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Abstract

Unsupervised Information Extraction (UIE) is the
task of extracting knowledge from text without us-
ing hand-tagged training examples. A fundamen-
tal problem for both UIE and supervised IE is as-
sessing the probability that extracted information
is correct. In massive corpora such as the Web,
the same extraction is found repeatedly in differ-
ent documents. How does this redundancy impact
the probability of correctness?

This paper introduces a combinatorial “balls-and-
urns” model that computes the impact of sample
size, redundancy, and corroboration from multi-

obtained only once. Because the documents that “support”
the extraction are, by and large, independently authored, our
confidence in an extraction increases dramatically with the

number of supporting documents. But by how much? How

do we precisely quantify our confidence in an extraction given

the available textual evidence?

This paper introduces a combinatorial model that enables
us to determine the probability that an observed extraction
is correct. We validate the performance of the model empiri-
cally on the task of extracting information from the Web using
KNOWITALL.

Our contributions are as follows:

1. A formal model that, unlike previous work, explicitly

ple distinct extraction rules on the probability that
an extraction is correct. We describe methods
for estimating the model's parameters in practice
and demonstrate experimentally that for UIE the
model’s log likelihoods are 15 times better, on av-
erage, than those obtained by Pointwise Mutual In-
formation (PMI) and the noisy-or model used in

models the impact of sample size, redundancy, and dif-
ferent extraction rules on the probability that an extrac-
tion is correct. We analyze the conditions under which
the model is applicable, and provide intuitions about its
behavior in practice.

. Methods for estimating the model's parameters in both

the UIE and supervised IE tasks.

previous work. For supervised IE, the model’s per-
formance is comparable to that of Support Vector
Machines, and Logistic Regression.

3. Experiments that demonstrate the model’s improved per-
formance over the techniques used to assess extraction
probability in previous work. For UIE, our model is a
factor of 15 closer to the correct log likelihood than the
noisy-or model used in previous work; the model is 20

Information Extraction (IE) is the task of automatically ex- times closer than KOwITALL’s Pointwise Mutual In-
tracting knowledge from text. Unsupervised IE (UIE) is IE in formation (PMI) method Etzioni et al, 2004, which

the absence of hand-tagged training data. Because UIE sys- is based on Turney’s PMI-IR algorithfiTurney, 2001
tems do not require human intervention, they can recursively ~ For supervised IE, our model achieves a 19% improve-
discover new relations, attributes, and instances in a rapid, ment in average log likelihood over the noisy-or model,
scalable manner as inNOWITALL [Etzioni et al, 2004; but is only marginally better than SVMs and logistic re-
2003. gression.

~ A fundamental problem for both supervised IE and UIE  The remainder of the paper is organized as follows. Section
is assessing the probability that extracted information is €ors jntroduces our abstract probabilistic model, and Section 3
rect. As explained in Section 5, previous IE work has useQjescripes its implementation in practice. Section 4 reports
a variety of techniques to address this problem, but hagn experimental results in four domains. Section 5 contrasts

yet to provide an adequate formal model of the impact ofgyr model with previous work; the paper concludes with a
redundancy—repeatedly obtaining the same extraction frorgiscyssion of future work.

different documents—on the probability of correctness. Yet
in massive corpora such as the Web, redundancy is one of t
main sources of confidence in extractions. rf The Umns Model
An extraction that is obtained from multiple, distinct doc- Our probabilistic model takes the form of a classic “balls-
uments is more likely to be a bona fide extraction than onend-urns” model from combinatorics. We first consider the

1 Introduction



single urn case, for simplicity, and then generalize to the full Note that these expressions include prior information about
multiple Urns Modelused in our experiments. We refer to the the labelx — for example,P(x € C) is the prior probability
model simply as BNs. that the stringe is a target label, an®(num(z) = r|z € C)

We think of |IE abstractly as a generative process that mapepresents the probability that a target labéd repeated on
text to extractions. Extractions repeat because distinct docWalls in the urn. In general, integrating this prior information
ments may yield the same extraction. For example, the Webould be valuable for IE systems; however, in the analysis and
page containing “Scenic towns such as Yakima...” and thexperiments that follow, we make the simplifying assumption
Web page containing “Washington towns such as Yakima...bf uniform priors, yielding the following simplified form:
both lead us to believe that Yakima is a correct extraction o
the relationCity(x)

