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Abstract

We study learning structured output in a discrimi-
native framework where values of the output vari-
ables are estimated by local classifiers. In this
framework, complex dependencies among the out-
put variables are captured by constraints and dictate
which global labels can be inferred. We compare
two strategiedearning independent classifieand
inference based trainindpy observing their behav-
iors in different conditions. Experiments and theo-

yi h, davzi mak}@i uc. edu

tional random field§Lafferty et al., 2001, Perceptron-based
learning of structured outpUtCollins, 2002; Carreras and
Marquez, 200Band Max-Margin Markov networks which
allow incorporating Markovian assumptions among output
variabled Taskaret al., 2004.

Incorporating constraints during training can lead to solu
tions that directly optimize the true objective functiomda
hence, should perform better. Nonetheless, most real world
applications using this technique do not show significant ad
vantages, if any. Therefore, it is important to discover the

tradeoffs of using each of the above schemes.

In this paper, we compare three learning schemes. In
the first, classifiers are learned independerégrhing only
(LO)), in the second, inference is used to maintain struc-
tural consistency only after learnintpérning plus inference
(L+1)), and finally inference is used while learning the pa-

) rameters of the classifieinference based trainingBT)). In
1 Introduction semantic role labeling (SRL), it was obsenf&linyakanok

Making decisions in real world problems involves assigning€t &l. 2004; Carreras and Marquez, 20@3at when the lo-
values to sets of variables where a complex and expressi! classification problems are easy to learn, L+l outpemtor
structure can influence, or even dictate, what assignmeats alBT. However, when using a reduced feature space where the
possible. For example, in the task of identifying named-enti Problem was no longer (locally) separable, IBT could over-
ties in a sentence, prediction is governed by constraikés [i come the poor local classifications to yield accurate global
“entities do not overlap.” Another example exists in scane | classifications.
terpretation tasks where predictions must respect canttra ~ Section 2 provides the formal definition of our problem.
that could arise from the nature of the data or task, such aor example, in Section 3, we compare the three learning
“humans have two arms, two legs, and one head.” schemes using the online Perceptron algorithm appliedein th
There exist at least three fundamentally different sohgio three settings (seollins, 2002 for details). All three set-
to learning classifiers over structured output. In the firstlings use the same linear representation, and L+l and IBT
structure is ignored; local classifiers are learned and useghare the same decision function space. Our conjectures of
to predict each output component separately.  In the sedhe relative performance between different schemes are pre
ond, learning is decoupled from the task of maintainingestru sented in Section 4. Despite the fact that IBT is a more pow-
tured output. Estimators are used to produce global outerful technique, in Section 5, we provide an experiment that
put consistent with the structural constraints only afteryt  Shows how L+l can outperform IBT when there exist accu-
are learned for each output variable separately. Discemin rate local classifiers that do not depend on structure, onwhe
tive HMM, conditional model§Punyakanok and Roth, 2001; there are too few examples to learn complex structural depen
McCallum et al, 2004 and many dynamic programming dencies. This is also theoretically justified in Section 6.
based schemes used in the context of sequential predictions
fall into the this category. The third class of solutions in- o
corporates dependencies among the variables into the learn
ing process to directly induce estimators that optimize &Structured output classification problems have many flavors
global performance measure. Traditionally these solstionIn this paper, we focus on problems where it is natural both
were generative; however recent developments have prae split the task into many smaller classification tasks and t
duced discriminative models of this type, including condi-solve directly as a single task. In Section 5.2, we consluer t

retical justification lead to the conclusion that using
inference based learning is superior when the lo-
cal classifiers are difficult to learn but may require
many examples before any discernible difference
can be observed.
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semantic role-labeling problem, where the ingatare nat- 3 Learning
ural language features and the outputs the position and ;g present several ways to learn the scoring function pa-

type of a _stﬁmalntlc-role ": trf'? seln';enc? For thr'ls prf,’.blfr?..'rameters differing in whether or not the structure-based in
One can either learn a set of local TUNCUons such as 1S Nige ance process is leveraged during training. Learning con
phrase an argument of 'run’,” or a global classifier to Pre-gicts of choosing a functioh : X* — »* from some hy-

dict all semantic-roles at once. In addition, natural stred pothesis spaceH Typically.the data is supplied as a set
= {(x1,¥1),---» (Xm,ym)} from a distributionPx y

constraints dictate, for example, that no two semanticsroleD
overX* x Y*. While these concepts are very general, we fo-

