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Abstract
Unsupervised Information Extraction (UIE) is the
task of extracting knowledge from text without us-
ing hand-tagged training examples. A fundamen-
tal problem for both UIE and supervised IE is as-
sessing the probability that extracted information
is correct. In massive corpora such as the Web,
the same extraction is found repeatedly in differ-
ent documents. How does this redundancy impact
the probability of correctness?
This paper introduces a combinatorial “balls-and-
urns” model that computes the impact of sample
size, redundancy, and corroboration from multi-
ple distinct extraction rules on the probability that
an extraction is correct. We describe methods
for estimating the model’s parameters in practice
and demonstrate experimentally that for UIE the
model’s log likelihoods are 15 times better, on av-
erage, than those obtained by Pointwise Mutual In-
formation (PMI) and the noisy-or model used in
previous work. For supervised IE, the model’s per-
formance is comparable to that of Support Vector
Machines, and Logistic Regression.

1 Introduction
Information Extraction (IE) is the task of automatically ex-
tracting knowledge from text. Unsupervised IE (UIE) is IE in
the absence of hand-tagged training data. Because UIE sys-
tems do not require human intervention, they can recursively
discover new relations, attributes, and instances in a rapid,
scalable manner as in KNOWITALL [Etzioni et al., 2004;
2005].

A fundamental problem for both supervised IE and UIE
is assessing the probability that extracted information is cor-
rect. As explained in Section 5, previous IE work has used
a variety of techniques to address this problem, but has
yet to provide an adequate formal model of the impact of
redundancy—repeatedly obtaining the same extraction from
different documents—on the probability of correctness. Yet
in massive corpora such as the Web, redundancy is one of the
main sources of confidence in extractions.

An extraction that is obtained from multiple, distinct doc-
uments is more likely to be a bona fide extraction than one

obtained only once. Because the documents that “support”
the extraction are, by and large, independently authored, our
confidence in an extraction increases dramatically with the
number of supporting documents. But by how much? How
do we precisely quantify our confidence in an extraction given
the available textual evidence?

This paper introduces a combinatorial model that enables
us to determine the probability that an observed extraction
is correct. We validate the performance of the model empiri-
cally on the task of extracting information from the Web using
KNOWITALL .

Our contributions are as follows:

1. A formal model that, unlike previous work, explicitly
models the impact of sample size, redundancy, and dif-
ferent extraction rules on the probability that an extrac-
tion is correct. We analyze the conditions under which
the model is applicable, and provide intuitions about its
behavior in practice.

2. Methods for estimating the model’s parameters in both
the UIE and supervised IE tasks.

3. Experiments that demonstrate the model’s improved per-
formance over the techniques used to assess extraction
probability in previous work. For UIE, our model is a
factor of 15 closer to the correct log likelihood than the
noisy-or model used in previous work; the model is 20
times closer than KNOWITALL ’s Pointwise Mutual In-
formation (PMI) method[Etzioni et al., 2004], which
is based on Turney’s PMI-IR algorithm[Turney, 2001].
For supervised IE, our model achieves a 19% improve-
ment in average log likelihood over the noisy-or model,
but is only marginally better than SVMs and logistic re-
gression.

The remainder of the paper is organized as follows. Section
2 introduces our abstract probabilistic model, and Section 3
describes its implementation in practice. Section 4 reports
on experimental results in four domains. Section 5 contrasts
our model with previous work; the paper concludes with a
discussion of future work.

2 The Urns Model
Our probabilistic model takes the form of a classic “balls-
and-urns” model from combinatorics. We first consider the



single urn case, for simplicity, and then generalize to the full
multipleUrns Modelused in our experiments. We refer to the
model simply as URNS.

We think of IE abstractly as a generative process that maps
text to extractions. Extractions repeat because distinct docu-
ments may yield the same extraction. For example, the Web
page containing “Scenic towns such as Yakima...” and the
Web page containing “Washington towns such as Yakima...”
both lead us to believe that Yakima is a correct extraction of
the relationCity(x) .