Each extraction is modeled as a labeled ball in an urn. A p(; ¢ C|z appears k times in n draws) =
label represents either an instance of the target relation, or .k ek
an error. The information extraction process is modeled as Zrenum(@(g) (1-1%)
repeated draws from the urn, with replacement. Thus, in the S cum (Z)k(1 — Zyn—k
above example, two balls are drawn from the urn, each with renum(CUE)} s y
the label “Yakima”. The labels are instances of the relation2.1  The Uniform Special Case

City(x) . Each label may appear on a different number Ofgq jjystration, consider the simple case in which all labels

balls in the urn. Finally, there may be balls in the urn with ¢ C are repeated on the same number of balls. That
error labelssuch as “California”, representing cases Whereis num(c;) = Re for all ¢; € C, and assume also. that
1 1 - (2 H

the IE process generated an extraction thatasa member num(e;) = Ry for all e; € E. While these assumptions

of It:he tarlgl;et Lelation. hat ch . ~are unrealistic (in fact, we use a Zipf distribution foaum(b)
ormally, the parameters that characterize an urare: , o,r experiments), they are a reasonable approximation for
e C —the set of unique target labe|;| is the number of  the majority of labels, which lie on the flat tail of the Zipf

&’roposition 1

unique target labels in the urn. curve.
o E — the set of unique error labels?| is the number of Definep to b_g the precisi_on of the extraction process; that
unique error labels in the urn. is, the probability that a given draw comes from the target
. - relation. In the uniform case, we have:
e num(b) — the function giving the number of balls la-
beled byb whereb € C U E. num(B) is the multi-set _ |C|Rc
giving the number of balls for each labek B. b= |E|REg + |C|Re

Of course, |E systems do not have access to these param-The probability that @articular element ofC’ appears in a
eters d|rectly.. The goal of an IE system is to discern Wh'Chgiven draw is theme = 2., and similarlyp — =2
of the labels it extracts are in fact elements(ifbased on Using a Poisson mo<|jgll to approximate the leilnomiaI from
repeated draws from the urn. Thus, the central question w8 gt' 1 have: PP
are investigating isgiven that a particular labek was ex- roposition 1, we have.
gsoc;ggﬁ:itgr?he;;neaggt of, draws from the urn, what is the P(x € C|z appears k times in n draws) ~

In deriving this probability formally below, we assume the 1 @)
IE system has access to multi-setsn (C) andnum(E) giv- 14 %(%)ken@c —pE)
ing the number of times the labelsdhand E appear on balls
in the urn. In our experiments, we provide methods that es- In practice, the extraction process is noisy but informative,
timate these multi-sets in both unsupervised and supervise®P pc > pg. Notice that when this is true, Equation (2)
settings. We can express the probability that an element exshows that the odds that € C' increase exponentially with

tractedk of n times is of the target relation as follows: the number of timeg that x is extracted, but also decrease
First, we have that exponentially with the sample size
A few numerical examples illustrate the behavior of this
P(z appears k times in n draws|z € C) = equation. The examples assume that the precisiisn0.9.
n\ sk r\n—k Let |C| = |E| = 2,000. This means thakc = 9 x Rg—
Z (k) (—) (1 — —) P(num(z) =r|z € C) target balls are nine times as common in the urn as error balls.
. 5 5 Now, for k = 3 andn = 10,000 we haveP(z € C) =

wheres is the total number of balls in the urn, and the sum is?3:0%- Thus, we see that a small number of repetitions can
taken over possible repetition rates yield high confidence in an extraction. However, when the

Then we can express the desired quantity using BayeS2MPle size increases so that= 20, 000, and the other pa-
P g y 9 B meters are unchanged, the(w € C) drops t019.6%. On

Rule: X
the other hand, i® balls repeat much more frequently than
P(x c C|x appearsktimes inndraws) = F balls, SayRC =90 x REé?((Wlth |%| set to 20,0((;0, so that
T ) p remains unchanged), thét(x € C) rises t099.9%.
P(z appears ktimes inn draws|z € C)P(z € C) (1) The above examples enable us to illustrate the advantages

P(z appears k times in n draws) of URNS over the noisy-or model used in previous wokkn



et al, 2003; Agichtein and Gravano, 2000The noisy-or
model assumes that each extraction is an independent asser-
tion, correct a fractiop of the time, that the extracted label is
“true.” The noisy-or model assigns the following probability

to extractions:

Proisy—or(z € C|z appears k times) =1 — (1 — p)*
Therefore, the noisy-or model will assign the same
probability— 99.9%—in all three of the above examples.
Yet, as explained above9.9% is only correct in the case for
whichn = 10,000 andR¢c = 90 x Rg. As the other two ex-
amples show, for different sample sizes or repetition rates, the
noisy-or model can be highly inaccurate. This is not surpris-
ing given that the noisy-or model ignores the sample size and.

the repetition rates. Section 4 quantifies the improvements'9ureé 1:Schematic illustration of the number of distinct
obtained by UkNsin practice. abels in theC and E sets with repetition rater. The “con-

fusion region” is shaded.
2.2 Applicability of the Urns Model
Under what conditions does our redundancy model provide For example, consider the particularum(C) and

accurate probability estimates? First, labels from the targe,m(E) learned (in the unsupervised setting) for fien

setC' must be repeated on more balls in the urn than labelgg|ation in Ourexperiments_ For the Samp|e gize 134,912

from the ' set, as in Figure 1. The shaded region in Figure lysed in the experiments, expected number of true positives is
represents the “confusion region” — some of the labels in thi®g 133 and expected precision76.2%, which is close to
region will be classified incorrectly, even by the ideal classi-the actual observed true positives of 23,408 and precision of
fier with infinite data, because for these labels there simply;7.7%. Were we to increase the sample size to 1,000,000,
isn’t enough information to decide whether they belong'to  we would expect that true positives would increase to 47,609,
or E. Thus, our model is effective when the confusion re-and precision t84.0%. Thus, LkRNSand the above equations
gion is relatively small. Secondly, even for small confusionenable an IE system to intelligently choose its sample size
regions, the sample sizemust be large enough to approxi- depending on precision and recall requirements and resource

mate the two distributions shown in Figure 1; otherwise theconstraints, even in the absence of tagged training data.
probabilities output by the model will be inaccurate.

An attractive feature of EINSis that it enables us to esti- 2.3 Multiple Urns
mate its expected recall and precision as a function of sampi/e now generalize our model to encompass multiple urns.
size. If the distributions in Figure 1 cross at the dotted lineinformation is often extracted using multiple, distinct mech-
shown then, given a sufficiently large sample sizexpected  anisms — for example, an IE system might employ several
recall will be the fraction of the area under thecurve lying  patterns for extracting city names, e.g. “cities includirig
to the right of the dotted line. and “z and other towns.” It is often the case that different pat-
For a given sample size definer, to be the least number  terns have different modes of failure, so extractions appearing
of appearances at which an extraction is more likely to be across multiple patterns are generally more likely to be true
from theC set than the” set (given the distributions in Figure than those appearing for a Sing|e pattern. We can model this
1,7, can be computed using Proposition 1). Then we have: sjtuation by introducing multiple urns where each urn repre-
E[TruePositives| = sents a different extraction mec_haniém. .
Thus, instead of, total extractions, we have a sample size
w2l N ek r\n—k n,, for each urnm € M, with the extractionz appearing
|C] — Z Z <I<:> (g) (1 - ;) ko times. LetA(z, (ky,. .., km), (n1,...,nm)) denote this
rénum(C) k=0 event. Further, letd,, (z, k,n) be the event that label ap-
where we define “true positives” to be the number of ex-pearsk times inn draws from urnn, and assuming that the
tracted labelg; € C for which the model assigns probability draws from each urn are independent, we have:
P(c; € C) > 0.5. Proposition 2
The expected number of false positives is similarly:
Pz € C|A(z, (k1, ..., km),(n1,...,nm))) =

E[FalsePositives] = - 0 [
Tn—1 c, €C meM m\Ciy vm,y Ttm
S (M) () (-5 > econ Hmer P hnorin)
|E| - . Z(E) ’;0 (k) (;) (1 - ;) zeCUE LlmeM ; )

The expected precision of the system can then be approxi- With multiple urns, the distributions of labels among balls
mated aSP P y PPIOX5 the urns are represented by multi-setsm,, (C) and

Number of distinct labels
repeated on r balls

r

E[T'ruePositives] we may lump several mechanisms into a single urn if they tend
E|[FalsePositives| + E[TruePositives] 0 behave similarly.

E[Precision| ~



num,,(F). Expressing the correlation betweenm,,,(z) In these expressionsis the frequency rank of the extraction,
andnum,, (x) is an important modeling decision. Multiple assumed to be the same across all urns,@adndQ g are
urns are especially beneficial when the repetition rates for eleaormalizing constants such that

ments ofC are more strongly correlated across different urns

than they are for elements éf—that is, whemum,, (z) and Z Qci™%° = Z Qi *? =1

num,,,/(z) tend to be closer to each other fore C than for c;eC ei€E

x € E. Fortunately, this turns out to be the case in prac-

tice. Section 3 describes our method for modeling multi-urn_ FOF @ non-systematic errarwhich is not presentin urm,

: P(An(z, kmynp)) is 1if k,, = 0 and0 otherwise. Substi-
correlation. : ? . .

