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Abstract
We analyze the asymptotic conditional validity of
modal formulas, i.e., the probability that a formula
ψ is valid in the finite Kripke structures in which
a given modal formulaϕ is valid, when the size
of these Kripke structures grows to infinity. We
characterize the formulasψ that are almost surely
valid (i.e., with probability 1) in caseϕ is a flat,S5-
consistent formula, and show that these formulasψ
are exactly those which follow fromϕ according
to the nonmonotonic modal logicS5G. Our results
provide – for the first time – a probabilistic seman-
tics to a well-known nonmonotonic modal logic,
establishing a new bridge between nonmonotonic
and probabilistic reasoning, and give a computa-
tional account of the asymptotic conditional valid-
ity problem in Kripke structures.

1 Introduction
Asymptotic Probabilities in Modal Logic. Asymptotic (or
limit) probabilities of classical logic formulas have been in-
vestigated in various contexts[Glebskii et al., 1969; Fa-
gin, 1976; Compton, 1988; Kolaitis and Vardi, 1990; Le
Bars, 1998]. Halpern and Kapron have analyzed asymp-
totic probability in modal logic[Halpern and Kapron, 1994],
where, instead of relational structures, Kripke structures are
considered, and where the size of a structure is measured
in terms of the number of its worlds. Among various re-
sults, 1 they have shown that every modal formula is ei-
ther almost surely true or almost surely false in finite Kripke
structures. Thus, there is a0-1 law for modal logic K,
analogous to the 0-1 law for function-free first-order logic
[Fagin, 1976; Glebskiiet al., 1969].

To give a simple example, ifp is a propositional letter
of a considered finite alphabetA, then the modal formula2

Mp is almost surely true (w.r.t. modal logicK). In fact, it
can be seen that ifn →∞, then the cardinality of the set
An of Kripke structures forA of size≤ n satisfyingMp
(i.e., where at least one world satisfyingp is reachable from

1Some of the results of[Halpern and Kapron, 1994] have been
corrected in[Le Bars, 2002], but those referred-to in the present
paper are perfectly correct in[Halpern and Kapron, 1994].

2We here useK as the symbol for the necessity (= knowledge)
operator andM (≡ ¬K¬) for the possibility operator.

each world) grows much faster than the cardinality of the set
Bn of Kripke structures which do not satisfyMp, and thus
limn→∞ |An|/|Cn| = 1 whereCn is the set ofall Kripke
structures withn worlds over the considered alphabet.

Assigning asymptotic probabilities to modal formulas pro-
vides an interesting nonstandard semantics to modal logics
and has important connections to philosophy and to artificial
intelligence:
PHILOSOPHY: It has been observed[Halpern and Kapron,
1994; Gottlob, 1999] that the modal formulas that are almost
surely true in all Kripke models are exactly those formulas
which are valid in Carnap’s modal logic, exposed in his well-
known foundational treatiseMeaning and Necessity[Carnap,
1947]. Carnap argued that precisely these formulas are those
to be considered logically true (L-true). The same logic has
since be considered by various philosophers and logicians
[Gottlob, 1999].
ARTIFICIAL INTELLIGENCE: Various nonmonotonic
modal logicshave been defined in the literature. Examples
are autoepistemic logic[Moore, 1985], nonmonotonic logics
K, S4, etc.[Marek and Truszczýnski, 1993], the logic MBNF
[Lifschitz, 1994] and the logic of minimal knowledgeS5G
[Halpern and Moses, 1985]. In these logics, the modal opera-
tor K is interpreted as an epistemic operator of knowledge or
of belief. As observed in[Gottlob, 1999], the formulas that
can be derived from an empty set of premises inall these log-
ics precisely coincide with those formulas which are almost
surely true in all Kripke structures. This set of formulas is fur-
thermore identical to thestable set[Stalnaker, 1993] based on
the empty set of formulas, thus, in a sense, to the “absolute”
stable set, containing only those formulas that are epistemic
consequences of the empty theory, i.e., that can be assumed
in the case of total factual ignorance (for a definition of stable
sets, see Section 4). We thus retain that in nonmonotonic and
epistemic logics, in absence of further knowledge, a modal
formula is considered true if and only if this formula is al-
most surely valid.

