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Abstract

Current Neural Network learning algorithms are
limited in their ability to model non-linear dynami-
cal systems. Most supervised gradient-based recur-
rent neural networks (RNNs) suffer from a vanish-
ing error signal that prevents learning from inputs
far in the past. Those that do not, still have prob-
lems when there are numerous local minima. We
introduce a general framework for sequence learn-
ing, EVOlution of recurrent systems with LINear
outputs (Evolino). Evolino uses evolution to dis-
cover good RNN hidden node weights, while us-
ing methods such as linear regression or quadratic
programming to compute optimal linear mappings
from hidden state to output. Using the Long Short-
Term Memory RNN Architecture, the method is
tested in three very different problem domains: 1)
context-sensitive languages, 2) multiple superim-
posed sine waves, and 3) the Mackey-Glass sys-
tem. Evolino performs exceptionally well across
all tasks, where other methods show notable defi-
ciencies in some.

Introduction

Echo State Networks (ESN§Jaeger, 20045 deal with
temporal dependencies by simply ignoring the gradients as-
sociated with hidden neurons. Composed primarily of a large
pool of neurons (typically hundreds or thousands) with fixed
random weights, ESNs are trained by computing a set of
weights analytically from the pool to the output units using
fast, linear regression. The idea is that with so many ran-
dom hidden units, the pool is capable of very rich dynamics
that just need to be correctly “tapped” by adjusting the atitp
weights. This simple approach is currently the title holider
the Mackey-Glass time-series benchmark, improving on the
accuracy of all other methods by as much as three orders of
magnitudd Jaeger, 2004a

The drawback of ESNs, of course, is that the only truly
computationally powerful, nonlinear part of the net does no
learn at all. This means that on some seemingly simple tasks,
such as generating multiple superimposed sine waves, the
method fails. According to our experience, it is also notabl
to solve a simple context-sensitive grammar tEGkrs and
Schmidhuber, 20J1 Moreover, because ESNs use such a
large number of processing units, they are prone to overfit-
ting, i.e. poor generalization.

One method that adaptdl weights and succeeds in us-
ing gradient information to learn long-term dependencses i
Long Short-Term Memory (LSTM;Hochreiter and Schmid-
huber, 1997; Gers and Schmidhuber, 2001.STM uses a

Real world non-linear dynamical systems are black-box in naspecialized network architecture that includes lin@amory
ture: it is possible to observe their input/output behagvbat
the internal mechanism that generates this behavior is oftehave input and output gates that learn to open and close at
unknown. Modeling such systems to accurately predict theipppropriate times either to let in new information from out-

behavior is a huge challenge with potentially far-reacliing
pact on areas as broad as speech processing/recognition, tfi-potentially affect other cells or the network’s outpuhel
nancial forecasting, and engineering.

son and Fallside, 1987; Williams and Zipser, 1P8ére
an attractive formalism for non-linear modeling because of An alternative approach to training RNNs is neuroevolu-
their ability, in principle, to approximate any dynamicgts
tem with arbitrary precisiofSiegelmann and Sontag, 1991 the space of network parameters is searched in paralled usin
However, training RNNs with standard gradient descent-algothe principle of natural selection. A population cfiromo-
rithms is only practical when a short time window (less thansomesor strings encoding, for instance, network weight val-
10 time-steps) is sufficient to predict the correct systetn ou ues and connectivity is evaluated on the problem, and each
put. For longer temporal dependencies, the gradient vasish chromosome is awardeditnessvalue that quantifies its rel-

as the error signal is propagated back through time so thative performance. The more highly fit chromosomes are
network weights are never adjusted correctly to account focombined by exchanging substringsdssovey and by ran-
events far in the pagHochreiteret al,, 2001.

cellsthat can sustain their activation indefinitely. The cells

side and change the state of the cell, or to let activation out

cell structure enables LSTM to use gradient descent to learn

Artificial Neural Networks with feedback connections or dependencies across almost arbitrarily long time spana- Ho
Recurrent Neural Networks (RNNBwerbos, 1990; Robin-

ever, in cases where gradient information is of little use du

to numerous local minima, LSTM becomes less competitive.