! tuting these expressions fé¥( A, (z, km, n.,)) into Propo-
3 Implementation of the Urns Model sition 2 gives the final form of our RINS model.

This section describes how we implememisforbothUIE 3.1 Efficient Computation
and supervised IE, and identifies the assumptions made i
each case.

In order to compute probabilities for extractions, we nee
a method for estimatingum(C') andnum/(E). For the pur-
pose of estimating these sets from tagged or untagged da
we assume thatum/(C) andnum(E) are Zipf distributed,
meaning that it; is theith most frequently repeated label in
C, thennum(c;) is proportional tai—*. We can then char-
acterize thevum(C) andnum/(FE) sets with five parameters:
the set size$C| and|E|, the shape parametets: and zg,
and the extraction precisign

To model multiple urns, we consider different extraction
precision®,, for each urn, but make the simplifying assump-
tion that the size and shape parameters are the same for
urns. As mentioned in Section 2, we expect repetition rat
correlation across urns to be higher for elements of treet
than for theE set. We model this correlation as follows: first,
elements of the”' set are assumed to come from the Same3 5 parameter Estimation
location on the Zipf curve for all urns, that is, their relative o
frequencies are perfectly correlated. Some elements of thé@ the event that a large sample of hand-tagged training ex-
E set are similar, and have the same relative frequency acrogénples is available for each target relation of interest, we
urns — these are treystematierrors. However, the rest ofthe €an directly estimate each of the parameters aiNsl We
E set is made up afion-systematierrors, meaning that they Use a population-based stochastic optimization technique to
appear for only one kind of extraction mechanism (for examidentify parameter settings that maximize the conditional log
ple, “Eastman Kodak” is extracted as an instancéith likelihood of the training da_\t_é.Once the parameters are set,
0n|y in phrases invo]ving the word “fi|m“, and not in those the model ){Ields a.probablllty. for each extraction, given the
involving the word “movie.”). Formally, non-systematic er- humber of times:,,, it appears in each urn and the number of
rors are labels that are present in some urns and not in othef@@wsn,, from each urn.
Each type of non-systematic error makes up some fraction of As argued ir(Etzioni et al, 2003, IE systems cannot rely
the E set, and these fractions are the parameters of our coPn hand-tagged training examples if they are to scale to ex-
relation model. Assuming this simple correlation model andtracting information on arbitrary relations that are not speci-
identical size and shape parameters across urns is too restrfted in advance. Implementingris for UIE requires a so-
tive in general— differences between extraction mechanismiéition to the challenging problem of estimatingm(C') and
are often more complex. However, our assumptions allow ugum(E) using untagged data. Létbe the multi-set consist-
to compute probabilities efficiently (as described below) andng of the number of times each unique label was extracted,
do not appear to hurt performance significantly in practice. |U| is the number of unique labels encountered, and the sam-

With this correlation model, if a label is an element of” ple sizen = 3_ i u.
or a systematic error, it will be present in all urns. Interms of In order to learnnum(C) and num(E) from untagged
Proposition 2, the probability that a labebppears:,,, times ~ data, we make the following assumptions:

in n,, draws fromm is: e Because the number of different possible errors is nearly

R feature of our implementation is that it allows for effi-
dcient computation of probabilities. In general, computing
the sum in Proposition 2 over the potentially la@eand £

ets would require significant computation for each extrac-
ion. However, given a fixed number of urns, withim (C')
andnum(FE) Zipf distributed, an integral approximation to
the sum in Proposition 2 (using a Poisson in place of the bi-
nomial in Equation 3) can be solved in closed form in terms
of incomplete Gamma functions. This closed form expres-
sion can be evaluated quickly, and thus probabilities for ex-
tractions can be obtained efficiently. This solution leverages
our assumptions that size and shape parameters are identical
gfross urns, and that relative frequencies are perfectly cor-
elated. Finding efficient techniques for computing proba-
ilities under less stringent assumptions is an item of future
work.