Reasoning and Asymptotic Conditional Truth. While al-
most sure validity provides an appealing probabilistic seman-
tics of truth in the case of total factual ignorance, this does
not yet allow us toreasonon the basis ofpremises, which
is the the most important goal of all logical formalisms, and,
in particular, of nonmonotonic and epistemic logics. In the
setting of limit probabilities, the inferenceϕ |= ψ of a (pos-



sibly modal) formulaψ from a knowledge base (theory)ϕ
would most intuitively correspond to the statement that the
conditional probabilityP (ψ |ϕ) is asymptotically equal to 1.
Assuming a uniform probability distribution of Kripke struc-
tures, this means that for the setsAn andBn of Kripke mod-
els of sizen satisfyingψ ∧ ϕ andϕ, respectively, the limit
limn→∞ |An|/|Bn| exists and is equal to 1.

There is, in general, no 0-1 law for conditional proba-
bilities in our setting, which immediately follows from pre-
vious results (see e.g.[Grove et al., 1996b]) and from the
fact that modal logic corresponds to a fragment of function-
free first-order logic. The existence and determination of
conditional probabilities in first and higher order logics has
been the subject of several studies[Grove et al., 1996b;
1996a]. However, to our best knowledge, conditional prob-
abilities for modal logics have never been studied.

Observe that reasoning via conditional limit probabilities
as explained above clearly constitutes a form of nonmono-
tonic reasoning. For example, ifp is a propositional letter,
then |=lim Mp but K¬p 6|=lim Mp, thus, adding a premise
may invalidate a consequence (here|=lim denotes inference
of almost sure formulas under conditional limit probabili-
ties). The nonmonotonic behaviour of conditional inference
has been pointed out in the context of FO and higher order
classical logic (see e.g.[Grove et al., 1996b]). We deem
the context of modal logic particularly interesting, because
most nonmonotonic logics that have been defined are modal
logics. It would thus be very interesting to know how the
nonmonotonic modal logic obtained from conditional limit
probabilities of Kripke structures relates to well-known and
well-studied nonmonotonic modal logics.

Nonmonotonic Modal Logics. For every “classical”
monotonic system of modal logicS, a nonmonotonic version
NM-S is obtained by the following definition: A setE of
modal formulas is anNM-S-expansion of a knowledge base
ϕ iff E = CnS(ϕ ∪ {¬Kγ|γ ∈ LK(A) − E}), where
CnS is the consequence operator according to modal logic
S andLK(A) is the underlying modal language, i.e., the set
of all possible modal formulas over the alphabet of proposi-
tionsA3. In particular, Moore’s autoepistemic logic corre-
sponds toNM-KD45. For more background, consult[Marek
and Truszczýnski, 1993].

It was often criticized that the above fixed-point equation
is somewhat too liberal, because it allows a theory to have ex-
pansions that are not sufficiently “grounded” in the premises
and contain positive knowledge that a rational agent should
never conclude from the premises. For this reason,ground
nonmonotonic modal logicshave been defined by restrict-
ing the introspection of the agent to non-modal sentences.
The notion of groundedness has a rather intuitive motivation:
in fact, it corresponds to discarding any reasoning based on
epistemic assumptions, which, for example, would enable the
agent to conclude that something is true in the world, by as-
suming to know it. The fixed-point equation defining aSG-
expansionof ϕ is: E = CnS(ϕ ∪ {¬Kγ | γ ∈ L(A)−E}),
whereL(A) denotes the set of all objective (i.e., non-modal)

3This definition is applicable to a large range of modal log-
ics, but a collapse happens atS5 becauseNM-S5=S5 [Marek and
Truszczýnski, 1993].

formulas of the underlying propositional language. Accord-
ing to this equation, we can associate a logicSG to each modal
logic S. Givenϕ ∈ LK(A), ψ ∈ LK(A), we say thatψ is
entailed byϕ in SG (and writeϕ |=SG

ψ) iff ψ belongs to all
SG-expansions forϕ.

Among all ground nonmonotonic logics, the logicS5G

(which, unlike NM-S5, is a true nonmonotonic logic) has
received considerable attention in the literature and is gen-
erally referred to as thelogic of minimal knowledge[Halpern
and Moses, 1985] (or the logic of maximal ignorance). In
fact, independently from its fixed-point characterization,S5G

was characterized on a semantic basis, by means of a pref-
erence criterion among the models of an agent’s knowl-
edge selecting just those models in which objective knowl-
edge (i.e, the set of formulas of typeKϕ such thatϕ ∈
L(A)) is minimal[Halpern and Moses, 1985; Shoham, 1987;
Lifschitz, 1994]. As shown in[Shoham, 1987], S5G has a
simple, elegant model theory: TheS5G models of a theory
T are precisely those Kripke structures which are univer-
sal (i.e., totally connected) and are maximal set of worlds
(w.r.t. set-containment). For details on ground nonmono-
tonic modal logics andS5G, see[Halpern and Moses, 1985;
Lifschitz, 1994; Doniniet al., 1997].