Each extraction is modeled as a labeled ball in an urn. A
label represents either an instance of the target relation, or
an error. The information extraction process is modeled as
repeated draws from the urn, with replacement. Thus, in the
above example, two balls are drawn from the urn, each with
the label “Yakima”. The labels are instances of the relation
City(x) . Each label may appear on a different number of
balls in the urn. Finally, there may be balls in the urn with
error labels such as “California”, representing cases where
the IE process generated an extraction that isnot a member
of the target relation.

Formally, the parameters that characterize an urn are:

• C – the set of unique target labels;|C| is the number of
unique target labels in the urn.

• E – the set of unique error labels;|E| is the number of
unique error labels in the urn.

• num(b) – the function giving the number of balls la-
beled byb whereb ∈ C ∪ E. num(B) is the multi-set
giving the number of balls for each labelb ∈ B.

Of course, IE systems do not have access to these param-
eters directly. The goal of an IE system is to discern which
of the labels it extracts are in fact elements ofC, based on
repeated draws from the urn. Thus, the central question we
are investigating is:given that a particular labelx was ex-
tractedk times in a set ofn draws from the urn, what is the
probability thatx ∈ C?

In deriving this probability formally below, we assume the
IE system has access to multi-setsnum(C) andnum(E) giv-
ing the number of times the labels inC andE appear on balls
in the urn. In our experiments, we provide methods that es-
timate these multi-sets in both unsupervised and supervised
settings. We can express the probability that an element ex-
tractedk of n times is of the target relation as follows:

First, we have that

P (x appears k times inn draws|x ∈ C) =∑
r
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P (num(x) = r|x ∈ C)

wheres is the total number of balls in the urn, and the sum is
taken over possible repetition ratesr.

Then we can express the desired quantity using Bayes
Rule:

P (x ∈ C|x appears k times inn draws) =
P (x appears k times inn draws|x ∈ C)P (x ∈ C)

P (x appears k times inn draws)
(1)

Note that these expressions include prior information about
the labelx – for example,P (x ∈ C) is the prior probability
that the stringx is a target label, andP (num(x) = r|x ∈ C)
represents the probability that a target labelx is repeated onr
balls in the urn. In general, integrating this prior information
could be valuable for IE systems; however, in the analysis and
experiments that follow, we make the simplifying assumption
of uniform priors, yielding the following simplified form:

Proposition 1

P (x ∈ C|x appears k times inn draws) =∑
r∈num(C)(
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2.1 The Uniform Special Case
For illustration, consider the simple case in which all labels
from C are repeated on the same number of balls. That
is, num(ci) = RC for all ci ∈ C, and assume also that
num(ei) = RE for all ei ∈ E. While these assumptions
are unrealistic (in fact, we use a Zipf distribution fornum(b)
in our experiments), they are a reasonable approximation for
the majority of labels, which lie on the flat tail of the Zipf
curve.

Definep to be the precision of the extraction process; that
is, the probability that a given draw comes from the target
relation. In the uniform case, we have:

p =
|C|RC

|E|RE + |C|RC

The probability that aparticular element ofC appears in a
given draw is thenpC = p

|C| , and similarlypE = 1−p
|E| .

Using a Poisson model to approximate the binomial from
Proposition 1, we have:

P (x ∈ C|x appears k times inn draws) ≈
1

1 + |E|
|C| (

pE

pC
)ken(pC−pE)

(2)

In practice, the extraction process is noisy but informative,
so pC > pE . Notice that when this is true, Equation (2)
shows that the odds thatx ∈ C increase exponentially with
the number of timesk that x is extracted, but also decrease
exponentially with the sample sizen.

A few numerical examples illustrate the behavior of this
equation. The examples assume that the precisionp is 0.9.
Let |C| = |E| = 2, 000. This means thatRC = 9 × RE—
target balls are nine times as common in the urn as error balls.
Now, for k = 3 andn = 10, 000 we haveP (x ∈ C) =
93.0%. Thus, we see that a small number of repetitions can
yield high confidence in an extraction. However, when the
sample size increases so thatn = 20, 000, and the other pa-
rameters are unchanged, thenP (x ∈ C) drops to19.6%. On
the other hand, ifC balls repeat much more frequently than
E balls, sayRC = 90 × RE (with |E| set to 20,000, so that
p remains unchanged), thenP (x ∈ C) rises to99.9%.

