
Automated Composition of Web Services by Planning at the Knowledge Level

M. Pistore
University of Trento
Via Sommarive 14

38050 Povo (TN), Italy
pistore@dit.unitn.it

A. Marconi and P. Bertoli and P. Traverso
ITC-IRST

Via Sommarive 18
38050 Povo (TN), Italy

[marconi, bertoli, traverso]@itc.it

Abstract

In this paper, we address the problem of the auto-
mated composition of web services by planning on
their “knowledge level” models. We start from de-
scriptions of web services in standard process mod-
eling and execution languages, like BPEL4WS, and
automatically translate them into a planning do-
main that models the interactions among services
at the knowledge level. This allows us to avoid
the explosion of the search space due to the usu-
ally large and possibly infinite ranges of data val-
ues that are exchanged among services, and thus
to scale up the applicability of state-of-the-art tech-
niques for the automated composition of web ser-
vices. We present the theoretical framework, im-
plement it, and provide an experimental evaluation
that shows the practical advantage of our approach
w.r.t. techniques that are not based on a knowledge-
level representation.

1 Introduction

Research in planning is more and more focusing on the prob-
lem of the automated composition of web services: given a set
of services that are published on the Web, and given a goal,
generate a composition of the available services that satis-
fies the goal (see, e.g., [Narayanan and McIlraith, 2002]). In
spite of the fact that several approaches have been proposed
so far (see, e.g., [McIlraith and Son, 2002; Wu et al., 2003;
Sheshagiri et al., 2003; Traverso and Pistore, 2004]), solv-
ing this problem in practice, by scaling up to realistic de-
scriptions of web services, is far from trivial. Indeed it is
widely recognized that web services must be modeled with
nondeterministic and partially observable behaviors [Koehler
and Srivastava, 2003; Hull et al., 2003; Berardi et al., 2003;
McIlraith and Fadel, 2002; Traverso and Pistore, 2004; Mar-
tinez and Lesperance, 2004], and thus planning algorithms
must work with incomplete information and with actions with
uncertain effects. Moreover, in several application domains,
web services cannot be simply modeled as atomic compo-
nents, but as stateful processes whose interactions are intrin-
sically asynchronous [Fu et al., 2004; Foster et al., 2003;
Pistore et al., 2005].

Recent works address the problem of the practicality of
the proposed solutions for web service composition. For
instance, [Traverso and Pistore, 2004; Pistore et al., 2005]
propose a framework where web services are modeled with
stateful, nondeterministic, and partially observable behaviors,
and planning techniques based on symbolic model checking
are used to address the scalability problem. However, these
techniques work under the rather unrealistic assumption that
web services can exchange only a very small number of data
values. For instance, as the experimental results reported in
[Traverso and Pistore, 2004; Pistore et al., 2005] show, rea-
sonable performances are obtained for web services whose
variables can contain only two values. This amounts to say
that amazon.com could sell just two books!

Luckily enough, as already stated in [Pistore et al., 2005],
the composition solution should not depend on the actual data
exchanged among web services, in the same way as the op-
erations that one has to perform to buy a book do not de-
pend on the precise book one wants to buy. The flow of
operations and interactions depends instead on whether the
desired book is available or not, on whether its cost is af-
fordable, and so on. The relevant issues for interacting with
amazon.com are whether one knows whether the book is
available or not, whether one knows the value of its price,
and so on. The hope here is to apply planning techniques at
the knowledge level, in the style of those proposed in [Petrick
and Bacchus, 2002], or used in [McIlraith and Son, 2002;
Martinez and Lesperance, 2004]. This would make it pos-
sible to model only those features of the services which are
relevant to compose them, and thus allow for an efficient au-
tomated composition.

Unfortunately, applying knowledge-level planning to solve
the automated composition problem presents a major diffi-
culty. While in [Petrick and Bacchus, 2002] the planning
domain at the knowledge level is defined by hand, this is
impractical for web service automated composition tasks.
The knowledge level domain must be extracted automatically
from the description of the services that are published, e.g.,
in standard languages, like BPEL4WS [Andrews et al., 2003].
The problem is therefore to devise a proper knowledge level
model, which is suited for the automated composition task,
and which can be obtained automatically from the published
descriptions of the web services.

In this paper we propose a novel approach to the problem

ack/nack

ack/nack

request(Size,Loc)ack/nack

User

Shipper

info(Size)

offer(Cost,Delay)

offer(Cost,Delay)

offer(Cost,Delay)

Producer
Purchase

&
Ship

(P&S)
not_avail

not_avail

not_avail

info_request(Item)

request(Item)

request(Item,Loc)

Figure 1: The Purchase & Ship example.

of automated composition that is based on planning at the
knowledge level. We achieve this in the following steps:

� We formally define a knowledge level model of web ser-
vices that can be obtained automatically from specifi-
cations in standard languages for modeling and imple-
menting services. We show indeed how BPEL4WS pro-
cesses can be automatically translated into their knowl-
edge level models.

� We show how the automated composition problem can
be described as a planning problem: from the knowledge
level models of the available services and from the com-
position goal, we generate a planning problem such that
a solution plan encodes the desired composition.

