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Abstract

We describe a system in which simple, identi-
cal, autonomous robots assemble two-dimensional
structures using prefabricated modules as build-
ing blocks. Modules are capable of some infor-
mation processing, enabling them to share long-
range structural information and communicate it to
robots. This communication allows arbitrary solid
structures to be rapidly built using a few fixed, local
robot behaviors. Modules are identical in shape but
may be functionally distinct, with constraints gov-
erning the location of different classes. We present
algorithms for assembly of solid structures of any
shape, both when the layout of module classes is
fully specified in advance, and when functional
constraints are satisfied during the building process,
allowing for adaptive structures. This approach
demonstrates a decentralized, autonomous, flexi-
ble, simple, and adaptive approach to construction.

1 Introduction
In this paper we discuss the design of a system for automated
construction, in which elements are separated into mobile
and structural components (robots and modular blocks, re-
spectively). Our approach is to use robots that are simple
in capabilities and behavior, and that communicate indirectly
through information stored in the environment; that informa-
tion is embodied by the blocks, which themselves can com-
municate with one another when attached. Here we focus
on construction when the blocks are identical in shape but
heterogenous in function, and a given set of functional con-
straints governs how they can be put together. We first show
how specific structures can be built, and then discuss the as-
sembly of structures which have no prespecified plan but sat-
isfy a given set of constraints.

Our approach relies on very simple procedures and there-
fore should be practical for the complexities and difficulties
of real robots in physical environments. The limited require-
ments for implementation are that robots be able to follow
a perimeter, communicate with immediately adjacent blocks,
and push together blocks with self-aligning connectors. Prob-
lems, from unexpected environmental influences to break-

down of some robots, need not prevent completion of a struc-
ture; temporary failures at any step can be corrected.

The ability to automate construction would be useful par-
ticularly in settings where human presence is dangerous or
problematic; for instance, robots could be initially sent to un-
derwater or extraterrestrial environments, to create habitats
to await later human travelers. Swarm approaches, involv-
ing larger numbers of simpler robots rather than one or a few
with greater sophistication, have advantages for such a goal,
in particular with respect to decentralization and robustness.
Such systems can typically absorb the loss of many compo-
nents without a significant impact on task completion; simi-
larly, they tolerate components acting in no specified order, a
useful quality since it is difficult to preplan robot behavior in
detail in uncertain environments.

If blocks can be arbitrarily custom-designed for particular
structures, then any structure can be built using only local
rules for assembly; a trivial, inefficient way to do it is to des-
ignate specific blocks for specific locations in a blueprint, and
engineer the blocks so that each one can be attached solely to
the neighboring blocks in that layout.1 However, we take the
opposite approach, assuming that the block types are defined
by the application, and our task is to work within those limits.

An example of such an application is the building of under-
water structures (for marine research, oil drilling, etc.), where
the building blocks are high-level prefabricated pods that each
fill one of several distinct and predefined roles—living quar-
ters, power generation, emergency escape centers, laboratory
space, etc. There may be desired constraints on which classes
are attached relative to which other classes—for instance, us-
ing the previous example, we might want all living pods to be
located in a contiguous block, or no two airlock pods to be
adjacent to one another.

In §2 we review related work, and in §3 describe the prob-
lem we address and our assumptions about the system. §4
gives algorithms the system can use to assemble structures.
§5 covers geometric constraints on block placement. §6 and
§7 describe structures which are fully prespecified or adap-
tive, respectively, and elaborate on the satisfaction and speci-
fication of functional constraints. §8 discusses issues associ-
ated with the use of multiple robots.

1Geometric constraints will still restrict the order in which blocks
may be attached, as discussed in §5.



2 Related work

Several previous papers address topics related to construc-
tion, though not with the goal of producing user-specified
building designs. For example, [Wawerla et al., 2002;
Jones and Matarić, 2004] study aspects of the use of com-
munication among robots, to increase their effectiveness on
tasks involving rearrangement of functionally heterogenous
blocks. [Bowyer, 2000] discusses issues of mechanical de-
sign for robots meant to build arches, towers, and walls, using
extruded foam. [Melhuish et al., 1999] deals with minimiza-
tion of capabilities for behavior-based robots arranging pucks
into walls, using environmental cues.