The above examples enable us to illustrate the advantages
of URNS over the noisy-or model used in previous work[Lin



et al., 2003; Agichtein and Gravano, 2000]. The noisy-or
model assumes that each extraction is an independent asser-
tion, correct a fractionp of the time, that the extracted label is
“true.” The noisy-or model assigns the following probability
to extractions:

Pnoisy−or(x ∈ C|x appears k times) = 1− (1− p)k

Therefore, the noisy-or model will assign the same
probability— 99.9%—in all three of the above examples.
Yet, as explained above,99.9% is only correct in the case for
whichn = 10, 000 andRC = 90×RE . As the other two ex-
amples show, for different sample sizes or repetition rates, the
noisy-or model can be highly inaccurate. This is not surpris-
ing given that the noisy-or model ignores the sample size and
the repetition rates. Section 4 quantifies the improvements
obtained by URNS in practice.

2.2 Applicability of the Urns Model
Under what conditions does our redundancy model provide
accurate probability estimates? First, labels from the target
setC must be repeated on more balls in the urn than labels
from theE set, as in Figure 1. The shaded region in Figure 1
represents the “confusion region” – some of the labels in this
region will be classified incorrectly, even by the ideal classi-
fier with infinite data, because for these labels there simply
isn’t enough information to decide whether they belong toC
or E. Thus, our model is effective when the confusion re-
gion is relatively small. Secondly, even for small confusion
regions, the sample sizen must be large enough to approxi-
mate the two distributions shown in Figure 1; otherwise the
probabilities output by the model will be inaccurate.

An attractive feature of URNS is that it enables us to esti-
mate its expected recall and precision as a function of sample
size. If the distributions in Figure 1 cross at the dotted line
shown then, given a sufficiently large sample sizen, expected
recall will be the fraction of the area under theC curve lying
to the right of the dotted line.

For a given sample sizen, defineτn to be the least number
of appearancesk at which an extraction is more likely to be
from theC set than theE set (given the distributions in Figure
1, τn can be computed using Proposition 1). Then we have:

E[TruePositives] =
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where we define “true positives” to be the number of ex-
tracted labelsci ∈ C for which the model assigns probability
P (ci ∈ C) > 0.5.

The expected number of false positives is similarly:

E[FalsePositives] =

|E| −
∑

r∈num(E)
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The expected precision of the system can then be approxi-
mated as:

E[Precision] ≈ E[TruePositives]
E[FalsePositives] + E[TruePositives]

Figure 1:Schematic illustration of the number of distinct
labels in theC andE sets with repetition rater. The “con-
fusion region” is shaded.

For example, consider the particularnum(C) and
num(E) learned (in the unsupervised setting) for theFilm
relation in our experiments. For the sample sizen = 134, 912
used in the experiments, expected number of true positives is
26,133 and expected precision is70.2%, which is close to
the actual observed true positives of 23,408 and precision of
67.7%. Were we to increase the sample size to 1,000,000,
we would expect that true positives would increase to 47,609,
and precision to84.0%. Thus, URNSand the above equations
enable an IE system to intelligently choose its sample size
depending on precision and recall requirements and resource
constraints, even in the absence of tagged training data.

2.3 Multiple Urns
We now generalize our model to encompass multiple urns.
Information is often extracted using multiple, distinct mech-
anisms – for example, an IE system might employ several
patterns for extracting city names, e.g. “cities includingx”
and “x and other towns.” It is often the case that different pat-
terns have different modes of failure, so extractions appearing
across multiple patterns are generally more likely to be true
than those appearing for a single pattern. We can model this
situation by introducing multiple urns where each urn repre-
sents a different extraction mechanism.1

Thus, instead ofn total extractions, we have a sample size
nm for each urnm ∈ M , with the extractionx appearing
km times. LetA(x, (k1, . . . , km), (n1, . . . , nm)) denote this
event. Further, letAm(x, k, n) be the event that labelx ap-
pearsk times inn draws from urnm, and assuming that the
draws from each urn are independent, we have:

Proposition 2

P (x ∈ C|A(x, (k1, . . . , km), (n1, . . . , nm))) =∑
ci∈C

∏
m∈M P (Am(ci, km, nm))∑

x∈C∪E

∏
m∈M P (Am(x, km, nm))

With multiple urns, the distributions of labels among balls
in the urns are represented by multi-setsnumm(C) and

1We may lump several mechanisms into a single urn if they tend
to behave similarly.



numm(E). Expressing the correlation betweennumm(x)
andnumm′(x) is an important modeling decision. Multiple
urns are especially beneficial when the repetition rates for ele-
ments ofC are more strongly correlated across different urns
than they are for elements ofE—that is, whennumm(x) and
numm′(x) tend to be closer to each other forx ∈ C than for
x ∈ E. Fortunately, this turns out to be the case in prac-
tice. Section 3 describes our method for modeling multi-urn
correlation.