� We apply the planning techniques described in [Pistore
et al., 2005] to the knowledge level planning problem
that we obtain from the previous steps. The key advan-
tage w.r.t. [Pistore et al., 2005] is that we do not have
to deal with all the possible values of variables that are
exchanged among services.

� We implement the proposed framework, and provide a
preliminary experimental evaluation that clearly shows
the benefits of our approach.

The paper is structured as follows. We first describe a sim-
ple example of composition of BPEL4WS processes, which
we will use all along the paper (Section 2). We then briefly
recall the framework for planning in asynchronous domains
that has been first introduced in [Pistore et al., 2005] (Section
3). In Section 4, we describe the knowledge level represen-
tation of web services, and the resulting planning framework
at the knowledge level. We finally describe the experimental
evaluation (Section 5), some conclusions, and related work.

2 Composition of BPEL processes
Our reference example is the Purchase and Ship (P&S here-
after) example introduced in [Pistore et al., 2005; Traverso
and Pistore, 2004].

Example 1 The P&S example consists in providing a furni-
ture purchase & ship service by combining two independent
existing services, a furniture producer Producer and a de-
livery service Shipper. This way, the User, also described
as a service, may directly ask the composite service P&S to
purchase a given item and deliver it at a given place (for sim-
plicity, we assume that the shipment origin is fixed and leave
it implicit).

The interactions with the existing services have to follow
specific protocols. For instance, the interactions with the

Shipper start with a request for transporting a product of
a given size to a given location. This might not be possi-
ble, in which case the requester is notified, and the protocol
terminates with failure. Otherwise, a cost and delivery time
are computed and sent back to the requester. Then the Ship-
per waits for either an acceptance or a refusal of the offer
from the invoker. In the former case, a delivery contract has
been defined and the protocol terminates with success, while
it terminates with failure in the latter case. Similar proto-
cols are defined also for Producer and User. The messages
exchanged among the involved services are described in Fig-
ure 1.

The P&S has the goal to sell home-delivered furniture (i.e.,
to reach the situation where the user has confirmed an or-
der and the service has confirmed the corresponding sub-
orders to producer and shipper), interacting with Shipper,
Producer, and User according to their protocols. A typical
interaction could be as follows:

1. the User asks P&S for an article � , that he wants to be
transported at location

�
;

2. P&S asks the Producer for the size, the cost, and how
much time does it take to produce the article � ;

3. P&S asks the Shipper for the price and time needed to
transport an object of such a size to

�
;

4. P&S sends the User an offer which takes into account
the overall cost (plus an added cost for P&S) and time
to achieve its goal;

5. the User sends a confirmation of the order, which is dis-
patched by P&S to Shipper and Producer.

This is however only the normal case, and other interactions
should be considered, e.g., for the cases the producer and/or
delivery services are not able to satisfy the request, or the
user refuses the final offer.

With automated composition of web services we mean
the generation of a new composite service (the P&S in our
case) that interacts with a set of existing component services
(Shipper, Producer, and User in our case) in order to satisfy
a given composition goal (sell home-delivered furniture).

We assume that the interaction protocols of the component
services, as well as the composite service, are described as
BPEL4WS processes (see Figure 2 for a graphical representa-
tion of the Shipper BPEL4WS process). Notice that while ex-
isting services are described as abstract BPEL4WS processes
(providing essentially the communication protocol), the syn-
thesized service is an executable BPEL4WS process exporting
all the details to be directly deployed and run. A BPEL4WS
description specifies the types and internal variables of a ser-
vice, and its input and output capabilities. The behavior
of the process is described using input (receive) and out-
put (invoke, reply) activities combined by standard con-
structs, such as sequences, loops, parallel executions, condi-
tional choices, and nondeterministic choices.

From a BPEL4WS process, we can automatically extract
a formal model of the interactions with the service, cover-
ing both the static aspects (e.g., its communication chan-
nels) and the behavioral aspects (defined in term of transi-
tion steps). For the moment, the translation is restricted to a

Figure 2: The Shipper BPEL4WS process.

subset of BPEL4WS processes: we support all BPEL4WS ba-
sic and structured activities, like invoke, reply, receive,
sequence, switch, while, flow (without links) and
pick; moreover we support assignments and a limited
form of correlation. Our next steps will be dealing
with scopes and with fault, event and compensation
handlers.

For lack of space we omit the formal defini-
tion of this translation (details can be found at
http://astroproject.org/) but we illustrate it
in the case of the Shipper process.

Example 2 Figure 3 shows a formal model of the Shipper,
automatically extracted from the BPEL4WS process of Fig-
ure 2. The Shipper process is characterized by a set of ab-
stract types used in the interactions (e.g., Size, Cost), by a
set of inputs and outputs (e.g., request and offer, respec-
tively), and by a set of typed functions used to manipulate
internal variables (e.g., function costOf, which is used to
obtain the cost of a particular shipping request). Variables
are used to store information on the state of the process. In
Figure 3, variables of abstract types (e.g., customer size)
store values used in the communications, while an additional
variable pc implements a “program counter” that holds the
current execution step of the service. The model describes
the evolution of the process through a set of possible transi-
tions, each corresponding to a “step” in the BPEL4WS pro-
cess; each transition defines an applicability condition, a fir-
ing action, and an effect (defined as a list of assignment to
variables). Possible actions are inputs, outputs, and a spe-
cial action TAU which is used to model internal evolutions of
the process, such as assignments and decision making (e.g.,
the transition from state prepareOffer, where the inter-
nal functions costOf and delayOf are used to compute the
shipping price and delivery time).