[Werfel, 2004] describes a framework for arranging blocks
into arbitrary lines and curves, specified geometrically; [Ma-
son, 2002] describes one in which structures can be specified
through the use of static, global ‘pheromone’ signals. Both
make assumptions about the precision with which their mo-
bile agents operate (the former having to do with odometry,
the latter with ability to evaluate the strength of distant sig-
nals) that may cause the shapes they generate to suffer from
lack of robustness to noise.

Our approach is particularly motivated by research in two
areas: insect and insect-inspired construction [Théraulaz and
Bonabeau, 1995], and self-reconfigurable modular robotics
[Rus and Chirikjian, 2001]. Social insects which build do so
with the principle of stigmergy, communicating indirectly by
storing information in the environment. While this approach
can be used to produce structures with given qualitative char-
acteristics, it does not easily allow the consistent production
of specific structures (potentially arbitrary and complicated
ones); nor has a general principle been described for tak-
ing a particular desired structure and extracting a set of low-
level behaviors that building agents can follow to produce it.
Work in modular robotics has produced hardware systems
with many capabilities we will take advantage of here, in-
cluding connections that self-adjust so that inexact alignment
is corrected, and communication links between physically at-
tached modules. Such communication is reliable, unambigu-
ous, rapid, and scalable, compared to the communication by
external signaling that robots typically use. Modular robot al-
gorithms typically require that all modules remain connected
at all times, and that individual modules be capable of mo-
bility, neither of which are appropriate for automated con-
struction applications. Very recently, modular robotics re-
searchers have begun to describe hardware systems for au-
tomated assembly of structures [Terada and Murata, 2004;
Everist et al., 2004]. These systems are based on inert, iden-
tical modules, and have not yet explored issues of speci-
fying distributed robot behavior and creating complex user-
specified structures.

Elsewhere we describe a similar system to that presented
here [Werfel et al., 2005], concerning identical blocks only.
There we show that giving blocks limited communication
abilities is an effective way to enable the system to construct
arbitrary solid structures, while allowing robots to remain
simple and with fixed, local behaviors. The block commu-
nication provides the nonlocal knowledge about the struc-
ture necessary to assemble arbitrarily complicated shapes.
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Figure 1: A sketch of the kind of system described here. As
the structure is assembled, it forms a lattice with an implicit
coordinate system, of which the beacon can be taken to be the
origin.

This approach provides other benefits, including increased
efficiency of construction, alleviation of interference be-
tween robots, and better exploitation of the parallelism of
the swarm, without requiring additional capabilities from the
robots. As computation becomes less expensive, it has been
proposed to make it more pervasive [Hill et al., 2000]. Partic-
ularly if the building blocks in question are high-level units,
as in the underwater application suggested above, it should be
feasible to incorporate these computation capabilities into the
blocks without making the system prohibitively more expen-
sive.

3 General problem and assumptions
We consider the problem where mobile robots and caches of
building blocks are deployed at random into an obstacle-free
workspace, along with a beacon indicating the location for the
start of construction. The goal is for robots to collect blocks
from the caches and arrange them into a structure, satisfy-
ing some set of criteria, starting at the beacon (Fig. 1). The
beacon and caches send out distinct long-range signals which
robots can use to navigate to them. Each cache contains a
single block type.

We will work with square blocks, to be assembled in the
horizontal plane. An important constraint is that a block can
be added to the growing structure if and only if the potential
attachment site has at least two adjacent sides open; other-
wise there is insufficient room to maneuver to add the new
block (Fig. 2). Though a system has been demonstrated in
which cubical blocks can be slid into spaces like that at (D) in
that figure [Terada and Murata, 2004], the task of mechanical
design will be simplified and the precision with which robots
must operate reduced if we maintain this constraint. In partic-
ular, if we prevent gaps like that at (D), then situations where
a robot needs to maneuver a block down a longer ‘tunnel’,
like that around (C), will also be prevented. A block attached
to the structure can immediately obtain from its neighbors its
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Figure 2: Examples of valid and invalid prospective dock-
ing sites for a sample structure (shaded squares represent grid
sites already occupied by blocks). A new block can be at-
tached at A or B; C and D are too spatially constrained to
allow a block to be maneuvered into position.

position in a common coordinate system, along with infor-
mation about the present and desired final structure. Blocks
along the perimeter of the structure and robots traversing the
perimeter can also communicate, with lower bandwidth; this
communication is very short-range, avoiding problems asso-
ciated with signaling over distances, interference when many
robots are active, and ambiguity in which agents are signal-
ing.