tion [Yao, 1999. Instead of using a single neural network,

domly changing some valuem(tatior), producing new so-



0 V0 0 problem. Properties that require non-linearity and reznce
Y Ys ¥ are then dealt with by evolution.
Figure 1 illustrates the basic operation of an Evolino net-
Linear Output work. The output of the network at time y(t) € R™, is
Layer W computed by the following formulas:

y(t) = Wo(t), (1)
I $(t) = flult),ult —1),...,u(0)), 2)

whereg(t) € R™ is the output of a recurrent neural network
Recurrent f(-), andW is a weight matrix. Note that because the net-
works are recurrent(-) is indeed a function of the entire in-
Neural Network put historyu(t), u(t —( 1)), ...,u(0). In the case of maximum
margin classification probleni¥apnik, 199% we may com-

I I I T oeee T pute W by quadratic programming. In what follows, how-
U(H) WD) W0 Ul U ever, we focus on mean squared error minimization problems
and computéV by linear regression.

In order to evolve arf (-) that minimizes the error between
y and the correct output], of the system being modeled,
Evolino does not specify a particular evolutionary alduorit
but rather only stipulates that networks be evaluated ubiag
following two-phase procedure.

In the first phase, a training set of sequences obtained from
the system{u*,d'},i = 1..k, each of lengtli*, is presented
lutions that hopefully improve upon the existing populatio to the network. For each sequence starting at time = 0,

This approach has been very effective in solving continu-each input patterm*(t) is successively propagated through
ous, partially observable reinforcement learning tasksr&h  the recurrent network to produce a vector of activatiof(s)
the gradient is not directly available, outperforming c@mv -+ ic stored as a row ina x Zf I’ matrix ®. Associated

tional methods (e.g. Q-learning, SARSA) on several diffi-_ . PPN i o
cult learning benchmark#oriarty and Miikkulainen, 1996; With €ache’(t), is atargetrow vectord” in D containing the
correct output values for each time step. Oncé akkquences

Gomez and Miikkulainen, 1999 However, neuroevolution ave been seen, the output weighfthe output layer in fig-
is rarely used for supervised learning tasks such as time s&2V ’ utput weig utput layerin g
ure 1) are computed using linear regression fidto D. The

ries prediction because it has difficulty fine-tuning salati golumn vectors inb (i.e. the values of each of theoutputs
parameters (e.g. network weights), and because of the Pr'Sver the entire training set) form a non-orthogonal basis th

?{aiushggarirrgg;én that gradient information should be used whenIS combined linearly byV’ to approximateD.

In this paper, we present a novel framework called EVO—WolPktge ;ﬁ,co&?t %Ig)evs%teh?ntrgl[glggr}esetr(l)s greast(zl(ﬂjt?ﬁrgouthﬁ t?]%t'
lution of recurrent systems with LINear outputs (Evolino) gan, P propag 9

that combines elements of the three aforementioned metﬁ?%:iréﬁgttget;’;%ru@;g) ?Qgigt]i?) nste‘)’wyrﬁgrgﬁgtﬁﬂ %‘gpliég%r_"
ods, to address the disadvantages of each, extending ide g h p'd I prec h A d he fi P
proposed for feedforward networks of radial basis function 'OB or theresi Olljg erro?s_t en used as the fitness measure
(RBFs)[Maillard and Gueriot, 1997 Applied to the LSTM to be minimized by evolution. : .

architecture, Evolino can solve tasks that ESNs cannot, and Neuroevolutionis normally applied to reinforcementlearn
achieves higher accuracy in certain continuous function ge 'd tasks where correct network outputs (i.e. targets) ate n

eration tasks than conventional gradient descent RNNS, ir*gnow.na priori. Here we use neuroevolution for supervised
cluding gradient-based LSTM. earning to circumvent the problems of gradient-based ap-