PROCESS Shipper;
TYPE

Size; Location; Cost; Delay;
INPUT

request(Size, Location); ack(); nack();
OUTPUT

offer(Delay, Cost); not avail();
FUNC

costOf(Size, Location) : Cost; delayOf(Size, Location) : Delay;
VARIABLE

pc: � START, getRequest, checkAvailable, end checkAvailable, sequence1, sequence2,
prepareOffer, sendOffer, waitAnswer, endWaitAnswer, empty1, prepareNotAvail,
sendNotAvail, SUCC, FAIL � ;

customer size: Size; customer loc: Location;
offer delay: Delay; offer cost: Cost;

INIT
pc := START;

TRANS
pc = START -[TAU]- � pc := getRequest;
pc = getRequest -[INPUT request(customer size, customer loc)]- � pc := checkAvailable,
pc = checkAvailable -[TAU]- � pc := sequence1;
pc = checkAvailable -[TAU]- � pc := sequence2;
pc = sequence1 -[TAU]- � pc := prepareOffer;
pc = prepareOffer -[TAU]- � pc := sendOffer,

offer cost:=costOf(customer size,customer loc),
offer delay:=delayOf(customer size,customer loc);

pc = sendOffer -[OUTPUT offer(offer cost, offer delay)]- � pc := waitAnswer;
pc = waitAnswer -[INPUT nack]- � pc := FAIL;
pc = waitAnswer -[INPUT ack]- � pc := empty1;
pc = empty1 -[TAU]- � pc := endWaitAnswer;
pc = endWaitAnswer -[TAU]- � pc := endCheckAvailable;
pc = endCheckAvailable -[TAU]- � pc := SUCC;
pc = sequence2 -[TAU]- � pc := prepareNotAvail;
pc = prepareNotAvail -[TAU]- � pc := sendNotAvail;
pc = sendNotAvail -[OUTPUT not avail]- � pc :=FAIL;

Figure 3: A formal model of the Shipper.

3 A Planning Framework for Service
Composition

The work in [Pistore et al., 2005] presents a formal frame-
work for the automated composition of web services which
is based on planning techniques: component services define
the planning domain, composition requirements are formal-
ized as a planning goal, and planning algorithms are used to
generate the composite service. Due to the nature of web
services, the resulting planning domain is nondeterministic
and partially observable. The framework of [Pistore et al.,
2005] differs from other planning frameworks since it as-
sumes an asynchronous, message-based interaction between
the domain (encoding the component services) and the plan
(encoding the composite service). More precisely, the plan-
ning domain is modeled as a state transition system (STS
from now on) that can be in one of its possible states (a subset
of which are initial) and can evolve to new states as a result
of performing some actions. In particular, input actions rep-
resent messages sent to the component services, while output
actions are messages received from the component services.
Private actions are actions that the composite service can per-
form internally, without interacting with the component ser-
vices1, while the special action � is used to model internal
evolutions of the component services which are not visible
to the service user. Finally, a labeling function associates to
each state the set of properties �����
	 holding in that state.

1As we will see, private actions are used to model operations
such as computing the total cost for the user from the costs received
from the producer and from the shipper. Private actions are specific
of the knowledge-level approach presented here and for this reason
they do not appear in [Pistore et al., 2005]. The extension of the
theory of [Pistore et al., 2005] to private actions is straightforward.

Definition 1 (state transition system (STS))
A state transition system � is a tuple ���������	��
���
��������������
where:

� � is the finite set of states;
� ������� is the set of initial states;
�
 is the finite set of input actions;
�
 is the finite set of output actions;
� � is the finite set of private actions;
� �������� !
#"�
�"$�%"'& �)(+*,�$� is the transition relation;
� �.-/�1032/465�798 is the labeling function.

In a composition problem, the composite service is defined
as a “controller” �$: (also described as a STS), which interacts
with the domain � , orchestrating the component services by
invoking their operations and handling results. We now re-
call the formal definition of the behavior of a STS � when
controlled by �$: .
Definition 2 (controlled system)
Let � ; �<���=���>�?
$��
������������@� and �@: ;
���6:A�����: �B
��?
$�����=�%:C����DC� be two state transition sys-
tems, where ��D	 �E : *F;�G for all E :%H � : . The STS � :�I � ,
describing the behaviors of system � when controlled by � : ,
is defined as:
�@: I �1;J�<�6:��%���=���: �K���>�?
$��
��������%: I �������

where:
� �� �E : �LE+*B� �M�A ?EAN: ��EC*�� H �� :6I �%* if ��E : � �M��EAN: � H � : ;
� �� �E+:A�LE+*B� �M�A ?EC:A��EANO*�� H <�%: I �%* if �?E>� �M��EANO� H � ;
� �� �E+:A�LE+*B� �P�C �ECN: �LECNO*�� H ��%: I �%* , with ��Q; � , if
�?E : � �P��ECN: � H � : and ��E>� �R��ECNO� H � .