3 Implementation of the Urns Model
This section describes how we implement URNS for both UIE
and supervised IE, and identifies the assumptions made in
each case.

In order to compute probabilities for extractions, we need
a method for estimatingnum(C) andnum(E). For the pur-
pose of estimating these sets from tagged or untagged data,
we assume thatnum(C) andnum(E) are Zipf distributed,
meaning that ifci is theith most frequently repeated label in
C, thennum(ci) is proportional toi−zC . We can then char-
acterize thenum(C) andnum(E) sets with five parameters:
the set sizes|C| and |E|, the shape parameterszC andzE ,
and the extraction precisionp.

To model multiple urns, we consider different extraction
precisionspm for each urn, but make the simplifying assump-
tion that the size and shape parameters are the same for all
urns. As mentioned in Section 2, we expect repetition rate
correlation across urns to be higher for elements of theC set
than for theE set. We model this correlation as follows: first,
elements of theC set are assumed to come from the same
location on the Zipf curve for all urns, that is, their relative
frequencies are perfectly correlated. Some elements of the
E set are similar, and have the same relative frequency across
urns – these are thesystematicerrors. However, the rest of the
E set is made up ofnon-systematicerrors, meaning that they
appear for only one kind of extraction mechanism (for exam-
ple, “Eastman Kodak” is extracted as an instance ofFilm
only in phrases involving the word “film”, and not in those
involving the word “movie.”). Formally, non-systematic er-
rors are labels that are present in some urns and not in others.
Each type of non-systematic error makes up some fraction of
theE set, and these fractions are the parameters of our cor-
relation model. Assuming this simple correlation model and
identical size and shape parameters across urns is too restric-
tive in general— differences between extraction mechanisms
are often more complex. However, our assumptions allow us
to compute probabilities efficiently (as described below) and
do not appear to hurt performance significantly in practice.

With this correlation model, if a labelx is an element ofC
or a systematic error, it will be present in all urns. In terms of
Proposition 2, the probability that a labelx appearskm times
in nm draws fromm is:

P (Am(x, km, nm)) =
(

nm

km

)
(fm(x))km(1−fm(x))nm−km

(3)
wherefm(x) is the frequency of extractionx. That is,

fm(ci) = pmQCi−zC for ci ∈ C

fm(ei) = (1− pm)QEi−zE for ei ∈ E

In these expressions,i is the frequency rank of the extraction,
assumed to be the same across all urns, andQC andQE are
normalizing constants such that∑

ci∈C

QCi−zC =
∑
ei∈E

QEi−zE = 1

For a non-systematic errorx which is not present in urnm,
P (Am(x, km, nm)) is 1 if km = 0 and0 otherwise. Substi-
tuting these expressions forP (Am(x, km, nm)) into Propo-
sition 2 gives the final form of our URNS model.

3.1 Efficient Computation
A feature of our implementation is that it allows for effi-
cient computation of probabilities. In general, computing
the sum in Proposition 2 over the potentially largeC andE
sets would require significant computation for each extrac-
tion. However, given a fixed number of urns, withnum(C)
andnum(E) Zipf distributed, an integral approximation to
the sum in Proposition 2 (using a Poisson in place of the bi-
nomial in Equation 3) can be solved in closed form in terms
of incomplete Gamma functions. This closed form expres-
sion can be evaluated quickly, and thus probabilities for ex-
tractions can be obtained efficiently. This solution leverages
our assumptions that size and shape parameters are identical
across urns, and that relative frequencies are perfectly cor-
related. Finding efficient techniques for computing proba-
bilities under less stringent assumptions is an item of future
work.