Section 2 explains the basic concept of Evolino and depro_aches. In order to obtain the precision required for time
scribes in detail the specific implementation used in this pasféheisct?éﬁg'gﬂggilwelggtggét%teonegt(\)/\ll\é?kaonuettvl\ﬁégtggégake
per. Section 3 presents our experiments using Evolino i Y- ' P

three different domains: context-sensitive grammarsticen :ﬁ;st H:qi?j’[i:lorl’; S‘F’:Jfk;%isésmflor IQggrb;es?sreizsé%g'ie-rr?ﬁa'gt#'ti“:n tlo
uous function generation, and the Mackey-Glass time-serie 9 Y9 ying

Section 4 and 5 discuss the algorithm and the experiment:f;l'lnOI a I!etWOI" that m_ode_ls_the system acgurately on its own.
results, and summarize our conclusions. In this study, Evolino is instantiated using Enforced Sub-

Populations to evolve LSTM networks. The next sections de-
. scribe ESP and LSTM, and the details of how they are com-
2 The Evolino Framework bined within the Evolino framework.

Evolino is a general framework for supervised sequenc :

learning that combines neuroevolution (i.e. the evolutbn 2.1 Enforced Subpopulations

neural networks) and analytical linear methods that are opt Enforced SubPopulations differs from standard neuroevolu
mal in some sense, such as linear regression or quadratic priion methods in that instead of evolving complete networks,
gramming. The underlying principle of Evolino is that of@en it coevolveseparate subpopulations of network components
linear model can account for a large number of properties of @r neurongfigure 2). Evolution in ESP proceeds as follows:

Figure 1: Evolino network. A recurrent neural network receives
sequential inputs(¢) and produce the vectop(, ¢2, . . ., ¢») atev-
ery time step. These values are linearly combined with the weight
matrix W to yield the network’s output vectax(t). While the RNN

is evolved, the output layer weights are computed usingtadas-
mal method such as linear regression or quadratic progragimi
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Figure 3:Long Short-Term Memory. The figure shows an LSTM
memory cell The cell has an internal statetogether with a forget
gate (Gr) that determines how much the state is attenuated at each
LSTM Network time step. The input gate(;) controls access to the cell by the
external inputs that are summed into fiaunit, and the output gate

Figure 2: Enforced SubPopulations (ESP). The population of () controls when and how much the cell fires. Small dark nodes
neurons is segregated into subpopulations. Networks ameetbby  represent the multiplication function.

randomly selecting one neuron from each subpopulation. ukame
accumulates a fitness score by adding the fitness of each nketwo

in which it participated. The best neurons within each spof®>  fynctions needed to form good networks because members of
tion are mated to form new neurons. The network shown here is agjfferent evolving sub-function types are prevented froat-m
LSTM network with four memory cells (the triangular shapes) jng "~ Subpopulations also reduce noise in the neuron fitness
measure because each evolving neuron type is guaranteed to
1. Initialization: The number of hidden unif in the net- be represented in every network that is formed. This allows
works that will be evolved is specified and a subpopula-ESP to evolve recurrent networks, where SANE could not.

tion of n neuron chromosomesiis created for each hidden If the performance of ESP does notimprove for a predeter-

unit. Each chromosome encodes a neuron’s input, outMined number of generations, a technique cafiest muta-

put, and recurrent connection weights with a string oftion is used. The idea of burst mutation is to search the space
random real numbers. of modifications to the best solution found so far. When burst

2. Evaluation A neuron is selected at randorn from eacf12100 £ 2Caled, e best neuron n cach subbopaato
of the H subpopulations, and combined to form a recur- : X

rent network. The network is evaluated on the task anqﬁ%??ée%fﬁ; 221(\:/2 j li]be%?gglag(\)/gl% c?r?(tj;\%?] fgggg%glséﬁl#gw
awarded a fitness score. The score is added t@ihe . !