Due to the asynchronous nature of web service interac-
tions, and in order to guarantee a correct execution of the
composite service, we need to rule out explicitly the cases
where the sender is ready to send a message that the receiver
is not able to accept. According to [Pistore et al., 2005], a
state E is able to accept a message � if there exists some suc-
cessor E N of E , reachable from E through a (possibly empty)
sequence of � transitions, such that an input transition labeled
with � can be performed in E+N . This intuition is captured in
the following definition, where we denote by � -closure �E+* the
set of states reachable from E through a chain of � transitions.
For what concerns private actions, since they correspond to
internal operations of the composite service, we simply as-
sume that they are executable in the current state of � .

Definition 3 (deadlock-free controller)
Let � ;S�<���=���T��
���
�������������� be a STS and � : ;
���6:A��� �: �B
��?
$�����=�%:C����DC� be a controller for � . �$: is said
to be deadlock free for � if all states �E/:A��EC* H �6:'�U� that
are reachable from the initial states of ��: I � satisfy the fol-
lowing conditions:

� if �?EV� �R�LECN�� H � with � H
 then there is some ECN: H
� -closure �E+:�* such that �?E N : � �R�LE N N: � H �%: for some E N N: H�6: ;

� if ��E+:A� �R�LECN: � H �%: with � H
 then there is some E+N H
� -closure �E+* such that ��E+NW� �P��ECN NO� H � for some E+N N H � .

� if ��E+:A� �R�LECN: � H �%: with � H � then �?EV� �R�LECNO� H � for
some ECN H � .

In [Pistore et al., 2005], the composition problem for do-
main � and composition goal X is defined as the problem of
finding a deadlock-free STS � : such that � :YI � satisfies X .
Planning techniques, based on the planning as model check-
ing framework, are used to solve this problem, and the exper-
imental results show the effectiveness of this approach.

However, the approach of [Pistore et al., 2005] requires a
finite set of data values for all data types (e.g., only a finite
number of articles, locations, costs. . . can be defined in the
P&S domain). This assumption guarantees that the formal
model of a BPEL4WS process such as the one in Figure 3 can
be mapped into a finite-state STS. Moreover, the number of
data values impact dramatically on the size of the generated
STS, and very small sets of values need to be used to allow
for an effective plan generation: for instance, all experiments
in [Pistore et al., 2005] assume only two values for each data
type. In the following we show how to adapt the framework of
[Pistore et al., 2005] to a knowledge-level planning approach
in order to remove this restriction and allow for automated
composition with a realistic (or even infinite) number of data
values.

4 Service Composition via Knowledge-Level
Planning

The key aspect for extending the approach of [Pistore et al.,
2005] to the knowledge level is the definition of an appropri-
ate model for providing a knowledge level description of the
component services. In this section we formally define such
a model in terms of a suitable knowledge base (from now onZU[

). Then we show how to construct the STS corresponding
to the planning domain by composing the knowledge bases of
the component services.

Definition 4 (Knowledge Base)
A knowledge base

Z\[
is a set of propositions of the following

form:
� Z%] <^)* where ^ is a variable with an abstract type;
� Z <^�;`_	* where x is an enumerative variable and v is

one of its possible values;
� Z <^%;bac* where x and y are two variables with the same

type;
� Z <^�;edY WaTf+�AghgAgh��a>i	*�* where ^6��a	f+�hgAghgj��aVi are vari-

ables with an abstract type and d is a function compati-
ble with the types of ^6��a f �hghgAgh��a i .

With
Z 	R* we mean that we know that proposition 	 is true

and with
Z] W^R* that we know the value of the variable ^ .

This definition of knowledge base is very simple; still, our
experiments show that it is powerful enough to model web
service composition problems.

We say that a knowledge base
ZU[

is consistent if it does
not contain contradictory knowledge propositions such asZ W^\;k_c* and

Z <^\;k_	NO* , with _lQ;m_	N . We say that
ZU[

is
closed under deduction if it contains all the propositions that
can be deduced from the propositions in

ZU[
; for instance a

ZU[
containing both

Z�] W^R* and
Z <^.; ac* should contain

also
Z%] <aM* .

The knowledge base
Z\[

of a component service is ob-
tained from the variables, functions and types of the service.

Example 3 An example of knowledge base for the Shipper
process in Figure 3 is:
KB=

�
K(pc = waitAnswer) � K � (customer size) � K � (customer loc) �

K(offer cost = costOf(customer size, customer loc)) �
K(offer delay = delayOf(customer size, customer loc)) �
K � (offer cost), K � (offer delay) ���

In the following we describe when a transition can be exe-
cuted in a knowledge base

ZU[
and how its execution affectsZU[

.
We model a transition � , such as those presented in Fig-

ure 3, as a triple 	�#� �R��
F* where � ;3
�Cf�� ghgAg����jiP* are
its conditions, � is its firing action and
 ; ��>f��hgAghg����+iM* are
its effects. We start by defining the auxiliary restriction and
update operations.