for a single verb can overlap. Other structural constraags
Wﬁ!L?,Sﬂ','g%lffstff-ﬁgsgrae'gtsey'eld arestricted OUPWEPIN ., 5 o online learning of linear representations using anar
w Iln eneral Ii\l/en aﬁ assianmext € 47 to a collec- of the Perceptron algorithm (s€€ollins, 2003).
9 + 9 gnmext € Learning Local Classifiers: Learning stand-alone local
classifiers is perhaps the most straightforward setting. No

tion of input variables,X = (Xi,...,X,, ), the struc-
tured classification problem involves identifying the “Bes knowledge of the inference procedure is used. Rather, for
each exampléx,y) € D, the learning algorithm must en-

assignmenty € Y™ to a collection of output variables
Y = (Y1,...,Y,,) that are consistent with a defined struc- sure thatf,, (x.t) > f, (x.t) forall ¢ = 1,....n, and all

ture onY. This structure can be thought of as constraining, . : _ ;
the output space to a smaller sp@i@™) C ™, where Yy # y.. In Figure 3(a), an online Perceptron-style algorithm

oyt e , is presented where no global constraints are used|%ame
C:2” — 2> constrains the output space to be structurallypejedet al, 2009 for details and Section 5 for experiments.
consistent. o _ Learning Global Classifiers: We seek to train classifiers
In th'f paper, a structured output classifier is a functiong, ey will produce the correglobal classification. To this
how &Xte = Yhv, that uses a global scoring function, gy the key difference from learning locally is that feed-
[ & x Y™ — IR to assign scores to each possible ex-pacy from the inference process determines which classifier
ample/label pair. Given input, it is hoped that the correct 1 modify so that together, the classifiers and the inference
outputy achieves the highest score among con3|stentoutputﬁ'.rocedure yield the desired result. As [iGollins, 2002;
¥ = h(x) = argmax f(x,y’), (1)  Carreras and Marquez, 2003ve train according to a global
y'ec(y) criterion. The algorithm presented here is an online proce-
... dure, where at each step a subset of the classifiers are up-
wheren,, andn, depend on the example at hand. In addition,jateq according to inference feedback. See Figure 3(b) for

we view the global scoring function as a composition of a Se{yetails of a Perceptron-like algorithm for learning witfiin
of local scoring functiong f, (x, t) }ycy, wheref, : X" x ence feedback.

{1,...,ny} — IR. Each function represents tiseoreor Note that in practice it is common for problems to be mod-
confidence that output variablé takes valuey: eled in such a way that local classifiers are dependent on part
ny of the output as part of their input. This sortioferactioncan
£ Y1,y Yn,)) = Z fue(x,0) be in(_:c_)rporated directly to the al_goriyhm for learning a@b
P classifier as long as an appropriate inference processds use

. - . . In addition, to provide a fair comparison between LO, L+I,
Inferenceis the task of determining an optimal assign- 5 |gp in this setting one must take care to ensure that the
menty given an assignment. For sequential structure |garming algorithms are appropriate for this task. In oftder
of constraints, polynomial-time algorithms such as Viterb romainfocused on the problem of training with and without
or CSCL [Punyakanok and Roth, 20Dare typically used jyterence feedback, the experiments and analysis presente
for efficient inference. For general structure of CONSE&IN  ¢,ncern only the local classifiers without interaction.
a generic search method (e.g., beam search) may be ap-
plied. Recently, integer programming has also been showgr .
to be an effective inference approach in several NLP applica Conjectures
tions[Roth and Yih, 2004; Punyakanek al., 2004. In this section, we investigate the relative performance of
In this paper, we consider classifiers wilinear rep-  classifier systems learned with and without inference feed-
resentation Linear local classifiers are linear functions, back. There are many competing factors. Initially, if the lo
fy(x,t) = a¥ - ®Y(x,t), wherea? € R™ is a weight cal classification problems are “easy”, then it is likelyttha
vector and®¥(x,t) € IR is a feature vector. Then, learning local classifiers only (LO) can yield the most accu-
it is easy to show that the global scoring function canrate classifiers. However, an accurate model of the straictur
be written in the familiar formf(x,y) = a - ®(x,y), constraints could additionally increase performanceieg
where®¥(x,y) = >/, ®¥t(x,t)I;,,—,) is an accumula- plus inference (L+)). As the local problems become more
tion over all output variables of features occurring forssla difficult to learn, an accurate model of the structure become
y, a = (a',...,al¥!) is concatenation of thex¥’s, and  More important, and_can, perhaps, overcome sub-opumal lo-
d(x,y) = (d'(x,y),..., 2" (x,y)) is the concatenation cal classifiers. Despite the existence of a _gIobaI soluma, _
of the ®¥(x, y)'s. Then, the global classifier is the Iqqal cla}ssmcatlon problems beco_me |ncrea5|ng!y-d|ff|
cult, it is unlikely that structure based inference can fivipo
h(x) =y = argmax - ®(x,y’). classifiers learned locally. In this case, only traininghwit-
y'ec(ymy) ference feedback (IBT) can be expected to perform well.