N o ; searching in a neighborhood around the previous best solu-
?e%eg\r/ke fitnes®f each neuron that participated in the tion. Burst mutation injects new diversity into the subpepu
' lations and allows ESP to continue evolving after the ihitia
3. Recombination: For each subpopulation the neurons argubpopulations have converged.

ranked by fitness, and the top quartile is recombined us-

ing 1-point crossover and mutated using Cauchy dis 2 | ong Short-Term Memory

tributed noise to create new neurons that replace the . )

lowest-ranking half of the subpopulation. :_STMI|s a recurrdent nedural network pucrjposelél deS|gnethr(])

. P : earn long-term dependencies via gradient descent. e
4 %?gﬁt?; miEgﬁé?ﬁ??&ﬁ%combmaﬂon cycle until a SUf'uniqye feature of the LSTM architecture is tiiemory cell
' that is capable of maintaining its activation indefinitefiig{

ESP searches the space of networks indirectly by samplingre 3). Memory cells consist of a linear unit which holds the
the possible networks that can be constructed from the sulstateof the cell, and three gates that can open or close over
populations of neurons. Network evaluations serve to protime. The input gate “protects” a neuron from its input: only
vide a fitness statistic that is used to produce better nsurorwhen the gate is open, can inputs affect the internal state of
that can eventually be combined to form a successful networkhe neuron. The output gate lets the state out to other parts
This cooperative coevolutionary approach is an extension tof the network, and the forget gate enables the state to™leak
Symbiotic, Adaptive Neuroevolution (SANEMoriarty and  activity when it is no longer useful.

Miikkulainen, 1998) which also evolves neurons, but in a  The state of cell is computed by:
single population. By using separate subpopulations, ESP _ ,
accelerates the specialization of neurons into differabt s si(t) = neti(t)gi™ (t) + gl oo (t)si(t — 1), (3)

3

pseudo—inverse
weights



wheregi™ andg/°r9¢* are the activation of the input and for- [ Training data] Gradient LSTM] Evolino LSTM ]

get gates, respectively, andt is the weighted sum of the 1..10 1..28 1.53
external inputs (indicated by thes in figure 3): 1..20 1..66 1..95
1..30 1.91 1..355
nety(t) = h(Y_wife;(t = 1) + Y wituy(t),  (4) 1.40 1.120 1..804

J k

) ] ) ) ) Table 1: Generalization results for the a”b"c™ language. The
whereh is usually the identity function, ang is the output  table compares Evolino-based LSTM to Gradient-based LSTTHd.
of cell 5: left column shows the set of legal strings used to train easthad.

ci(t) = tanh(g;?“t (t)s;(1)). (5)  The other columns show the set of strings that each methodibes

out to accept after training. The result for LSTM with gradielesdent
whereg” is the O_LI_tput gate of ceji. The amount each gate are from[Gers and Schmidhuber, 240Rverages of 20 runs.
g; of memory celli is open or closed at timeis calculated
by:
givPe(t) = g(z wf;_ﬂ’@cj (t—1)+ wa}j”euk(t)), (6)  was found useful for continuous function generation tasks,
, but interferes to some extent with performance in the discre
wheretype can 6emput, output, or }orget, ando is the  context-sensitive language task.
standard sigmoid function. The gates receive input from the
output of other cells;;, and from the external inputs to the 3 Experimental Results

network. ] )
Experiments were carried out on three test problems: contex

2.3 Combining ESP with LSTM in Evolino sensitive languages, multiple superimposed sine waves, an

We apply our general Evolino framework to the LSTM archi- theé Mackey-Glass time series. The first two were chosen to
tecture, using ESP for evolution and regression for computtighlight Evolino’s ability to perform well in both discret
ing linear mappings from hidden state to outputs. ESP co@nd continuous domains. For a more detailed description of
evolves subpopulations of memory cells instead of standar8€tups used in these two problems, and further experiments,
recurrent neurons (figure 2). Each chromosome is a stringe direct the reader tbWierstraet al, 2009. The Mackey-
containing the external input weights and the input, oytputS!ass system was selected to compare Evolino with ESNs, the
and forget gate weights, for a total ¢f« (I + H) weights reference method on this widely used time series benchmark.
in each memory cell chromosome, whdres the number of "
external inputs and is the number of memory cells in the 3-1 Context-Sensitive Grammars
network. There are four sets &f+ H weights because the Learning to recognize context-sensitive languages isfa dif
three gates (equation 6) and the cell itself (equation Aivec  cult and often intractable problem for standard RNNs besaus
input from outside the cell and the other cells. ESP, as deit can require unlimited memory. For instance, recognizing
scribed in section 2.1, normally uses crossover to recoenbinthe language™b™c™ (i.e. strings where the number @, bs,
neurons. However, for the present Evolino variant, wheee fin andcs is equal) entails counting the number of consecuts/e
local search is desirable, ESP uses only mutation. The tops, andcs, and potentially having to remember these quan-
quarter of the chromosomes in each subpopulation are dupliities until the whole string has been read. Gradient-based
cated and the copies are mutated by adding Cauchy noise t&TM has previously been used to leartb™c", so here we
all of their weight values. compare the results iGers and Schmidhuber, 20ab those