The restriction of a knowledge base
ZU[

with a condition
� , denoted with ���+E�� �������j Z\[��� * , is performed adding toZU[

the knowledge obtained from � and closing under de-
duction; for instance:

restrict(
�
K(x = y) � , y = z) =�

K(x = y), K(y = z), K(x = z) ���
The update of a knowledge base

Z\[
with an effect
 , de-

noted with � 	�� ��� �	 Z\[�!
�* , consists in performing the fol-
lowing steps: for each assignment in
 , remove from

Z\[
the

knowledge we had on the modified variable, add the knowl-
edge derived from the assignment and close the

Z\[
under

deduction. For instance:
update(

�
K(x = y) � , z := x; x := w) =

update(
�
K(x = y), K(z = x), K(z = y) � , x := w) =�

K(z = y), K(x = w) ���
We now give the definitions of applicability and execution
which depend on a service transition � and on an action

�c: performed by a peer interacting with the service; the
firing action � in � and the peer action �M: correspond to
the same action except that the former is instantiated on
service variables, while the latter on variables of the peer.
Consider for instance the following example where action
request(s, l) performed by the peer corresponds to the
Shipper request(customer size, customer loc).
Example 4 Let’s consider the input transition t of the Ship-
per

pc = getRequest

-[INPUT request(customer size, customer loc)]->

pc := checkAvailable

and suppose that our current knowledge base is:
KB =

�
K(pc = getRequest), K � (s) � K � (l) � .

where s:Size and l:Location are additional variables.
Action request(s, l), corresponding to invoking the Ship-
per action using s and l as parameters, is applicable in KB
since we know the values of s and l and the condition of
transition t is obviously consistent with KB.

The knowledge base obtained by executing on KB transition
t and action request(s, l), is defined as follows:

� we restrict KB with the knowledge K(pc =
getRequest) associated to the transition condi-
tion; in this specific case KB remains unchanged;

� then we update KB with the knowledge carried by the
input action on the variables used as action parame-
ters; this consists in removing from KB all the knowl-
edge we had on customer size and customer loc,
adding the new knowledge K(customer size = s),
K(customer loc = l) and closing under deduction;
we obtain:

KB’ =
�
K(pc = getRequest), K � (s) �

K � (l) � K � (customer size) � K � (customer loc) �
K(customer size = s) � K(customer loc = l) � ;

� finally we update the knowledge base with the effects,
removing from KB’ all the knowledge we had on the
variables modified by the assignments, adding the new
knowledge (in this case K(pc := checkAvailable))
and closing under deduction; we obtain:

KB’’ =
�
K(pc = checkAvailable), K � (s) �

K � (l) � K � (customer size) � K � (customer loc) �
K(customer size = s) � K(customer loc = l) � .

Definition 5 (KL Applicability and Execution)
A transition ��;� 	�#� �R��
F* and a corresponding action �,: are
applicable in

ZU[
, written "!#$#&%('�)�"$*+%-,/. �109 Z\[� � : * if:

� �c:B;2�� W^ f �hgAghgj��^ i * and �c;3�B Wa f �AghgAgj��a i * , where �
is an input,

Z�] W^ f *B�hgAghgA� Z%] <^ i * H ZU[
and

���/E�� �4�����j ZU[�!� * is consistent; or
� �c:B; �c <^ f �Aghghgh��^ i * and �c; �c Wa f �hghgAgj��a i * , where � is an

output, and ���/E�� �4�����j ZU[�!� * is consistent; or
� �c:B; �c; � and ���/E�� �������j Z\[�!� * is consistent.

If "�#$#�%5'�)!"6*�%7,8. �10 ZU[� �c:L* , then we denote withZU[NO;9,!:�,!)6. �10 ZU[� � : * the execution on
ZU[

of � and
� : , defined as follows:

� if �	:B; � and ��; 	�#� �M�!
�* then
Z\[NO;3� 	/� ��� �T ZU[N NW��
�* ,

where
ZU[N N�; ���/E�� ���1���j ZU[�!� * ;

� if �c:�;3�� W^ f �hgAghgj��^ i * , where � is an in-
put, and ��; 	�#�;�B <a	f/�hghgAgh��aViM*B�!
�* thenZ\[N�;�� 	/� ��� �	 ZU[N NW��aTf+- ;�^)f<�hghgAg+��aViR- ; ^Ri=��
�* , whereZ\[N NO; ���/E�� ���1���j ZU[�!� * ;

� if � : ; �c <^)f �hgAghgj��^Pi,* , where � is an out-
put, and ��;
�#� �c <a f �AghgAgh��a i *j��
�* thenZ\[N�;�� 	/� ��� �	 ZU[N NW��^ f - ; a f �hghgAg+��^ i - ; a i ��
�* , whereZ\[N NO; ���/E�� ���1���j ZU[�!� * "U& Z] <a	fh*j�hghgAgh� Z] WaViM*�(.