Claim 4.1 With a fixed number of examples:

Algorithm ONL}'(NELOCAiLEAFjNL’L\‘G 1. If the local classification tasks are separable, then L+
INPUT: D7 € {&X7 x Y} outperforms IBT.
OUTPUT: {fy},cy EH

2. If the task is globally separable, but not locally sepa-

Initialize a¥ € RI®! fory € ¥ rable then IBT outperforms L+I only with sufficient ex-

Repeat until converge amples. This number correlates with the degree of the
for each (x,y) € DX do separability of the local classifiers.
fort=1,...,n,do
gr = argmax, o’ - ®Y(x, 1) 5 Experiments

if g: # y: then
oVt = ¥t + Yt (th)
a@t — a@t _ cp?}t (th)

We present experiments to show how the relative performance
of learning plus inference (L+1) compares to inference dase
training (IBT) when the quality of the local classifiers and
amount of training data varies.

5.1 Synthetic Data

In our experiment, each exampteis a set ofc points ind-
dimensional real space, whexe= (x1,Xa,...,X.) € RY x
... x R? and its label is a sequence of binary varialyler
(y1,- .-, ye) € {0,1}¢, labeled according to:

(a) Without inference feedback

Algorithm ONLINEGLOBAL LEARNING
INPUT: DY € {X* x Y*}™
OUTPUT: {fy},cy EH

Initialize o € R/®!

Repeat until converge — h(x) = aremax k) — (1 — u) Fs (%
fOI’AeaCh (x,y¥) € DXY do o : y ( ) yegc(‘yC) ;yzfz( i) ( yt)fZ( i),
Yy = argmax n - X,y ) ) )
ify#y ther’,’ecw " wherec(Y©) is a subset 0f0, 1}¢ imposing a random con-
a=a+dx,y) - dx,3) straint ony, andf;(x;) = w;x; +6;. Eachf; correspondsto
alocal classifiey; = gi(x;) = Iy, (x,)>0. Clearly, the dataset
(b) With inference feedback generated from this hypothesis is globally linearly seblara

To vary the difficulty of local classification, we generate ex
amples with various degree of linear separability of the lo-
Figure 1: Algorithms for learning without and with infer- cal classifiers by controlling the fractionof the data where
ence feedback. The key difference lies in the inference step(x) # g(x) = (g1(x1),. - ., 9.(x.))—examples whose la-
(i.e. argmax). Inference while learning locally is trivial bels, if generated by local classifiers independently,at@l
and the prediction is made simply by considering each lathe constraints (i.e5(x) ¢ C()°)).
bel locally. Learning globally uses a global inference.(i.e  Figure 2 compares the performance of different learning
argmaxyc(yn)) t0 predict global labels. strategies relative to the number of training examples .used
In all experimentse = 5, the true hypothesis is picked at ran-
i . . . dom, andc(Y<) is a random subset with half of the size of
~Asa first attempt to formah_z_e the difficulty c_)f cIaSS|_f|ca- Ye. Training is halted when a cycle complete with no errors,
tion tasks, we define separability and learnability. A dlass or 100 cycles is reached. The performance is averaged over
fier, f € 7, globally separates data seD iff for all exam- 19 rials. Figure 2(a) shows the locally linearly separahige
ples(x,y) € D, f(x,y) > f(x,y') forally’ € " \'y  \yhere L+l outperforms IBT. Figure 2(c) shows results for the
and locally separatesD iff for all examples(/x, y) € D, case with the most difficult local classification taskst 1)
fy (%) > fy(x,t) forally € Y\ g, and ally’ € Y™ \'y.  \yhere IBT outperforms L+I. Figure 2(b) shows the case
A learning algorithmA is a function from data sets to7d.  \yhere data is not totally locally linearly separatiet 0.1).
We say thaiD is globally (locally) learnableby A if there | this case, L+I outperforms IBT when the number of train-

exists anf € H such thatf globally (locally) separate®. ing examples is small. In all cases, inference helps.
The following simple relationships exist between local and

global learning:1. local separability implies global separa- 5.2 Real-World Data

bility, but the inverse is not true. local separability implies | this section, we present experiments on two real-world
local and global learnability3. global separability implies problems from natural language processing — semantic role
global learnability, but notlocal learnability. Asaresitlis  |apeling and noun phrase identification.

clear that if there exist learning algorithms to learn glaieg- . ]

arations, then given enough examples, IBT will outperformSemantic-Role Labeling . .