Robots can move in any direction in at least the two dimen-
sions of the plane, alone or while holding a block. They can
detect the presence of other robots, for collision avoidance,
either by active short-range signaling or by passive percep-
tion. Once in the immediate vicinity of the growing structure,
they can follow its perimeter, and communicate with adjacent
blocks.

4 Algorithms for blocks and robots
Blocks attached to each other to form the structure have ac-
cess to information about the entire structure, via communica-
tion with other blocks. Our approach will be for blocks to be
the agents responsible for ensuring that the structure remains
consistent with all the constraints. Robots can then simply
circle the perimeter of the structure, and rely on it to tell them
when a site is acceptable for attachment of their payload.

We can divide the constraints on block placement into two
classes: those independent of block type, and those based
solely on block type. Geometric constraints, the former, en-
sure that the structure is free of unwanted internal gaps and
has a perimeter of the desired shape. Functional constraints,
the latter, encompass whatever restrictions based on block
types may be dictated by the particular application. Both
classes are discussed further below (§5–7).

Algorithm 1 summarizes high-level procedures for robots
and blocks to follow to build structures using this approach.

4.1 Robustness
Physical robots in real-world environments are subject to a
wide variety of internal and environmental perturbations. A
hardware implementation would need to be robust to such
factors. Our approach is intended to minimize the effect
or likelihood of problems that robots and blocks might en-
counter. It relies on simple basic capabilities that can be
made robust and self-correcting: directed movement, block

Algorithm 1 High-level pseudocode procedure for assembly
of a close-packed structure by a single robot.
A: Robots

while structure not complete do
choose a block type t
get t from cache
go to structure perimeter
while still holding block do

ask adjacent structure blocks if t can be attached here
if all structure blocks answer yes then

attach block here
else if taking too long to find a place for block then

return block to cache
else

move one site counterclockwise along perimeter
B: Blocks

loop
if neighboring robot asks to attach a block of type t at
site s then

if (block at s consistent with geometric constraints)
and (t at s consistent with functional constraints)
then

answer yes
update map with t block at s
pass message about (t, s) to neighboring blocks

else
answer no

if neighboring block sends message about t at s then
if message represents new information then

update map with t block at s
pass message about (t, s) to neighboring blocks

pickup, perimeter following, block joining, limited commu-
nication with immediate neighbors.

Noise affecting robot movement, e.g., due to motor unreli-
ability or currents in an underwater setting, can be compen-
sated for. For instance, if robots lose track of the perimeter
during their tour, they need only revert to a previous step of
their algorithm, find the perimeter again and proceed from
there. The lack of robot internal state means no important in-
formation is lost in such an event. Self-aligning connectors
drawn from modular robotics effect the fine details of block
attachment. Communication between robots and blocks can
be physically limited, e.g., through appropriate geometric
design of an optical interface, to ensure that robots only
communicate with immediately neighboring blocks and that
crosstalk with more distant blocks is prevented. Interblock
communication is via a physical interface.

More serious robot failures can also be absorbed. In keep-
ing with the swarm approach, the algorithm does not depend
on particular robots completing particular assigned tasks, nor
on blocks being attached in a particular order. Thus break-
downs of individual robots almost anywhere in the workspace
need not impede the system’s ability to complete the struc-
ture. The exception is at the edge of the growing structure,
where a broken robot could serve as an obstacle to others fol-
lowing the perimeter, and prevent growth of the structure in



that area. Such perimeter breakdowns would need to be de-
tected and towed away by other robots.

Blocks, less complicated mechanically, may be less sub-
ject to failure. Malfunctions that do occur could be detected
by neighboring blocks, which could alert robots to the need
for replacement. Similarly, in the event that a block is mis-
takenly attached to the structure so as to violate a constraint,
the active nature of the blocks makes it easier to detect and
report that error. §9.2 outlines a scheme for disassembly and
reconstruction of the necessary part of the structure.

5 Geometric constraints
Positions can be specified by reference to the common coor-
dinate system which blocks share via their communication.

5.1 Rectangular structures
The simplest possible perimeter is a rectangle; the geometric
constraint enforcing that shape is simply a restriction against
robots attaching blocks at sites with coordinates outside the
desired rectangle.