3.2 Parameter Estimation
In the event that a large sample of hand-tagged training ex-
amples is available for each target relation of interest, we
can directly estimate each of the parameters of URNS. We
use a population-based stochastic optimization technique to
identify parameter settings that maximize the conditional log
likelihood of the training data.2 Once the parameters are set,
the model yields a probability for each extraction, given the
number of timeskm it appears in each urn and the number of
drawsnm from each urn.

As argued in[Etzioni et al., 2005], IE systems cannot rely
on hand-tagged training examples if they are to scale to ex-
tracting information on arbitrary relations that are not speci-
fied in advance. Implementing URNS for UIE requires a so-
lution to the challenging problem of estimatingnum(C) and
num(E) using untagged data. LetU be the multi-set consist-
ing of the number of times each unique label was extracted;
|U | is the number of unique labels encountered, and the sam-
ple sizen =

∑
u∈U u.

In order to learnnum(C) and num(E) from untagged
data, we make the following assumptions:

• Because the number of different possible errors is nearly
unbounded, we assume that the error set is very large.3

2Specifically, we use the Differential Evolution routine built into
Mathematica 5.0.

3In our experiments, we set|E| = 106. A sensitivity analysis
showed that changing|E| by an order of magnitude, in either direc-
tion, resulted in only small changes to our results.



• We assume that bothnum(C) andnum(E) are Zipf dis-
tributed where thezE parameter is set to 1.

• In our experience with KNOWITALL , we found that
while different extraction rules have differing precision,
each rule’s precision is stable across different relations
[Etzioni et al., 2005]. URNS takes this precision as an
input. To demonstrate that URNS is not overly sensitive
to this parameter, we chose a fixed value (0.9) and used
it as the precisionpm for all urns in our experiments.4

We then use Expectation Maximization (EM) overU in or-
der to arrive at appropriate values for|C| andzC (these two
quantities uniquely determinenum(C) given our assump-
tions). Our EM algorithm proceeds as follows:

1. Initialize |C| andzC to starting values.

2. Repeat until convergence:

(a) E-step Assign probabilities to each element ofU
using Proposition (1).

(b) M-step Set|C| andzC from U using the probabil-
ities assigned in the E-step (details below).

We obtain|C| andzC in the M-step by first estimating the
rank-frequency distribution for labels fromC in the untagged
data. From the untagged data and the probabilities found in
the E-step, we can obtainEC [k], the expected number of la-
bels fromC that were extractedk times. We then round these
fractional expected counts into a discrete rank-frequency dis-
tribution with a number of elements equal to the expected to-
tal number of labels fromC in the untagged data,

∑
k EC [k].

We obtainzC by fitting a Zipf curve to this rank-frequency
distribution by linear regression on a log-log scale. Lastly,
we set|C| =

∑
k EC [k] + unseen, where we estimate the

number of unseen labels of theC set using Good-Turing esti-
mation ([Gale and Sampson, 1995]). Specifically, we choose
unseen such that the probability mass of unseen labels is
equal to the expected fraction of the draws fromC that ex-
tracted labels seen only once.

This unsupervised learning strategy proved effective for
target relations of different sizes; for example, the number
of elements of theCountry relation with non-negligible
extraction probability was about two orders of magnitude
smaller than that of theFilm andCity relations.

Clearly, unsupervised learning relies on several strong as-
sumptions, though our sensitivity analysis has shown that the
model’s performance is robust to some of them. In future
work, we plan to perform a more comprehensive sensitivity
analysis of the model and also investigate its performance in
a semi-supervised setting.

4 Experimental Results
This section describes our experimental results under two set-
tings: unsupervised and supervised. We begin by describ-
ing the two unsupervised methods used in previous work: the
noisy-or model and PMI. We then compare URNS with these

4A sensitivity analysis showed that choosing a substantially
higher (0.95) or lower (0.80) value forpm still resulted in URNS
outperforming the noisy-or model by at least a factor of 8 and PMI
by at least a factor of 10 in the experiments described in Section 4.1.

methods experimentally, and lastly compare URNS with sev-
eral baseline methods in a supervised setting.