L+1. However, learning examples are often limited either be Semantic role labeling (SRL$ believed to be an important
cause they are expensive to label or because some learnifRpk toward natural language understanding, and has imme-
algorithms simply do not scale well to many examples. Withdiate applications in tasks such Information Extractiod an

a fixed number of examples, L+ can outperform IBT. 'Among the total® possible output labelg;(-) fixes a random

fraction as legitimate global labels.
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Figure 3:Results on the semantic-role labeling (SRL) problem. As
the number of features increases, the difficulty of the |atassifi-
cation problem becomes easier, and the independentlyeléa@tas-
sifiers (LO) perform well, especially when inference is uséigdr
learning (L+l). Using inference during training (IBT) caid @erfor-
mance when the learning problem is more difficult (few feasir

[AM—LOC in my WI”]
Here AO representgaver, Al representshing left A2 rep-
resentdenefactor AM-LOC is an adjunct indicating the lo-
cation of the action, and V determines the verb.

We model the problem using classifiers that map con-
stituent candidates to one of 45 different types, such as
fao and fa; [Kingsbury and Palmer, 2002; Carreras and
Marquez, 2008 However, local multiclass decisions are in-
sufficient. Structural constraints are necessary to enfure
example, that no arguments can overlap or embed each other.
In order to include both structural and linguistic consttsj
we use a general inference procedure based on integer linear
programming Punyakanolet al, 2004. We use data pro-
vided in the CoNLL-2004 shared taBRarreras and Marquez,
2003, but we restrict our focus to sentences that have greater
than five arguments. In addition, to simplify the problem, we
assume the boundaries of the constituents are given — the tas
is mainly to assign the argument types.

The experiments clearly show that IBT outperforms lo-
cally learned LO and L+l when the local classifiers are in-
separable and difficult to learn. The difficulty of local Iear
ing was controlled by varying the number of input features.

Figure 2: Comparison of different learning strategies in various With more features, the linear classifier are more expressiv

degrees of difficulties of the local classifiers= 0 implies locally
linearly separability. Highek indicates harder local classification.

and can learn effectively and L+I outperforms IBT. With less
features the problem becomes more difficult and IBT outper-
forms L+I. See Figure 3.

Question Answering. The goal is to identify, for each verb inNoun Phrase Labeling
the sentence, all the constituents which fill a semantic rolengyn phrase identification involves the identification of

and determine their argument types, sucligent Patient
Instrument as well as adjuncts such aecative Temporal
Manner, etc. For example, given a sentenceéft my pearls
to my daughter-in-law in my will”, the goal is to identify dif
ferent arguments of the veheft which yields the output:

[a0 1] [v left] [a1 my pearl$ [a2 to my daughter-in-layv

phrases or of words that participate in a syntactic relation
ship. Specifically, we use the standard base Noun Phrases
(NP) data setfRamshaw and Marcus, 199&ken from the
Wall Street Journal corpus in the Penn Treebpvircuset
al., 1993.

The phrase identifier consists of two classifiers: one that



100 ‘ ‘ ‘ We begin by defining thgrowth functionto measure the
: effective size of the hypothesis space.

8ol Definition 6.1 (Growth Function) For a given hypothesis
classH consisting of functions : X — ), thegrowth func-
tion, N3 (m), counts the maximum number of ways to label

60r any data set of sizen:

—
n Na(m) = sup  [{(h(x1),....h(xm)) |h € H}

40t X1,y X €X'

The well-known VC-style generalization bound expresses

20} expected errog, of thebesthypothesish,; on unseen data.

SO In the following theorem adapted frofanthony and Bartlett,
BT 1999[Theorem 4.2], we directly write the growth function
200 1‘02 16“ 1‘06 into the bound,
Separabilitv (# Features) Theorem 6.2 Suppose th&k is a set of functions from a set

X to a set) with growth functionNy(m). Lethep € H
Figure 4: Results on the noun phrase (NP) identification{probbe the hypothesis that minimizes sample error on a sample of

lem. sizem drawn from an unknown, but fixed probability distri-
bution. Then, with probability — §

detects the beginningj, and a second that detects the end,

f of a phrase. The out{come of these classifiers are then com- € < €opt \/32(10g(NH(2m)) i 1og(4/6)). (2)

bined in a way that satisfies structural constraints coimgsra m

(e.g. non-overlapping), using an efficient constraintséat- For simplicity, we first describe the setting in which a sep-

tion mechanism that makes use of the confidence in the clagrate function is learned for each of a fixed numlerof

sifiers’ outcome$Punyakanok and Roth, 20p1 output variables (as in Section 5.1). Here, each example has
In this case, L+ trains each classifier independently, and components in input = (X1,...,%Xc) € RYx ... x R?