The other geometric constraint to be followed is the gener-
ally applicable one that the structure should be solid, without
internal holes. To avoid unwanted gaps, it is necessary to
avoid situations where two blocks end up in the same row,
unless they are adjacent. A block can check, based on its
communication with the other blocks in its row [Werfel et
al., 2005], whether a potential attachment site satisfies this
criterion, and forbid robots from attaching further blocks at
that site if it does not. This rule is sufficient to generate solid
structures.

5.2 Complex shapes
With only a small modification, the system extends to solid
structures with perimeters which are not necessarily rectan-
gular, nor even convex, but can be of any arbitrary shape.2

As usual, the desired shape is specified with respect to the
shared coordinate system and downloaded by each new block
attached to the structure. To achieve the extension to arbitrary
shapes without letting unwanted gaps creep in, it is sufficient
to relax the geometric rule against attaching two non-adjacent
blocks in the same row, to allow two such blocks so long as
they are separated by space intended never to be occupied
by blocks. The desired shape can be represented compactly,
e.g., as a collection of rectangles whose superposition gives
the desired structure [Støy and Nagpal, 2004]. Fig. 3 gives an
example of an H-shaped structure being built, with geometric
constraints only.

6 Functional constraints: Patterned
structures

An important aspect of such a construction system, hitherto
unaddressed, is the ability to create predefined patterns of
block types. This can be achieved with functional constraints
that act as a blueprint, specifying exactly what block type

2We will require that any spaces between blocks in the desired
final structure be wide enough for two block-carrying robots to pass
each other, so that perimeter-following can continue unimpeded.

Figure 3: Snapshots of five robots (brown) building a struc-
ture of a single block type (white), using only geometric con-
straints. Sites that the structure plan specifies should eventu-
ally be occupied by blocks are shown in dark gray. Robots
not appearing in a particular frame are off fetching blocks.

Figure 4: Snapshots of ten robots (white) building a structure
of four block types (yellow, red, blue, green).

should be attached at every location in the desired structure.
This specification can be more compact than a full enumera-
tion, just as an image specification can be more compact than
a bitmap. Structure blocks forbid robots to attach the blocks
they carry unless the latter are the single type allowed at the
site in question. Figs. 4 and 5 shows rectangular and non-
rectangular structures built using such functional constraints.

7 Functional constraints: Adaptive structures
In many cases the design of structures does not require spe-
cific patterns, but rather requires functional relationships be-
tween the locations of blocks of various types. For instance,
with the underwater habitat example we gave above, it may
be that the exact locations of escape pods are unimportant,
but safety considerations require that no pod be further than
three steps away from one. Any structure that satisfies that
constraint will be considered acceptable. The more relevant
way to specify the constraint in this case is by reference not to
absolute coordinates, but to relationships between the block
types. Our approach extends naturally to building structures
in this flexible way. Figs. 6 and 7 show structures built using
relative constraints of this sort.

It is always a valid approach to come up with a blueprint
ahead of time that satisfies all such constraints, give that to the
system, and have it produce that particular structure. But sat-
isfying constraints on the fly during the building process in-
stead can let the structure be adaptive, and respond to chang-
ing circumstances or conditions unknown in advance.

Satisfying constraints on the fly can have additional ben-
efits, such as increased speed of construction. As an exam-
ple, consider the class of 21 × 21-block structures of Fig.
6. If we assume that robots take no time to bring blocks
from caches to the structure perimeter, and moving one block-
length and attaching a block each take one time step, then the
time required to build a structure will reflect primarily the



Figure 5: Example of a patterned structure with a complex
shape.

Figure 6: Examples of square structures built with two block
types and the constraint that no two yellow blocks be adja-
cent.

time robots spend following the perimeter looking for a place
to put their block. Averaging over 100 independent runs with
10 robots, on-the-fly construction completes in 650±140 time
steps, while building exactly the same 100 structures as pre-
specified patterns takes 1100 ± 300 steps, or 70% slower on
average. Robots come to the structure already carrying some
type of block; the speedup for on-the-fly construction occurs
because sites can accept any type of block consistent with the
constraints, rather than having to wait for a particular block
type to appear, and robots can accordingly find places to at-
tach their blocks more readily.