N, - unbounded, we assume that the error set is very farge.
P(Am(:v,km,nm)) - <km>(f”l($))km(1—fM(x)) mkm y'arg
(3) 2S.pecif_ically, we use the Differential Evolution routine built into
wheref,, (x) is the frequency of extractian. That is, Mathematica 5.0. , . _
B —zc c 3In our experiments, we s¢f;| = 10°. A sensitivity analysis
fm(ci) = pmQci ore; € showed that changind?| by an order of magnitude, in either direc-

fm(ei) = (1—pn)Qgri *Ffore; € E tion, resulted in only small changes to our results.



e We assume that bothum (C) andnum(E) are Zipfdis-  methods experimentally, and lastly compameNs with sev-

tributed where the parameter is set to 1. eral baseline methods in a supervised setting.
e In our experience with KowlITALL, we found that We evaluated our algorithms on extraction sets for
while different extraction rules have differing precision, the relationsCity(x) , Film(x) , Country(x) , and

each rule’s precision is stable across different relationdayorOf(xy) , taken from experiments performed|[it-
[Etzioni et al, 2009. URNSs takes this precision as an Zioni et al, 200§. The sample size was 64,581 foCity
input. To demonstrate thatriis is not overly sensitive 134,912 forFilm , 51,313 forCountry and 46,129 for
to this parameter, we chose a fixed value (0.9) and uselflayorOf . The extraction patterns were partitioned into

it as the precisiom,, for all urns in our experiments. urns based on the name the_y employed for their target re-
lation (e.g. “country” or “nation”) and whether they were

left-handed (e.g. “countries including’) or right-handed
. i . ) (e.g. “xr and other countries”). Each combination of rela-
quantities uniquely determineum(C) given our assump-  tion name and handedness was treated as a separate urn, re-
tions). Our EM algorithm proceeds as follows: sulting in four urns for each ofity(x) , Film(x) , and
1. Initialize |C| andz¢ to starting values. Country(x) , and two urns foMayorOf(x) .°> For each
2. Repeat until convergence: relation, we tagged a sample of 1000 extracted labels, using
: i external knowledge bases (the Tipster Gazetteer for cities and
(@) E-step Assign probabilities to each element&f ¢ |nternet Movie Database for films) and manually tagging
using Proposition (1). those instances not found in a knowledge base. In the UIE
(b) M-step Set|C| andzc from U using the probabil-  experiments, we evaluate our algorithms on all 1000 exam-
ities assigned in the E-step (details below). ples, and in the supervised IE experiments we perform 10-

We obtain|C| and z¢ in the M-step by first estimating the fold cross validation.
rank-frequency distribution for labels fro@iin the untagged )
data. From the untagged data and the probabilities found i#.1 UIE Experiments

Lhel Ef—ste%, metcan obtatﬁc [tk]ld :he exp\)l?lcttehd numbedr t%f la- We compare BNS against two other methods for unsuper-
€ls Irom at were extractesimes. We then round tN€se ;a4 jnformation extraction. First, in theoisy-or model

fractional expected counts into a discrete rank-frequency dis- ; : ; 4 oo
tribution with a number of elements equal to the expected t(ﬁg%?]ianp%et;’;%ﬁﬁﬂw Erﬁ an e)(({ri%“o? ka\?v%%?gw?: tshles :f_
meM m) s m

tal number of labels fron" in the untagged data., Ec[k].  qaction precision for urm:. We describe the second method
We obtainz¢ by fitting a Zipf curve to this rank-frequency below,

distribution by linear regression on a log-log scale. Lastly,

we set|C| = >, Eclk] + unseen, where we estimate the pgintwise Mutual Information
number of unseen labels of théset using Good-Turing esti-
mation {Gale and Sampson, 1995Specifically, we choose
unseen such that the probability mass of unseen labels i
equal to the expected fraction of the draws fr@hthat ex-
tracted labels seen only once.

This unsupervised learning strategy proved effective fo
target relations of different sizes; for example, the numbe
of elements of theCountry relation with non-negligible
extraction probability was about two orders of magnitude
smaller than that of thEilm andCity relations.