Notice that the execution of a transition increases the knowl-
edge in

Z\[
, not only with the information in the effects, but

also with those in the condition. Indeed, if the transition is
executed, this means that the condition is known to hold.

The planning domain at the knowledge level is constructed
from the knowledge-level models of each component service
and from a knowledge-level representation of the composi-
tion goal. The latter defines which are the variables and the
functions of the composite service, like, for instance, the cost
of the offer to the user, or a special function that adds a mark
up to the sum of the costs of the shipper and producer. We

call these variables and functions, goal variables and goal
functions.

Given a composition goal, we automatically generate its
knowledge level representation that declares what the com-
posite service must know and how goal variables and func-
tions must be related with the variables and functions of the
component services.
Example 5 A possible (very simple) composition goal for
our reference example is:

TryReach
user.pc = SUCC � producer.pc = SUCC � shipper.pc = SUCC �
user.offer cost �
addCost(producer.costOf(user.article),

shipper.costOf(producer.sizeOf(user.article), user.location))

The goal declares that we want all the services to reach the
situation where the order has been confirmed. Moreover it
states that the offered cost must be obtained by applying the
function addCost to the costs offered by the producer and
the shipper. The operator TryReach is one of the modal op-
erators provided by the EAGLE goal specification language.
It requires that the plan reaches the goal condition whenever
possible in the domain. For further details, see [Pistore et al.,
2005]

To obtain the knowledge level goal, we flatten the functions
introducing auxiliary variables until only basic propositions
are left:

TryReach
user.pc = SUCC � producer.pc = SUCC � shipper.pc = SUCC �
user.offer cost = goal.added cost �
goal.added cost = addCost(goal.prod cost, goal.ship cost) �
goal.prod cost = producer.costOf(goal.user art) �
goal.ship cost = shipper.costOf(goal.prod size, goal.user art) �
goal.user art = user.article �
goal.prod size = producer.sizeOf(goal.user art) �
goal.user loc = user.location

From this flattened goal we can extract the goal variables:
goal.added cost, goal.prod cost, goal.ship cost,
goal.prod size, goal.user art, and goal.user loc;
and the goal function goal.addCost(Cost, Cost) � Cost.

The goal can then be automatically translated into its cor-
responding knowledge level goal:

TryReach
K(user.pc = SUCC) � K(producer.pc = SUCC) � K(shipper.pc = SUCC) �
K(user.offer cost = goal.added cost) �
K(goal.added cost = goal.addCost(goal.prod cost, goal.ship cost)) �
K(goal.prod cost = producer.costOf(goal.user art)) �
K(goal.ship cost = shipper.costOf(goal.prod size, goal.user art)) �
K(goal.user art = user.article) �
K(goal.prod size = producer.sizeOf(goal.user art)) �
K(goal.user loc = user.location)

The knowledge-level representation of the composition goal
defines therefore a further knowledge base, that we call the
knowledge base of the goal.

The knowledge-level planning domain � is obtained by
combining the knowledge bases of the component services
and the knowledge base of the goal, by instantiating the input
and output actions of the component services on goal vari-
ables, and by adding the private actions obtained by applying
goal functions to goal variables.

Definition 6 (Knowledge-level Planning Domain)
The planning domain � for a composition problem is an STS
��� �=���T��
$�B
��L���=������� defined as follows:

� the set of states � are all the possible
ZU[

defined on
the set of typed variables

� ;����	� � � � � i
� � and on the set

of typed functions
�;������ � � � � i
 � , where
� f �AghgAgj� � i

and
 f+�AghgAgh�

 i are the variables and functions of the
component services, while

�
� and
 � are those of the

composition goal;
� ��� � � is the set of initial states corresponding to the

initial knowledge bases
ZU[f

� �AghghgA�
Z\[i

� , obtained from
the initial assignments of the component services;

�
 is the set of input actions �B W^ f �hghgAgh��^ i * such that
�B <a f �hgAghgj��a i * is an input action in a transition of a com-
ponent service and ^ f �hgAghgj��^Pi are goal variables with
the same type of service variables acf/�hghgAgj��a>i ;

�
 is the set of output actions �c <^ f �hgAghgj��^ i * such that
�c Wa f �AghgAgj��a i * is an output action in a transition of a
component service and ^ f �hgAghgh��^Pi are goal variables
with the same type of service variables acf+�AghghgA��aVi ;

� � is the set of private actions ^ � - ;'dY <^ f �AghghgA��^ i * where
d is a goal function and ^ � ��^ f �AghgAgj��^ i are goal vari-
ables compatible with the type of d ;

� � is the set of transitions �V; ��E>� � : �LECNO� , with E>�LECN H � ,
such that:

– if �c: is an input, output or � action, then there exists
a ��;F 	�#� �R��
�* in the sets of transitions of the com-
ponent services such that "�#$#&%('�)�"$*+%-,8. �10 ?E>� � : * and
ECN�; ,�:�,�)<. �109 �E>� �c:�* ;

– if � : is a private action of the form
^ � - ;#dY <^ f �AghghgA��^ i * , then

Z�] W^ f *B�hgAghgA� Z%] <^ i * H
E and ECN�;3� 	�� ��� �	 �E>��^ � - ;#dY <^ f �Aghghgh��^ i *�* ;

� � is the trivial function associating to each state the set
of propositions that hold in that state.