We evaluated our algorithms on extraction sets for
the relationsCity(x) , Film(x) , Country(x) , and
MayorOf(x,y) , taken from experiments performed in[Et-
zioni et al., 2005]. The sample sizen was 64,581 forCity ,
134,912 forFilm , 51,313 forCountry and 46,129 for
MayorOf . The extraction patterns were partitioned into
urns based on the name they employed for their target re-
lation (e.g. “country” or “nation”) and whether they were
left-handed (e.g. “countries includingx”) or right-handed
(e.g. “x and other countries”). Each combination of rela-
tion name and handedness was treated as a separate urn, re-
sulting in four urns for each ofCity(x) , Film(x) , and
Country(x) , and two urns forMayorOf(x) .5 For each
relation, we tagged a sample of 1000 extracted labels, using
external knowledge bases (the Tipster Gazetteer for cities and
the Internet Movie Database for films) and manually tagging
those instances not found in a knowledge base. In the UIE
experiments, we evaluate our algorithms on all 1000 exam-
ples, and in the supervised IE experiments we perform 10-
fold cross validation.

4.1 UIE Experiments

We compare URNS against two other methods for unsuper-
vised information extraction. First, in thenoisy-or model
used in previous work, an extraction appearingk times is as-
signed probability1−

∏
m∈M (1−pm)k, wherepm is the ex-

traction precision for urnm. We describe the second method
below.

Pointwise Mutual Information
Our previous work on KNOWITALL used Pointwise Mutual
Information (PMI) to obtain probability estimates for extrac-
tions [Etzioni et al., 2005]. Specifically, the PMI between
an extraction and a set of automatically generateddiscrimi-
nator phrases(e.g., “movies such asx”) is computed from
Web search engine hit counts. These PMI scores are used
as features in a Naive Bayes Classifier (NBC) to produce a
probability estimate for the extraction. The NBC is trained
using a set of automatically bootstrapped seed instances. The
positive seed instances are taken to be those having the high-
est PMI with the discriminator phrases after the bootstrapping
process; the negative seeds are taken from the positive seeds
of other relations, as in other work (e.g.,[Lin et al., 2003]).

Although PMI was shown in[Etzioniet al., 2005] to order
extractions fairly well, it has two significant shortcomings.
First, obtaining the hit counts needed to compute the PMI
scores is expensive, as it requires a large number of queries to

5Draws from URNS are intended to represent independent ex-
tractions. Because the same sentence can be duplicated across multi-
ple different Web documents, in these experiments we consider only
eachuniquesentence containing an extraction to be a draw from
URNS. In experiments with other possibilities, including counting
the number of unique documents producing each extraction, or sim-
ply counting every occurrence of each extraction, we found that per-
formance differences between the various approaches were negligi-
ble for our task.



web search engines. Second, the seeds produced by the boot-
strapping process tend not to be representative of the overall
distribution of extractions. This combined with the probabil-
ity polarization introduced by the NBC tends to give inaccu-
rate probability estimates.

Discussion of UIE Results
The results of our unsupervised experiments are shown in
Figure 2. We plot deviation from theideal log likelihood—
defined as the maximum achievable log likelihood given our
feature set.

Our experimental results demonstrate that URNS over-
comes the weaknesses of PMI. First, URNS’s probabilities are
far more accurate than PMI’s, achieving a log likelihood that
is a factor of 20 closer to the ideal, on average (Figure 2).
Second, URNS is substantially more efficient as shown in Ta-
ble 1.

This efficiency gain requires some explanation. KNOW-
ITALL relies on queries to Web search engines to identify
Web pages containing potential extractions. The number of
queries KNOWITALL can issue daily is limited, and query-
ing over the Web is, by far, KNOWITALL ’s most expensive
operation. Thus, number of search engine queries is our effi-
ciency metric. Letd be the number of discriminator phrases
used by the PMI method as explained in Section 4.1. The
PMI method requiresO(d) search engine queries to compute
the PMI of each extraction from search engine hit counts. In
contrast, URNS computes probabilitiesdirectly from the set
of extractions—requiringno additional queries, which cuts
KNOWITALL ’s queries by factors ranging from 1.9 to 17.