We then use Expectation Maximization (EM) ovéiin or-
der to arrive at appropriate values f@r| andz¢ (these two

Our previous work on KiowlTALL used Pointwise Mutual
Information (PMI) to obtain probability estimates for extrac-
Yions [Etzioni et al, 2008. Specifically, the PMI between

an extraction and a set of automatically generatisdrimi-
Pator phraseqe.g., “movies such as”) is computed from
y\/eb search engine hit counts. These PMI scores are used
as features in a Naive Bayes Classifier (NBC) to produce a
probability estimate for the extraction. The NBC is trained
using a set of automatically bootstrapped seed instances. The
Clearly, unsupervised learning relies on several strong aﬁgfg"\\/ﬂel vsv?[ﬁo':rigscg?srl?iegir?;? J?gﬁpagoengt{éﬁﬁ eht?(\)/:)r;gtgg;]ilr?;-
sumptions, though our sensitivity analysis has shown that th rocess; the negative seeds are taken from the positive seeds

model's performance is robust to some of them. In futur of other relations, as in other work (e.fLin et al, 2003)
work, we plan to perform a more comprehensive sensitivit ’ ) L ¥ :
b P P Y Although PMI was shown ifiEtzioniet al., 2009 to order

analysis of the model and also investigate its performance in tracti fairl I it has t ionificant short .
a semi-supervised setting. extractions fairly well, it has two significant shortcomings.

First, obtaining the hit counts needed to compute the PMI
4 Experimental Results scores is expensive, as it requires a large number of queries to
This section describes our experimental results under two set- Spraws from LkNs are intended to represent independent ex-
tings: unsupervised and supervised. We begin by descriliractions. Because the same sentence can be duplicated across multi-
ing the two unsupervised methods used in previous work: thele different Web documents, in these experiments we consider only
noisy-or model and PMI. We then compar&is with these  eachuniquesentence containing an extraction to be a draw from
- URNS. In experiments with other possibilities, including counting

“A sensitivity analysis showed that choosing a substantiallythe number of unique documents producing each extraction, or sim-
higher (0.95) or lower (0.80) value far,, still resulted in LRNS ply counting every occurrence of each extraction, we found that per-
outperforming the noisy-or model by at least a factor of 8 and PMIformance differences between the various approaches were negligi-
by at least a factor of 10 in the experiments described in Section 4.hle for our task.



web search engines. Second, the seeds produced by the bootg
strapping process tend not to be representative of the overall §
distribution of extractions. This combined with the probabil-
ity polarization introduced by the NBC tends to give inaccu-
rate probability estimates.

B urns

O binomial

O pmi

Discussion of UIE Results

The results of our unsupervised experiments are shown in
Figure 2. We plot deviation from thideal log likelihood—
defined as the maximum achievable log likelihood given our
feature set.

Our experimental results demonstrate thatNd over-
comes the weaknesses of PMI. FirsgNs's probabilities are
far more accurate than PMI’s, achieving a log likelihood that
is a factor of 20 closer to the ideal, on average (Figure 2).
Second, B&Nsis substantially more efficient as shown in Ta-

ble 1. Figure 2:Deviation of average log likelihood from the ideal

This eff_|C|ency gain requires some explan.atlonNdj(N- .. for four relations (lower is better). On average,URNSout-
ITALL relies on queries to Web search engines to identify

Web pages containing potential extractions. The number ngerzfgrms noisy-or by a factor of 15, and PMI by a factor
gueries KNOWITALL can issue daily is limited, and query- |
ing over the Web is, by far, KOWITALL’S most expensive

:

Country  MayorOf

[ . _l

0 T T
City Film

Deviation from ideal log likelih

operation. Thus, number of search engine queries is our effi- City | Film | MayorOf | Country
ciency metric. Letd be the number of discriminator phrases Speedup | 17.3x | 9.5x 1.9x 3.1x
used by the PMI method as explained in Section 4.1. The Averagek 3.7 4.0 20.7 23.3

PMI method require®(d) search engine queries to compute
the PMI of each extraction from search engine hit counts. InTable 1:Improved Efficiency Due to URNs. The top row
contrast, ULRNS computes probabilitiedirectly from the set  reports the number of search engine queries made by
of extractions—requiringio additional queries, which cuts KNOWITALL using PMI divided by the number of queries
KNOWITALL’s queries by factors ranging from 1.9to 17.  for KNOWITALL using URNS. The bottom row shows that
As explained in Section 2, the noisy-or model ignores tarPMI's queries increase with k—the average number of
get set size and sample size, which leads it to assign probéistinct labels for each relation. Thus, speedup tends to
bilities that are far too high for th€ountry andMayorOf  vary inversely with the average number of times each la-
relations, where the average number of times each label i€l is drawn.
extracted is high (see bottom row of Table 1). This is fur-
ther illustrated for theCountry relation in Figure 3. The