The linear regression method used to compute the outpuif Evolino-based LSTM.
weights (¥ in equation 2) is the Moore-Penrose pseudo- Four sets of 20 simulations were run each using a different
inverse method, which is both fast and optimal in thetraining set of legal strings,a"b"c"},n = 1..N, whereN
sense that it minimizes the summed squared d®enrose, was 10, 20, 30, and 40. Symbol strings were presented to the
19559—comparegMaillard and Gueriot, 1997for an appli- networks, one symbol at a time. The networks had 4 input
cation to feedforward RBF nets. The vectgt) consists of  units, one for each possible symbdi: for start, a, b, and
both the cell outputs;; (equation 5), and their internal states, ¢. An input is set to 1.0 when the corresponding symbol is
s; (equation 3), so that the pseudo-inverse computes two combserved, and -1.0 when it is not present. At every time step,
nection weights for each memory cell. We refer to the conthe network predicts what symbols could come nextp,
nections from internal states to the output units as “output, and the termination symbdl, by activating its 4 output
peephole” connections, since they peer into the interitn@f  units. An output unit is considered to be “on” if its activati
cells. is greater than 0.0.

For continuous function generatiomackprojection(or ESP evolved LSTM networks with 4 memory cells,
teacher forcingn standard RNN terminology) is used where weights randomly initialized to values betweef.1 and0.1.
the predicted outputs are fed back as inputs in the next tim&he Cauchy noise parameterfor both mutation and burst
step:g(t) = f(u(t),y(t —1),u(t—1),...,3(0),u(0)). mutation was set t6.00001, i.e.50% of the mutations is kept

During training, the correct target values are backpreghct within this bound. Evolution was terminated after 50 gener-
in effect “clamping” the network’s outputs to the right vaki  ations, after which the best network in each simulation was
During testing, the network backprojects its own preditsio  tested.
This technique is also used by ESNs, but whereas ESNs do The results are summarized in Table 1. Evolino-based
not change the backprojection connection weights, Evolind. STM learns in approximately 3 minutes on average, but,
evolves them, treating them like any other input to the netmore importantly, it is able to generalize substantiallttdre
work. In the experiments described below, backprojectiorthan gradient-based LSTM.