Main Problems Studied. The investigations reported in
this paper were motivated by the following questions:

1. Given a formulaϕ, which formulasψ are almost surely
true in the Kripke models ofϕ, i.e., how can we charac-
terize the formulasψ that are true with limit probability
one in the Kripke models ofϕ, when the size of these
Kripke models grows towards infinity?

2. Given that modal inference under almost sure validity
constitutes a form of nonmonotonic reasoning, to which
of the nonmonotonic modal logics from the above-
mentioned plethora of logics does this form of reasoning
best correspond?

3. Can we characterize the set of formulasϕ that guaran-
tee a 0-1 law for the asymptotic probabilityP (ψ|ϕ) for
arbitrary modal formulasψ?

4. What is the complexity of modal reasoning based on
asymptotic conditional probabilities?

For studying these questions, we make a very weak as-
sumption onϕ, which assures thatϕ does not contradict some
principles of knowledge: we assume thatϕ is S5-consistent,
i.e., we assume thatϕ is consistent with the axioms of (mono-
tonic) S5, which means thatϕ admits at least oneS5-model.
This assumption is indeed very weak. It does neither mean
that ϕ contains theS5 axioms, or that these axioms should
follow from ϕ, nor thatϕ has to be interpreted underS5
Kripke structures only. Our assumption merely requires that
formulas such asKp ∧ K¬p which bluntly contradict some
axioms of (monotonic)S5 cannot be deduced fromϕ. If
ϕ satisfies this requirement, we say thatϕ is knowledge-
consistent. We make this assumption because knowledge-
inconsistent theories are well-known to beinconsistentfor
all currently known nonmonotonic modal logics anyway, i.e.,
in each such nonmonotonic logic, a knowledge-inconsistent
formula ϕ entails a contradiction and thus all formulas of
the modal languageLK(A). In particular, with regard to
our goal of comparing asymptotic conditional reasoning to



nonmonotonic modal logics, there is no point to consider
knowledge-inconsistent modal premises. Moreover, we char-
acterize asymptotic conditional reasoning when the premise
is aflat modal formula, i.e., a formula without nested occur-
rences of the modal operator. The flat fragment of a modal
logic of knowledge is certainly a very important (if not the
most important) syntactically restricted fragment. It consists
of the Boolean closure ofknowledge bases, i.e., of objec-
tive theories under theK operator. In particular, the flat
fragment inS5G is extremely powerful and expressive. As
shown in [Rosati, 1998], via appropriate translations, this
fragment captures the well-known formalisms of default logic
and logic programming under the stable model semantics. In
the present paper we limit our attention to this flat fragment.
However, we think that (by slightly more involved methods)
our results carry over to the fully nested fragment (i.e., the
fragment with nesting depth greater than 1).

Results. By first answering the second of the above-stated
research questions, we show the following main result:
Answer to Question 2:ϕ almost surely entailsψ iff ψ is en-
tailed byϕ in S5G.

This result gives a fresh probabilistic semantics to the well-
known nonmonotonic modal logicS5G, providing a new jus-
tification for S5G based on probabilistic rationality. At the
same time, it provides the answers to our questions 1 and 4,
too. In fact, as already mentioned, reasoning inS5G has pre-
cise characterizations in terms of model-theory and complex-
ity, hence the same characterizations now apply to asymptotic
conditional reasoning over Kripke models:
Answer to Question 1:ϕ almost surely entailsψ iff ψ is sat-
isfied by all Kripke models ofϕ that are universal and have a
maximal set of worlds.
Answer to Question 4:Deciding whetherϕ almost surely en-
tailsψ is Πp

2-complete.4

A theory is honest[Halpern and Moses, 1985] iff it has
exactly oneS5G-model. It has been argued that the epistemic
state of a perfectly rational agent is necessarily honest, e.g.,
it could not be of the form(KT1) ∨ (KT2) whereT1 and
T2 are theories that contradict each other. Honest premises
drastically simplify asymptotic conditional reasoning:
Answer to Question 3:The class of knowledge-consistent
premisesϕ that imply a 0-1 law is exactly the class of honest
formulas. In other words, the honest formulas are precisely
the formulasϕ such that, for allψ, the asymptotic probability
that ψ holds in the structures in whichϕ is valid is either 0
or 1. Moreover, asymptotic conditional reasoning based on
honest theories is onlyΘp

2-complete.
Due to space limitations, we can only include the sketches

of some results in the present version of the paper.