4

noisy-or model assigns appropriate probabilities for low sam- 3

ple sizes, because in this case the overall precision of ex- __g 35

tracted labels is in fact fairly high, as predicted by the noisy-or S

model. However, as sample size increases relative to the num-= 3 |

ber of true countries, the overall precision of the extracted la- & 25 |

bels decreases—and the noisy-or estimate worsens. On the% ' —urns
other hand, B&Ns avoids this problem by accounting forthe & 2 - .
interaction between target set size and sample size, adjust-" nolsy-or
ing its probability estimates as sample size increases. Given § 1.5 1

sufficient sample size, kNS performs close to the ideal log ~ *=

likelihood, improving slightly with more samples as the es- § 1

timates obtained by the EM process become more accurate.® (5 |

Overall, URNS assigns far more accurate probabilities than g

the noisy-or model, and its log likelihood is a factor of 15 2 o ‘ ‘ ‘ ‘ ‘

closer to the ideal, on average. The very large differences be-
tween LRNS and both the noisy-or model and PMI suggest
that, even if the performance offiis degrades in other do-

mains, it is quite likely to still outperform both PMI and the g ;e 3:peviation of average log likelihood from the ideal
hoisy-or model. . - . . as sample size varies for th&Country relation (lower is
Our computation of log-likelihood contains a numerical petter). Urns performs close to the ideal given sufficient

detail that could potentially influence our results. To avoid thesample size, whereas noisy-or becomes less accurate as
possibility of a likelihood of zero, we restrict the probabilities sample size ’increases.

generated by BNS and the other methods to lie within the

0 10000 20000 30000 40000 50000 60000

Sample size (n)



range (0.00001, 0.99999). Widening this range tended to im5 Related Work

prove URNSs performance relative to the other methods, as ) i

this increases the penalty for erroneously assigning extrem@ contrast to the bulk of previous |E work, our focus is on un-
probabilities—a problem more prevalent for PMI and noisy-Supervised IE (UIE) where RNs substantially outperforms
or than for LRNS. Even if we narrow the range by two digits Previous methods (Figure 2).

of precision, to (0.001, 0.999), rks still outperforms PMI In addition to the noisy-or models we compare against in
by a factor of 15, and noisy-or by a factor of 13. Thus, we areour experiments, the IE literature contains a variety of heuris-
comfortable that the differences observed are not an artifadics using repetition as an indication of the veracity of ex-

of this design decision. tracted information. For example, Riloff and Jor{&sloff
_ _ and Jones, 1999ank extractions by the number of distinct
4.2 Supervised IE Experiments patterns generating them, plus a factor for the reliability of

We compare BNswith three Supervised methods. All meth- the patte_rns. Our work i.S intended_ to formalize these heu_riS-
ods utilize the same feature set arN&, namely the extrac-  tic techniques, and unlike the noisy-or models, we explic-
tion countsk,,,. ity model the distribution of the target and error sets (our
; . num(C) andnum(E)), which is shown to be important for
e noisy-or — Has one parameter per urmn, making a Selyood performance in Section 4.1. The accuracy of the proba-
of M parameterghy, ..., har), and assigns probability i, estimates produced by the heuristic and noisy-or meth-

equal to ods is rarely evaluated explicitly in the IE literature, although
1— H (1= hp)Fm. most systems make implicit use of such estimates. For ex-
meM ample, bootstrap-learning systems start with a set of seed
e logistic regression — Has M + 1 parameters Instances of a given relation, which are used to identify ex-
(a,b1,ba,...,by), and assigns probability equal traction patterns for the relation; thgse patterns are in turn
to used to extract further instances (¢ Biloff and Jones, 1999;
1 Lin et al, 2003; Agichtein and Gravano, 2000As this pro-
1+ et mens kmbm cess iterates, random extraction errors result in overly gen-

eral extraction patterns, leading the system to extract further
erroneous instances. The more accurate estimates of extrac-
tion probabilities produced by RNswould help prevent this
“concept drift.”

e SVM — Consists of an SVM classifier with a Gaussian
kernel. To transform the output of the classifier into a
probability, we use the probability estimation built-in to