As explained in Section 2, the noisy-or model ignores tar-
get set size and sample size, which leads it to assign proba-
bilities that are far too high for theCountry andMayorOf
relations, where the average number of times each label is
extracted is high (see bottom row of Table 1). This is fur-
ther illustrated for theCountry relation in Figure 3. The
noisy-or model assigns appropriate probabilities for low sam-
ple sizes, because in this case the overall precision of ex-
tracted labels is in fact fairly high, as predicted by the noisy-or
model. However, as sample size increases relative to the num-
ber of true countries, the overall precision of the extracted la-
bels decreases—and the noisy-or estimate worsens. On the
other hand, URNS avoids this problem by accounting for the
interaction between target set size and sample size, adjust-
ing its probability estimates as sample size increases. Given
sufficient sample size, URNS performs close to the ideal log
likelihood, improving slightly with more samples as the es-
timates obtained by the EM process become more accurate.
Overall, URNS assigns far more accurate probabilities than
the noisy-or model, and its log likelihood is a factor of 15
closer to the ideal, on average. The very large differences be-
tween URNS and both the noisy-or model and PMI suggest
that, even if the performance of URNS degrades in other do-
mains, it is quite likely to still outperform both PMI and the
noisy-or model.

Our computation of log-likelihood contains a numerical
detail that could potentially influence our results. To avoid the
possibility of a likelihood of zero, we restrict the probabilities
generated by URNS and the other methods to lie within the
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Figure 2:Deviation of average log likelihood from the ideal
for four relations (lower is better). On average,URNSout-
performs noisy-or by a factor of 15, and PMI by a factor
of 20.

City Film MayorOf Country
Speedup 17.3x 9.5x 1.9x 3.1x
Averagek 3.7 4.0 20.7 23.3

Table 1: Improved Efficiency Due to URNS. The top row
reports the number of search engine queries made by
KNOWITALL using PMI divided by the number of queries
for KNOWITALL using URNS. The bottom row shows that
PMI’s queries increase with k—the average number of
distinct labels for each relation. Thus, speedup tends to
vary inversely with the average number of times each la-
bel is drawn.
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Figure 3:Deviation of average log likelihood from the ideal
as sample size varies for theCountry relation (lower is
better). URNS performs close to the ideal given sufficient
sample size, whereas noisy-or becomes less accurate as
sample size increases.



range (0.00001, 0.99999). Widening this range tended to im-
prove URNS’s performance relative to the other methods, as
this increases the penalty for erroneously assigning extreme
probabilities—a problem more prevalent for PMI and noisy-
or than for URNS. Even if we narrow the range by two digits
of precision, to (0.001, 0.999), URNS still outperforms PMI
by a factor of 15, and noisy-or by a factor of 13. Thus, we are
comfortable that the differences observed are not an artifact
of this design decision.

4.2 Supervised IE Experiments
We compare URNSwith three supervised methods. All meth-
ods utilize the same feature set as URNS, namely the extrac-
tion countskm.

• noisy-or – Has one parameter per urn, making a set
of M parameters(h1, . . . , hM ), and assigns probability
equal to

1−
∏

m∈M

(1− hm)km .

• logistic regression – Has M + 1 parameters
(a, b1, b2, . . . , bM ), and assigns probability equal
to

1
1 + ea+

P
m∈M kmbm

.

• SVM – Consists of an SVM classifier with a Gaussian
kernel. To transform the output of the classifier into a
probability, we use the probability estimation built-in to
LIBSVM [Chang and Lin, 2001], which is based on lo-
gistic regression of the SVM decision values.

Parameters maximizing the conditional likelihood of the
training data were found for the noisy-or and logistic regres-
sion models using Differential Evolution. In the SVM case,
we performed grid search to find the kernel parameters giv-
ing the best likelihood performance for each training set – this
grid search was required to get acceptable performance from
the SVM on our task.

The results of our supervised learning experiments are
shown in Table 2. URNS, because it is more expressive, is
able to outperform the noisy-or and logistic regression mod-
els. In terms of deviation from the ideal log likelihood, we
find that on average URNS outperforms the noisy-or model
by 19%, logistic regression by 10%, but SVM by only 0.4%.