only during evaluation, the inference is used. On the otheand outputy = (y1,...,ye) € {0,1}¢.

hand, IBT incorporates the inference into the training. For Given a dataseb, the aim is to learn a set of linear scor-
each sentence, each word position is processed by the clagg functions f;(x;) = wix;, wherew; € RR? for each
sifiers, and their outcomes are used by the inference procegs= 1,...,¢c. For LO and L+l, the setting is simple: find
to infer the final prediction. The classifiers are then updiate a set of weight vectors that, for each component, satisfy
based on the final prediction not on their own prediction be-,w,x; > 0 for all examplegx,y) € D. For IBT, we find
fore the inference. a set of classifiers such that, y,w;x; > Y, yiw;x; for all

As in the previous experiment, Figure 4 shows perfor-y’ -£ y (and that satisfy the constraintg,c ¢ ()°)).
mance of two systems varied by the number of features. Un- As previously noted, when learning local classifiers inde-
like the previous experiment, the number of features in eachendently (LO and L+l), one can only guarantee convergence
experiment was determined by the frequency of occurrencavhen each local problem is separable — however, it is often
Less frequent features are pruned to make the task more diffine case that global constraints render these problemssinse
cult. The results are similar to the SRL task in that only whernrable. Therefore, there is a lower bourgl,, on the optimal

the problem becomes difficult IBT outperforms L+. error achievable. Since each componentis a separaterigarni
problem, the generalization error is thus

6 Bound Prediction Corollary 6.3 WhenH is the set of separating hyperplanes

In this section, we use standard VC-style generalizatior"qn RY,

bounds from learning theory to gain intuition into when kear

ing locally (LO and L+I) may outperform learning globally € < €opt \/32(dlog((em/d)) +log(4/9)) 3)

(IBT) by comparing the expressivity and complexity of each m

hypothesis space. When learning globally, it is possible tQ, ¢ sketch:We show that\y(m) < (em/d)* whenH
learn concepts that may be difficult to learn locally, Sirfte t i 1o class of threshold linear functions dndimensions.

global constraints are not available to the local algorghm ; ; ; ;
On the other hand, while the global hypothesis space is morjé/H.(m) Is precisely the maximum number of continuous

. d . .
expressive, it has a substantially larger representati@ne reglgns an 1arrangement o halfspaces inR”, which is
we develop two bounds—both for linear classifiers on a re2 >_i—; ("; ) < 2(e(m — 1)/d)*. Form > 1, the result
stricted problem. The first upper bounds the generalizatioholds. See[Anthony and Bartlett, 1998Theorem 3.1] for
error for learning locally by assuming various degrees pf se details. u
arability. The second provides an improved generalization On the other hand, when learning collectively with IBT,
bound for globally learned classifiers by assuming seplrabiexamples consist of the full vectar € R°. In this set-
ity in the more expressive global hypothesis space. ting, convergence is guaranteed (if, of course, such aifumct
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Figure 5:The VC-style generalization bounds predict that IBT will
eventually outperform LO if the local classifiers are unabldind
consistent classificatiore{,; > 0.0, accuracy< 1). However, if
the local classifiers are learnable,; 0.0, accuracy= 1), LO
will perform well.

exists). Thus, the optimal error when training with IBT is
eopt = 0. However, the output of the global classification is
now the entire output vector. Therefore, the growth furrctio [c

must account for exponentially many outputs.

Corollary 6.4 WhenH is the set of decision functions over

{0, 1}¢, defined byargmaxy/cc((0,13¢) 21— YiWiXi, Where
., we) € R,

. < \/32(cdlog(em/cd) + ¢2d 4 log(4/9))

m

w = (wi,..

Proof sketch: In this setting, we must count the effective

We provided experiments on both real-world and synthetic
data as well as a theoretical justification that support cainm
clams. — first, when the local classification is linearly sepa
rable, L+| outperforms IBT, and second, as the local prob-
lems become more difficult and are no longer linearly sepa-
rable, IBT outperforms L+, but only with sufficient number
of training examples. In the future, we will seek a similar
comparison for the more general setting where nontrivial in
teraction between local classifiers is allowed, and thusllo
separability does not imply global separability.
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