7.1 Satisfiability
A task involving fitting a given set of blocks into a given
shape subject to given constraints may have no solution; and
if one exists, it may be hard to find. In general, the problem of
finding a solution to such a scenario, or showing that none ex-
ists, is NP-complete [van Emde Boas, 1997]. However, many
cases of interest will have the property that a solution can be
found quickly by a straightforward trial, and no exhaustive
search is necessary. The system here provides a natural and
effective way of assembling structures for constraint sets that
are easy to satisfy in this sense. Constraint sets difficult to
satisfy would best be handled by finding a solution prior to
construction, and building that solution as a blueprint.

7.2 Types of functional constraints
In general, there are several classes of functional constraints
we can consider:

• Absolute, without reference to neighboring blocks: e.g.,
type A may be attached; B is forbidden.

• Proximity, where the types of neighboring blocks are im-
portant but their locations are not: e.g., every A must
have at least one B somewhere within a neighborhood
of radius 3; no C can be adjacent to a D.

Figure 7: Example of a structure assembled according to the
following list of constraints:
Region 1, border of upper-left area: only blue blocks allowed.
Region 2, interior of upper-left area: blue and white
blocks both allowed; no white block may be in the eight-
neighborhood of another white block.
Region 3, elsewhere: blocks must be either red or white de-
pending on their y-coordinate.

• Relational, involving both types and locations of neigh-
boring blocks: e.g., every A must have a B bordering
its west edge and a C bordering its north edge. Rotation
and reflection may each be allowed or forbidden in such
a constraint.

Proximity and relational constraints imply an associated
distance d within which blocks are relevant to satisfaction of
the constraint. One approach is for blocks to maintain a lo-
cal map of their area of the structure, whose size is at least
of radius d. Blocks refer to this map to determine whether
robots should be allowed to attach blocks at a neighboring
site; when a new block is attached, a message to that effect is
sent to blocks within d, for them to update their maps accord-
ingly. The larger the value of d, the more memory is required
of blocks, but the farther-reaching constraints may be.

Another type of functional constraint can result from finite
numbers of each block type. For instance, there might be
only two blocks of type A, which must be attached adjacent
to one another. The first A attached to the structure could
be added anywhere, but the second would have to be next
to the first. In order to give an A-carrying robot the proper
instruction, blocks would need to establish whether another
A had already been attached anywhere, a global property of
the structure. Having blocks maintain a global map of the
structure would be the most straightforward way to ensure
being able to handle all possible constraints, though not the
most memory-efficient.

7.3 Multiple levels
Constraints may also be specified on multiple levels of orga-
nization. We can define different regions of the structure, in
each of which some different set of constraints as listed above
is to be imposed. Figs. 4 and 7 give examples where such re-
gions are designated according to specific coordinates. The
former designates regions compactly by reference to geomet-
ric shapes and lines (e.g., a region of red blocks is defined
as those cells within a given distance from an arc with given
center, radius, and endpoints, etc.). The latter combines pat-
terned and adaptive constraints into a single structure.

Regions can be designated in this rigid way, or more flu-
idly: it may be permissible for a region to occur anywhere



Figure 8: Three examples of structures that can all equally
well be built based on the constraints given in the text.

in the structure, with variable size, aspect ratio, orientation,
multiplicity, etc. Just as blocks can have proximity and rela-
tional constraints restricting their placement, so can regions
occur in the structure in locations restricted based on the lo-
cations of other regions. Dimensions, etc. of regions may also
be specified with reference to each other (e.g., region 1 must
be larger than region 2).

Moreover, regions can be nested in this framework. An
application might, for instance, call for a complex, which is
composed of wings. One wing might be residential, made
up of apartments; another might be made up of lab spaces.
An apartment can be broken down into bedroom, bathroom,
kitchen, etc.; and so on until the lowest level, which is de-
composed into blocks as before. Each region may have its
own constraints governing the placement of its sub-regions.

Figure 8 gives an explicit, abstract example. An 8×8 struc-
ture is constrained to have four 4 × 4 regions, one of type A,
one B, two C. In a region of type A, only red blocks are al-
lowed; in B, only blue blocks are allowed. In C, there must be
four 2×2 subregions, one of type D, one E, two F. In a region
of type D, only yellow blocks are allowed; in E, only green
blocks are allowed. Finally, a region of type F must contain
an arrangement of {purple, cyan, magenta, white} blocks, in
that order clockwise; rotation is permitted, reflection is not.
A great variety of structures can be built consistent with this
set of constraints, all equally valid; the figure shows three.

