for our dynamic al-
gorithm, and77 α vectors for the fixed discretization.

Figure 4 shows examples of the dynamic partitions found
by our technique at three stages during a simulated trial.
Since we cannot show 3D partitions, we show the 2D parti-
tions of the{x, y} plane (ignoring the water flow sensor). At

the beginning of the trial (top row, stage 1), the system will
either prompt to use the soap or turn the water on, based on
where it sees the hands. At this stage, the regionsZcp mainly
distinguish the areas surrounding the soap and the taps, since
these are the usual first steps in handwashing. Once the hands
are believed to be soapy and the water on (stage 3, middle
row),the system will prompt to rinse the hands, unless the
patient has rinsed their hands or has turned the water off, in
which case the prompt will be to turn the water off or on,
respectively. We see in Figure 4(b) (middle row) that there
are many regions now in the areas near the tap or under the
water. This is the most uncertain area for this system (see
Figure 3(b)), calling for many different conditional plans. Fi-
nally, at stage 4 (bottom row), the system believes the hands
are clean, and will prompt the user to dry their hands or turn
the water off. In this case, fewer possibilities remain, and so
there are fewer regions in Figure 4(b) (bottom row).

7 Conclusion

Exploiting the fact that observations are useful only to the
extent where they lead to different courses of actions, the pa-
per describes how to dynamically partition observation spaces
without any loss of information based on the current policy.
For policies with a small number of conditional plans, ob-
servations can be aggregated in a small number of regions
corresponding to the relevant observation features of the ap-
plication domain. The region-based observation function can
generally be constructed by numerical root-finding and inte-
gration algorithms for uni-dimensional observations or multi-
dimensional observations composed of conditionally inde-
pendent variables. For general multi-dimensional observa-
tions a general sampling technique was also described and
demonstrated on a realistic assisted living task.

Note that the dynamic partitioning technique proposed in
this paper is tightly integrated with point-based backups.
More precisely, a lossless dynamic partition of the observa-
tion space can be computed only with respect to a given belief
state and a set ofα-vectors. As a result, our technique can-
not be integrated with algorithms that do not use point-based
backups (e.g., Incremental Pruning[26], Bounded Policy Iter-
ation[18]). Furthermore, it cannot be integrated with the lin-
ear programs that find belief points prior to point-based back-
ups in the Witness algorithm[12]. At the moment, full inte-
gration is only possible with Linear Support[6], PBVI [17],
and Perseus[24] since these algorithms make use of the ob-
servation function only in point-based backups. Dynamic
lossless observation partitioning for a broader range of algo-
rithms is a possible direction for future research.

This paper tackles POMDPs with continuous observations,
but discrete states. As mentioned earlier, such POMDPs are
common in user modeling, event recognition and spoken-
dialog systems, since the observations correspond to con-
tinuous sensor readings and the states are abstract discrete
features. Note also that our dynamic partitioning technique
doesn’t require the state space to be discrete. In fact, Porta
et. al[11] recently proposed an extension to Perseus that can
handle continuous state spaces. Point-based backups are per-
formed in a similar fashion, but given the continuous nature



of the state space,α-functions are generated instead ofα-
vectors. Integrating our dynamic partitioning technique with
such continuous point-based backups should be possible and
is subject to future research.

Our current work in using POMDPs for assistive living
tasks involves learning model structure and user behaviors
from sequence data, rather than imposing our own struc-
ture on tasks. The POMDP models we learn have observa-
tion functions which are themselves dynamic Bayesian net-
works (DBNs) with video frame observations at each time
step, leading to a hierarchical model. Preliminary work along
these lines is reported in[10]. We wish to use the techniques
we have described in this paper both to solve these POMDPs
and to learn models of human behaviors from video sequence
data. Another potential research direction includes the explo-
ration of automated feature detection in application domains
such as image processing and speech recognition by policy-
directed observation aggregation.
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