+—predicted MGS) in this domain to show its capacity for making precise
] system predictions. We used the same setup in our experiments as
; in [Jaeger, 2004a Networks were trained on the first 3000
' ‘ time steps of the series using a “washout time” of 100 steps.
: /\ ‘ During the washout time the vectast) are not collected for
: 7 calculating the pseudo-inverse.
W W Wv\/ We evolved networks with 30 memory cells for 200 gen-
: 1t S erations, and a Cauchy noiseof 10~7. A bias input of
300 300 i 600 1000 1300 1.0 was added to the network, and the backprojection values
ime steps .
Figure 4: Performance of Evolino on the triple superimposed were scaled by a factor of 0.1. For testing, the outputs were
sine wave task. The plot show the behavior of a typical network CIa_mped to the correct targets for_the first 300.0 steps, after
produced after 50 generations (3000 evaluations). Thassteps  Which the network backprojected its own prediction for the
(the data-points left of the vertical dashed line) were wsetlaining  Next 84 steps The cell input (equation 4) was squashed with
data, the rest must be predicted by the network during gsime-  thetanh function. The average NRMSE for Evolino with
steps above 300 show the network predictions (dashed cimviely 30 cells over the 15 runs was) x 102 compared td 0—*-2
testing plotted against the correct system output (soliseju The ~ for ESNs with 1000 neuronigJaeger, 2004a The Evolino
inset is a magnified detail that more clearly shows the tweesir results are currently the second-best reported so far.
Figure 5 shows the performance of an Evolino network on
. . . the MG time-series with even fewer memory cells, after 50
3.2 Multiple Superimposed Sine Waves generations. Because this network has fewer parameters, it
JaegefJaeger, 2004treports that Echo State Networks are iS u_nable to achieve the same precision as with 30 neurons,
unable to learn functions composed of multiple superim-but it demonstrates how Evolino can learn complex functions
posed oscillators. Specifically, functions likén(0.2z) +  Vvery quickly; in this case within approximately 3 minutes of
sin(0.311z), in which the individual sines have the same am-CPU time.
plitude but their frequencies are not multiples of each iothe
ESNs have difficulty solving this problem because the dy-4 Djscussion
namics of all the neurons in the ESN “pool” are coupled, ) o
whereas truly solving the task requires an internal reptase  1he real strength of the Evolino framework is its general-
tion of multiple attractors due to the non-periodic behawio  ity. ~ Across different classes of sequence prediction prob-
the function. lems, it was able to compete with the best known methods
We evolved networks with 10 memory cells to predict and convincingly outperform them in several cases. In parti
the aforementioned double sinein(0.2z) + sin(0.311z),  ular, itgeneralized much better than gradient-based LSTM i
and network with 15 cells for a more complex triple sine, the context-sensitive grammar task, and it solved the super
sin(0.2z) + sin(0.311z) + sin(0.42z). Evolino used the iMmposed sine wave task, which ESNs cannot. These results
same parameter settings as in the previous section, exeept t Suggest that Evolino could be widely applicable to model-
backprojection was used (see section 2.3). Networks fdr botiNd complex processes that have both discrete and consnuou
tasks were evolved for 50 generations to predict the first 30@roperties, such as speech. o _
time steps of each function, and then tested on data points Evolino avoids the problem of vanishing gradient and local
from time-steps$00..600. minima normally associated with RNN training by searching
The average summed squared error over the training séf€ space of networks in parallel through evolution. Furthe
was0.011 for the double sine an@2 for the triple sine. The More, by using LSTM memory cells, Evolino searches in a
average error over the test set wa844 and 1.58, respec- Weight space that is already biased toward extractingireta
tively. These error levels are barely visible out to timegst INg, and relating discrete events that may be very far apart i
600. Figure 4 shows the behavior of one of the triple sindime. And, by borrowing the idea of linear regression from
wave Evolino networks out to time-ste300. The magni- ESNS, Evolino is capable of making very precise predictions
fied inset illustrates how even beyond 3 times the length off tasks like the Mackey-Glass benchmark. _
the training set, the network still makes very accurateipred ~ Apart from its versatility, another advantage of Evolino

tions. over ESNs is that it produces more parsimonious solutions.
ESNs have large pools of neurons that are more likely to over-
3.3 Mackey-Glass Time-Series Prediction fit the data. Evolino networks can be made much smaller and,

therefore, potentially more general, less susceptibletsen
The Mackey-Glass system (MGf#fackey and Glass, 19177 and more easily comprehensible by, for instance, RNN rule
is a standard benchmark for chaotic time series predictionaytraction techniques.
The system produces an irregular time series that is praduce  g,,gjing is a template that can be instantiated by plugging
by the foﬁllowmg differential equationj(t) = ay(t—7)/(1+ jn (1) alternative analytical methods for computing optima
y(t — 7)) — yy(t), where the parameters are usually set tojinear mappings to the outputs, given the hidden state,if2) d
a = 02,4 = 10,7 = 0.1. The system is chaotic whenever ferent neuroevolution algorithms, and (3) various reautrre
:jhl’i‘ delayrl7> 16.8. We use the most common value for the network architectures. In particular, our implementatisad