7.4 Short- and long-term constraint satisfaction
There are two ways to satisfy the condition that no functional
constraint be violated by attaching a block of type t at a site
s. One is to consider only blocks that are part of the structure
at that time. The condition is simply: if attaching t at s would
result in a structure that violates any constraint, then forbid
the attachment. The examples of Figs. 4–7 were assembled
in this way.

In many cases, however, it will be desirable to look further
ahead in time while ensuring constraints are met. For some
constraint sets, situations may occur where attaching a block
gives an acceptable structure, but one to which no further
blocks can legally be attached. Looking ahead can prevent
becoming trapped in such dead ends. A structure like that
of Fig. 7 gives one example: guaranteeing exactly 50 ‘stars’
would require looking ahead during assembly of Region 2, to
ensure sufficient remaining room for the white blocks not yet
attached. It may also be desirable to allow constraints to be
violated temporarily, so long as some future way of satisfy-
ing them remains possible. Consider, e.g., a structure of two

block types, each of which is constrained always to have at
least one neighbor of its own type. Without the possibility
of violating the constraint temporarily, the structure would
necessarily turn out to consist entirely of one block type: no
block of the other type could ever be attached, since it would
have no neighbor of its own type until a second such block
were attached to it.

This looking ahead may be limited to a fixed number of
steps f into the future. Like functional constraints associated
with larger d, larger f will be more powerful but more dif-
ficult for the blocks. Putting no limit on f , so that blocks
always look ahead to the completion of some finished struc-
ture, will be slow but will prevent the structure from getting
trapped in dead ends of partial completion.

8 Multiple robots
Algorithm 1 gives a procedure which will work for a single
robot. However, when more than one robot is working on
construction at once, additional precautions need to be taken.
Finite speed of message propagation between blocks means
that two robots can request to attach at mutually exclusive
sites at about the same time, and both can be given permission
by blocks working with outdated information.

The violation of geometric constraints (two non-adjacent
blocks being attached in the same row) can be prevented,
e.g., by sending messages to lock out a previously empty row
when a robot requests to attach a block in it, and not giving
the robot permission until all blocks in the adjacent row have
indicated they have not and will not let other robots attach.

For functional constraints with finite d, the corresponding
approach is to lock out all blocks within radius d before giv-
ing a robot permission to attach. When d is large (and, in
particular, since for some constraints d may extend over the
entire structure), so doing can become unwieldy: consider-
able message-passing over the entire structure will take place
for every block attached, and robots may be turned away from
attaching more often than necessary.

However, message-passing within the structure will be
much faster than physical movement of robots. Geometric
constraints only require consulting with other blocks when
the first block in a row is being attached (and typically, only
a few blocks will need to be consulted); thereafter, allowing
or forbidding other blocks to be attached in the same row can
be reliably done without communication within the structure
[Werfel et al., 2005]. And d is small for many functional con-
straints of interest.

All this means that, even without this strategy of locking
out before attaching, errors should be infrequent. An alterna-
tive approach, then, is to correct errors when they arise rather
than being scrupulous about preventing them in the first place.
Blocks can allow or forbid robots to attach based solely on
their own knowledge; if that causes a conflict which is only
detected later, the blocks can direct robots to correct the error
by removing the offending blocks, as described in §9.2 below.

9 Additional construction procedures
We briefly consider how two related procedures, disassembly
and error correction, could be achieved with such a system.



1 2

3

4

5

X

Figure 9: A structure in the process of disassembly. Num-
bered blocks can be removed. The block marked X meets
criterion 1 in the text but not 2; if removed, it would split the
structure into two parts. The beacon may be at the location of
any of the unmarked blocks.

9.1 Disassembly
Many applications will involve structures intended to be tem-
porary; the modular nature of this system is especially suited
to such cases, allowing a structure to be dismantled following
use and its parts reused for another structure. Disassembly
can be accomplished by having robots follow the structure
perimeter, removing any blocks they find that satisfy the fol-
lowing criteria:

1. It has at most two neighbors, bordering adjacent sides;
i.e., if that site were unoccupied, it could physically ac-
comodate a block, as in Fig. 2.