Ig_:sBuSchgAgr[gshs?gr? ;Qﬂégviﬂogégggs \I/Salzissed on lo Skounakis and CravelSkounakis and Craven, 20008e-
’ velop a probabilistic model for combining evidence from
Parameters maximizing the conditional likelihood of the multiple extractions in a supervised setting. Their problem
training data were found for the noisy-or and logistic regresformulation differs from ours, as they classify each occur-
sion models using Differential Evolution. In the SVM case, rence of an extraction, and then use a binomial model along
we performed grid search to find the kernel parameters givwith the false positive and true positive rates of the classi-
ing the best likelihood performance for each training set —thigier to obtain the probability that at least one occurrence is a
grid search was required to get acceptable performance froffue positive. Similar to the above approaches, they do not
the SVM on our task. explicitly account for sample size, nor do they model the
The results of our supervised learning experiments argistribution of target and error extractions.
shown in Table 2. ENS, t_)ecause itis more expres_sive, IS Culotta and McCalluniCulotta and McCallum, 20Q4ro-
able to outperform the noisy-or and logistic regression mody;ige a model for assessing the confidence of extracted infor-
els. In terms of deviation from the ideal log likelihood, we mation using conditional random fields (CRFs). Their work
find that on average kNS outperforms the noisy-or model focyses on assigning accurate confidence values to individual
by 19%, logistic regression by 10%, but SVM by only 0.4%. gccurrences of an extracted field based on textual features.
. i This is complementary to our focus combiningconfidence
_ Cityl Film| Mayor] Country Average  estimates from multiple occurrences of the same extraction.
noisy-or | 0.0439 0.1256 0.0857 0.0793 0.083 In fact, each possible feature vector processed by the CRF in
logistic [Culotta and McCallum, 20Q4an be thought of as a virtual
regression 0.0466 0.0893 0.0653 0.102Q 0.0759 urn m in our URNS. The confidence output of Culotta and
SVM 0.0444 0.0863 0.0659 0.0769 0.0684 McCallum’s model could then be used to provide the preci-
URNS 0.0418 0.0764 0.0721 0.0823 0.0681 sionp,, for the urn.
] ) o Our work is similar in spirit to BLOG, a language for speci-
Table 2: Supervised IE experiments. Deviation from the  fying probability distributions over sets with unknown objects
ideal log likelihood for each method and each relation  [Milch et al, 2004. As in our work, BLOG models treat ob-
(lower is better). The overall performance differences are  gervations as draws from a set of balls in an urn. Whereas
small, with URNS 19% closer to the ideal than noisy-or, Bl OG is intended to be a general modeling framework for
on average, and 10% closer than logistic regression. The nropabilistic first-order logic, our work is directed at mod-
overall performance of SVM is close to that ofURNS. eling redundancy in IE. In contrast fMilch et al, 2004,

we provide supervised and unsupervised learning methods




for our model and experiments demonstrating their efficacyLin et al, 2003 W. Lin, R. Yangarber, and R. Grishman.
in practice. Bootstrapped learning of semantic classedCML Work-
shop on The Continuum from Labeled to Unlabeled Data
2003.

[Magniniet al, 2004 B. Magnini, M. Negri, R. Prevete, and
H. Tanev. Is it the right answer? exploiting web redun-
dancy for answer validation. IACL, 2002.

6 Conclusions and Future Work

This paper introduced a combinatoriaRNS model to the
problem of assessing the probability that an extraction is cor-
rect. The paper described supervised and unsupervised meth- i )
ods for estimating the parameters of the model from data, angMilch et al, 2004 B. Milch, B. Marthi, and S. Russell.
reported on experiments showing thakis massively out- BLOG: Relational modeling with unknown objects. In
performs previous methods in the unsupervised case, and is ICML Workshop on Statistical Relational Learning and Its
slightly better than baseline methods in the supervised case. Connections to Other Field2004.

Of course, additional experiments and a more comprehensi@iloff and Jones, 1999E. Riloff and R. Jones. Learning
sensitivity analysis of BNs are necessary. dictionaries for information extraction by multi-level boot-

URNSs is applicable to tasks other than IE. For example, strapping. INPAAAI/IAAI 1999.

PMI computed over search engine hit counts has been used,  \nakis and Craven, 2008/. Skounakis and M. Craven.
to determine synonymTurney, 2001, and for question an- Evidence combination in biomedical natural-language

swering[Magnini et al, 2003. In the synonymy case, for processing. IBIOKDD, 2003,

example, the PMI between two terms is used as a measure of

their synonymy; applying EINs to the same co-occurrence [Turney, 2001 P. D. Turney. Mining the Web for synonyms:
statistics should result in a more accurate probabilistic assess- PMI-IR versus LSA on TOEFL Lecture Notes in Com-
ment of whether two terms are synonyms. Comparimpe puter Science2167:491-502, 2001.

with PMI on these tasks is a topic for future work.
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