elayr = 17. R

_ Although the MGS can be modeled very accurately us- 1The normalized root mean square error (NRMSEB4 steps
ing feedforward networks with a time-window on the input, after the end of the training sequence, is the standard aisopa
we compare Evolino to ESNs (currently the best method fomeasure used for this problem.
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Figure 5: Performance of Evolino on the Mackey-Glass time-seriesThe plot shows both the Mackey-Glass system and the prexlicti
made by a typical Evolino-based LSTM network evolved for Bderations. The obvious difference between the systemhenplrediction
during the first 100 steps is due to the washout time. The Blsm/s a magnification more clearly showing the deviatiomvbet the two
curves.

mean squared error and linear regression, but we could &s wg¢Hochreiteret al, 2001 S. Hochreiter, Y. Bengio, P. Fras-
use the maximum margin optimality criteribviapnik, 1995 coni, and J. Schmidhuber. Gradient flow in recurrent nets:
and use quadratic programming to find optimal linear map- the difficulty of learning long-term dependencies. In S. C.
pings from hidden state to sequence classifications, dbtain Kremer and J. F. Kolen, editora, Field Guide to Dynam-
a hitherto unknown species séquentiaupport vector ma- ical Recurrent Neural Network$EEE Press, 2001.
chines. [Jaeger, 2004aH. Jaeger. Harnessing nonlinearity: Predict-
We could also use neuroevolution methods that evolve net- ing chaotic systems and saving energy in wireless commu-
work topology as well, so that network complexity is also  nication. Science304:78-80, 2004. .
determined through genetic search. Other RNNs, such ddaeger, 2004bH. Jaeger. http://www.faculty.iu-bremen.de/
higher-order networks could be used instead of LSTM. Gen- hjaeger/courses/seminarspring04/esnstandardsidfes.p
eralizations to nonlinear readout mechanisms (e.qg., neati 2004.
neural networks) with gradient-based search are obvioes. WIMackey and Glass, 19T™. C. Mackey and L. Glass. Os-
may also start training LSTM by Evolino, then fine-tune by  cillation and chaos in physiological control systengi-
traditional pure gradient search. ence 197:287-289, 1977. . .
Future work will further explore this space of possible im- [Maillard and Gueriot, 1997E. P. Maillard and D. Gueriot.
plementations to provide potentially even more powerfetpr ~ RBF neural network, basis functions and genetic algo-
dictors, classifiers, and sequence generators. rithms. InlIEEE International Conference on Neural Net-
. works pages 2187-2190, Piscataway, NJ, 1997. IEEE.
5 Conclusion [Moriarty and Miikkulainen, 1996 D. E. Moriarty and

We introduced EVOlution of recurrent systems with LIN-  R. Miikkulainen. Efficient reinforcement learning through

ear outputs (Evolino), a general framework that _com_bineTP symbiotilcggvsoéutliaon.Machi'r&e Learnilng2d2_:11—32,f1996.t.
evolution of recurrent neural networks and analyticaldine L~€Nrose, - PENrose. A generalized INVerse 1or matri-

methods to solve sequence learning tasks. The implemen- C€S- InProceedings of the Cambridge Philosophy Society

tation of Evolino in this paper combined the pseudo-inversg _ Yolume 51, pages 406-413, 1955.

and Enforced Subpopulations algorithms to search a spaqeiﬁ‘;%gsoq_ﬁgdugﬂlsgﬁ\} elr?%pﬁaiﬁi?%tr);gfor;oagd alii'o'r?arilét-
Long-Short Term Memory networks. This yielded a versatile . Techni yl Report gUED/F INFE?\IG?TI% "
method that can solve both tasks that require long-term mem- ‘t’)VQ(; ' Ue_c ”'9? E eport & Denartmont 1637 am-
ory of discrete events such as context-sensitive languagds h%" riage University Engineering bepartment, :

. AR ) egelmann and Sontag, 199#. T. Siegelmann and E. D.
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