City Film Mayor Country Average
noisy-or 0.0439 0.1256 0.0857 0.0795 0.0837
logistic
regression 0.0466 0.0893 0.0655 0.1020 0.0759
SVM 0.0444 0.0865 0.0659 0.0769 0.0684
URNS 0.0418 0.0764 0.0721 0.0823 0.0681

Table 2: Supervised IE experiments. Deviation from the
ideal log likelihood for each method and each relation
(lower is better). The overall performance differences are
small, with URNS 19% closer to the ideal than noisy-or,
on average, and 10% closer than logistic regression. The
overall performance of SVM is close to that ofURNS.

5 Related Work

In contrast to the bulk of previous IE work, our focus is on un-
supervised IE (UIE) where URNS substantially outperforms
previous methods (Figure 2).

In addition to the noisy-or models we compare against in
our experiments, the IE literature contains a variety of heuris-
tics using repetition as an indication of the veracity of ex-
tracted information. For example, Riloff and Jones[Riloff
and Jones, 1999] rank extractions by the number of distinct
patterns generating them, plus a factor for the reliability of
the patterns. Our work is intended to formalize these heuris-
tic techniques, and unlike the noisy-or models, we explic-
itly model the distribution of the target and error sets (our
num(C) andnum(E)), which is shown to be important for
good performance in Section 4.1. The accuracy of the proba-
bility estimates produced by the heuristic and noisy-or meth-
ods is rarely evaluated explicitly in the IE literature, although
most systems make implicit use of such estimates. For ex-
ample, bootstrap-learning systems start with a set of seed
instances of a given relation, which are used to identify ex-
traction patterns for the relation; these patterns are in turn
used to extract further instances (e.g.[Riloff and Jones, 1999;
Lin et al., 2003; Agichtein and Gravano, 2000]). As this pro-
cess iterates, random extraction errors result in overly gen-
eral extraction patterns, leading the system to extract further
erroneous instances. The more accurate estimates of extrac-
tion probabilities produced by URNS would help prevent this
“concept drift.”

Skounakis and Craven[Skounakis and Craven, 2003] de-
velop a probabilistic model for combining evidence from
multiple extractions in a supervised setting. Their problem
formulation differs from ours, as they classify each occur-
rence of an extraction, and then use a binomial model along
with the false positive and true positive rates of the classi-
fier to obtain the probability that at least one occurrence is a
true positive. Similar to the above approaches, they do not
explicitly account for sample sizen, nor do they model the
distribution of target and error extractions.

Culotta and McCallum[Culotta and McCallum, 2004] pro-
vide a model for assessing the confidence of extracted infor-
mation using conditional random fields (CRFs). Their work
focuses on assigning accurate confidence values to individual
occurrences of an extracted field based on textual features.
This is complementary to our focus oncombiningconfidence
estimates from multiple occurrences of the same extraction.
In fact, each possible feature vector processed by the CRF in
[Culotta and McCallum, 2004] can be thought of as a virtual
urn m in our URNS. The confidence output of Culotta and
McCallum’s model could then be used to provide the preci-
sionpm for the urn.

Our work is similar in spirit to BLOG, a language for speci-
fying probability distributions over sets with unknown objects
[Milch et al., 2004]. As in our work, BLOG models treat ob-
servations as draws from a set of balls in an urn. Whereas
BLOG is intended to be a general modeling framework for
probabilistic first-order logic, our work is directed at mod-
eling redundancy in IE. In contrast to[Milch et al., 2004],
we provide supervised and unsupervised learning methods



for our model and experiments demonstrating their efficacy
in practice.

6 Conclusions and Future Work
This paper introduced a combinatorial URNS model to the
problem of assessing the probability that an extraction is cor-
rect. The paper described supervised and unsupervised meth-
ods for estimating the parameters of the model from data, and
reported on experiments showing that URNS massively out-
performs previous methods in the unsupervised case, and is
slightly better than baseline methods in the supervised case.
Of course, additional experiments and a more comprehensive
sensitivity analysis of URNS are necessary.

URNS is applicable to tasks other than IE. For example,
PMI computed over search engine hit counts has been used
to determine synonymy[Turney, 2001], and for question an-
swering[Magnini et al., 2002]. In the synonymy case, for
example, the PMI between two terms is used as a measure of
their synonymy; applying URNS to the same co-occurrence
statistics should result in a more accurate probabilistic assess-
ment of whether two terms are synonyms. Comparing URNS
with PMI on these tasks is a topic for future work.
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