2. If it does have two neighbors along adjacent sides, then
the other site which those two neighbors border is occu-
pied by a block (see Fig. 9).

3. It is not attached at the beacon location, unless no other
blocks remain; the block at the beacon must be the last
one removed.

Again, blocks can determine whether they satisfy these cri-
teria, and indicate that to robots. The second and third criteria
ensure that throughout disassembly, the structure remains one
contiguous piece, which a robot homing in on the beacon sig-
nal will be able to find. Violating either of those rules can
result in part or all of the remaining structure becoming iso-
lated, and thereby lost to robots no longer able to reach it by
the simple procedure of following the beacon signal to the
structure and following the perimeter thereafter. If the struc-
ture is physically tethered to some anchor point via the first
block attached (as would likely be the case, e.g., in space-
based applications), then violating those criteria would mean
that blocks could drift off and be lost in a more literal sense.
Care must also be taken with multiple robots that two blocks
not be chosen for removal at the same time, such that each
block considered alone satisfies the three criteria, but would
violate criterion 2 if the other block were removed. Blocks 1
and 3 in Fig. 9 illustrate such a pair.

9.2 Error correction
Suppose that a block mistakenly ends up attached at a loca-
tion where it should not be, or needs to be replaced due to
malfunction or some other reason. It may be some time be-
fore this error arises or is detected; we will thus consider the
problem of replacing any arbitrary block in the structure. We
outline the high-level approach and omit elaboration of an al-
gorithm to be carried out by individual blocks.
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Figure 10: Error correction in a compound structure. The
beacon is marked with the letter B; the block to be replaced
is marked *. See text for discussion.

Because of our assumption that a block can only be re-
moved from the structure if it is already free on two sides, it
is necessary to remove all blocks in an entire ‘quadrant’ of the
structure in order to free up the target block. Fig. 10 demon-
strates the demarcation of quadrants. (A) shows a completed
compound structure; the beacon is marked with the letter B,
and the block to be replaced is marked *. Extending horizon-
tal and vertical arms from the target block, as in (B), defines
the four (overlapping) quadrants, crosshatched in (C)–(F). A
quadrant is constructed essentially by flood-filling the area
including and to one side of a pair of arms.

Note that in a compound structure, a quadrant may con-
tain blocks whose absolute coordinates go beyond those of
the associated arms (as in (D), where a quadrant nominally
above the right-hand arm includes blocks that extend below
it). Also, any blocks that would otherwise be left isolated
from the rest of the structure if a quadrant were removed must
be included in that quadrant. This issue arises if an arm lies
along an edge of the structure for all or part of its length.
In this example, the right-hand arm lies along such an edge,
at the top side of the second and third blocks from the tar-
get block; any blocks above and further along that arm must
therefore be included in the quadrant nominally below it, as
shown in (E).

For efficiency, the quadrant containing the fewest blocks
should be chosen for removal. As with disassembly, the block
attached at the beacon must remain intact, and so any quad-
rants containing that beacon are omitted from consideration
in this choice. Here the quadrant in (F) contains the fewest
blocks, but cannot be removed because it includes the bea-
con (as does the quadrant in (C)). The quadrant chosen for
removal will be that in (E).

Blocks in the quadrant chosen forbid robots from attach-
ing any further blocks to them, and ask to be removed. Upon
receiving such a request, some robots may switch their role
temporarily from ‘assembly’ to ‘disassembly’. Once the tar-
get block has been removed, that section of the structure can
be restored by construction as usual. Construction may also
progress as usual in other parts of the structure throughout the
correction process.



10 Conclusions
We have demonstrated that this approach, of building struc-
tures with communicating blocks and multiple simple robots,
can achieve a variety of construction objectives. Structures
can be built with perimeters of any shape, and with prespec-
ified patterns of block types or adaptive satisfaction of con-
straints. Other approaches using swarms of simple robots
have demonstrated the ability to create structures which sat-
isfy locally specified constraints [Théraulaz and Bonabeau,
1995; Melhuish et al., 1999]. However, this system with com-
municating blocks is unique in its ability to handle fully spec-
ified and locally adaptive constraints alike.

We are currently working on implementing a version of
this system using the AMOUR robot of the Rus Robotics Lab
at MIT [Vasilescu et al., 2005].
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