Given the domain � described above, we can apply the ap-
proach presented in [Pistore et al., 2005] and obtain a dead-
lock free �@: that controls � by satisfying the composition
requirements X . Despite of the fact that the synthesized con-
troller �@: is modelled at the knowledge level, its elementary
actions model communication with the component services
(sending and receiving of messages) and manipulation of goal
variables; given this, it is straightforward to obtain the exe-
cutable BPEL4WS composite service from ��: .
5 Experimental Evaluation
We have implemented the proposed approach, and used the
planning as symbolic model checking techniques presented
in [Pistore et al., 2005] to perform an experimental evalua-
tion. All the tests have run on a 3 GHz Xeon PC, limiting
memory usage to 512MBytes, and with a CPU timeout of
1000 seconds.

We first considered the P&S example explained in the pre-
vious sections, which, in spite of the reduced number of com-
ponents, requires a rather intricated protocol to be established
for achieving the goal. Figure 4 shows the results of our

 0.1

 1

 10

 100

 1000

 1 2 3

Ground
K-level

Figure 4: Experiments with P&S.

experiments. The same planning engine is run to perform
knowledge-level composition and ground level compositions,
where different ranges of values can be produced and ex-
changed by the Shipper, Producer and User. The horizon-
tal axis reports the cardinality � of the data types (i.e. Size,
Location, Cost, Delay) handled by the services. We also
consider intermediate cases where we have, for instance, two
possible values for the Cost and only one value for the Size),
reporting the average cardinality in the figure. On the vertical
axis, we report the composition time. As expected, ground
level composition is only feasible for the unrealistic cases
where processes may exchange only data with 2 or at most
3 values. Indeed, the time for ground composition grows ex-
ponentially with the cardinality of the data types, and even the
simple case where types have cardinality 4 is unmanageable.
On the contrary, knowledge-level composition takes about 10
seconds to complete, with a performance similar to that of
the ground level for �U; 2 . This is a reasonable result, since,
basically, binary variables at the ground level correspond to
(binary) knowledge atoms at the knowledge-level.

To evaluate the scalability of the knowledge-level approach
when the number of component services grows, we perform
two sets of experiments, considering a generalization of the
example domain that involves a set of component services. In
our first set of experiments, each component is represented
by a very simple abstract BPEL4WS process that is requested
to provide a service and can respond either by performing the
service, or by refusing. The composition requirement is that
either all services end successfully, or a failure is reported
to the invoker of the composed service. Figure 5 reports
the knowledge-level composition times, for increasing num-
ber of services to be composed (indicated on the horizontal
axis). The composition achieves results comparable to those
reported in [Pistore et al., 2005], where ground composition
is performed only considering the case of types with range
of cardinality 2. We manage to compose 14 services in 20
minutes.

In the second set of experiments, also reported in Figure 5,
we make the protocol more complex, by requiring a higher
degree of interleaving between components. Here, the inter-
actions with each component are more complex than a single
invoke-response step, and, to achieve the goal, it is neces-

 0.01

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

simple
complex

Figure 5: Experiments with parametrized domains.

sary to carry out interactions with all components in an inter-
leaved way. Such interleaving is common in the P&S exam-
ple where, e.g., the P&S cannot confirm the order to the pro-
ducer if shipping is not available or if the user does not accept
the offer. The increased complexity reflects on the complex-
ity of the composition; however, compositions of reasonable
complexity (up to 8 services) can be achieved within 20 min-
utes. Even in this case, automated composition takes a rather
low amount of time, surely faster than manual development
of BPEL4WS code.

6 Conclusions and Related Work
In this paper, we have shown how automated composition
can be obtained by translating automatically process-level de-
scriptions of web services, e.g., BPEL4WS processes, to a
planning problem that describes the interactions among ser-
vices at the knowledge level. Our solution exploits the frame-
work for planning in asynchronous domains presented in [Pi-
store et al., 2005]. We show experimentally how the knowl-
edge level approach increases significantly the practical ap-
plicability of this framework.

The idea of planning at the knowledge level is not new, and
the solution that we propose is based on the idea presented in
[Petrick and Bacchus, 2002]. Notice however that our work
addresses an orthogonal problem, i.e., the problem of how a
knowledge-level planning domain can be automatically gen-
erated from a set of BPEL4WS processes that describe web
services. Moreover, at the technical level, our works differs
from those proposed in [Petrick and Bacchus, 2002] in the
kind of information that we represent and store in the knowl-
edge bases, as well as in the knowledge-level planning do-
main that we automatically generate, and in the planning al-
gorithm we exploit.

The work in [Martinez and Lesperance, 2004] shows how
to use the knowledge level planner presented in [Petrick and
Bacchus, 2002] to solve service composition problems. How-
ever they deal only with atomic services (services exporting
a single operation instead of a protocol) and the knowledge
level domain (e.g. domain action specification, update rules)
is written by hand.

Different automated planning techniques have been pro-

posed to tackle the problem of service composition, see, e.g.,
[Wu et al., 2003; Sheshagiri et al., 2003]. However, most of
them cannot deal with the problem that we address in this pa-
per, since they cannot deal with conditional outputs, uncertain
action effects, and partial observability. A remarkable excep-
tion is the work described in [Narayanan and McIlraith, 2002;
McIlraith and Son, 2002; McIlraith and Fadel, 2002], which
instead deals with sensing actions and knowledge level pred-
icates. However, even in this work, the knowledge level do-
main is given by hand, and the problem of devising a knowl-
edge base that can be generated automatically from BPEL4WS
web services descriptions is not addressed. Moreover, the
composition problem is limited to sequential compositions of
services.

The work in [Hull et al., 2003] presents a formal frame-
work for composing e-services from behavioral descriptions
given in terms of automata; they focus on the theoretical foun-
dations, without providing practical implementations. More-
over, the considered e-composition problem is fundamentally
different from our process-level composition, since it is seen
as the problem of generating a set of rules coordinating the
execution of the available services. No concrete and exe-
cutable process is generated with that approach. This is the
main difference also with the work described in [Berardi et
al., 2003].

In the future, we plan to extend the work to the auto-
mated composition of semantic web services, e.g., described
in OWL-S [OWL-S, 2003], along the lines of the work in
[Traverso and Pistore, 2004], which at the moment is not
based on knowledge-level planning. We will also explore
variants of our knowledge base, so to allow flexible ways to
model different features of ground level domains.

Acknowledgements This work is partially funded by the
MIUR-FIRB project RBNE0195K5, “Knowledge Level Au-
tomated Software Engineering”, and by the MIUR-PRIN
2004 project “Advanced Artificial Intelligence Systems for
Web Services”. The authors want to thank all members of the
Astro project (http://astroproject.org/) for their
collaboration and their feedback.

References
[Andrews et al., 2003] T. Andrews, F. Curbera, H. Dolakia,

J. Goland, J. Klein, F. Leymann, K. Liu, D. Roller,
D. Smith, S. Thatte, I. Trickovic, and S. Weeravarana.
Business Process Execution Language for Web Services
(version 1.1), 2003.

[Berardi et al., 2003] D. Berardi, D. Calvanese, G. De Gia-
como, M. Lenzerini, and M. Mecella. Automatic Compo-
sition of E-Services that Export their Behaviour. In Proc.
ICSOC’03, 2003.

[Foster et al., 2003] H. Foster, S. Uchitel, J. Magee, and
J. Kramer. Model-based Verification of Web Service Com-
positions. In Proc. ASE’03, 2003.

[Fu et al., 2004] X. Fu, T. Bultan, and J. Su. Analysis of
Interacting BPEL Web Services. In Proc. WWW’04, 2004.

[Hull et al., 2003] R. Hull, M. Benedikt, V. Christophides,
and J. Su. E-Services: A Look Behind the Curtain. In
Proc. PODS’03, 2003.

[Koehler and Srivastava, 2003] J. Koehler and B. Srivastava.
Web Service Composition: Current Solutions and Open
Problems. In Proc. of ICAPS’03 Workshop on Planning
for Web Services, 2003.

[Martinez and Lesperance, 2004] E. Martinez and Y. Lesper-
ance. Web Service Composition as a Planning Task: Ex-
periments using Knowledge-Based Planning. In Proc. of
ICAPS’04 Workshop on Planning and Scheduling for Web
and Grid Services, 2004.

[McIlraith and Fadel, 2002] S. McIlraith and R. Fadel. Plan-
ning with Complex Actions. In Proc. NMR’02, 2002.

[McIlraith and Son, 2002] S. McIlraith and S. Son. Adapt-
ing Golog for Composition of Semantic Web Services. In
Proc. KR’02, 2002.

[Narayanan and McIlraith, 2002] S. Narayanan and S. McIl-
raith. Simulation, Verification and Automated Composi-
tion of Web Services. In Proc. WWW’02, 2002.

[OWL-S, 2003] OWL-S. OWL-S: Semantic Markup for
Web Services (OWL-S version 1.0), 2003.

[Petrick and Bacchus, 2002] R. Petrick and F. Bacchus. A
Knowledge-Based Approach to Planning with Incomplete
Information and Sensing. In Proc. AIPS’02, 2002.

[Pistore et al., 2005] M. Pistore, P. Traverso, and P. Bertoli.
Automated Composition of Web Services by Planning in
Asynchronous Domains. In Proc. ICAPS’05, 2005.

[Sheshagiri et al., 2003] M. Sheshagiri, M. desJardins, and
T. Finin. A Planner for Composing Services Described in
DAML-S. In Proc. AAMAS’03, 2003.

[Traverso and Pistore, 2004] P. Traverso and M. Pistore. Au-
tomated Composition of Semantic Web Services into Exe-
cutable Processes. In Proc. ISWC’04, 2004.

[Wu et al., 2003] D. Wu, B. Parsia, E. Sirin, J. Hendler, and
D. Nau. Automating DAML-S Web Services Composition
using SHOP2. In Proc. ISWC’03, 2003.