2 Preliminaries
We assume familiarity with modal logicsK andS5. We deal
with a propositional alphabetA such that eitherA is finite
and fixed, i.e., it is the same for every problem instance, orA
is not bounded, but each problem instance comes along with

4Πp
2 is the complement ofΣp

2=NPNP; Θp
2 is the class of problems

solved in PTIME by a logarithmic number of calls to an NP-oracle.

a finite alphabetA as part of the input. We denote byL(A)
the set of propositional (or objective) formulas overA, de-
note byLK(A) the set of modal formulas overA, and denote
by LF

K(A) the set offlat modal formulas, i.e., the subset of
LK(A) of formulas overA satisfying the following abstract
syntax:

ϕ ::= Kf | ¬ϕ | ϕ1 ∧ ϕ2, wheref ∈ L(A)
We also use the symboltrue to denote the formulaa ∨ ¬a,
and the symbolfalse to denote the formulaa ∧ ¬a.

We now recall some auxiliary definitions that we will use
in the following sections[Marek and Truszczýnski, 1993;
Donini et al., 1997]. Given ϕ ∈ LK(A), we denote by
MA(ϕ) the set ofmodal atomsfrom ϕ, i.e., the set of sub-
formulas of the formKψ occurring inϕ. In the following,
we say that an occurrence of a modal atomKψ in a formula
ϕ ∈ LK(A) is strict if it does not lie within the scope of a
modal operator.

Given a partition(P, N) of the setMA(ϕ) and a formula
ψ ∈ LK(A), we denote byψ(P,N) the formula obtained
from ψ by substituting each strict occurrence inψ of a modal
atom in P with true, and each strict occurrence inψ of a
modal atom inN with false. Notice that, ifP ∪ N contains
MA(ψ), thenψ(P, N) is a propositional formula.

Let ϕ ∈ LK(A) and let (P, N) be a partition of
MA(ϕ). We denote byobjϕ(P,N) the propositional formula
objϕ(P, N) = ϕ(P, N) ∧∧

Kψ∈P ψ(P, N).
Given a partition(P,N) of the setMA(ϕ), we say that

(P, N) is S5-consistent withϕ if (P, N) satisfies the follow-
ing conditions: (1) the propositional formulaobjϕ(P, N) is
satisfiable; (2) for eachKψ ∈ N , the propositional formula
objϕ(P, N) ∧ ¬ψ(P, N) is satisfiable. It is immediate to see
that there exists a partition ofMA(ϕ) S5-consistent withϕ iff
ϕ is knowledge-consistent, i.e., there exists anS5-structureS
such that(w,S) |= Kϕ wherew is a world ofS. Finally,
given a structureS = 〈W,R, V 〉 and a worldw ∈ W , we say
that (P,N) is the partition ofMA(ϕ) satisfied by(w,S) if,
for eachKψ ∈ MA(ϕ), (w,S) |= Kψ iff Kψ ∈ P .

3 Strong almost-sure conditional validity
In the work of Halpern and Kapron[Halpern and Kapron,
1994], almost sure structure validity is studied by considering
all possible Kripke structures equally likely, i.e., uniformly
distributed. This amounts to assume that that every proposi-
tional variable is true with probability 1/2 in a randomly cho-
sen world. Under such an assumption, the asymptotic prob-
ability of ϕ w.r.t. a propositional alphabetA corresponds to
the limit limn→∞ |Wϕ

n |/|Wn|, where: (i)Wn denotes the set
of all n-structuresoverA, i.e., the structures withn worlds
of the form〈W,R, V 〉, whereW = {1, . . . , n}, the accessi-
bility relationR is a binary relation overW , andV is a func-
tion mapping each world into a propositional interpretation
overA; (ii) Wϕ

n denotes the set of alln-structures in whichϕ
holds; (iii) |S| represents the cardinality of a setS. Moreover,
under the above uniform probability assumption, asymptotic
conditional probability ofψ givenϕ corresponds to the limit
limn→∞ |W(ϕ∧ψ)

n |/|Wϕ
n |.

It would be more appealing to consider the notion ofstrong
almost sure validity, where the asymptotic probability of a
formula ψ is required to be equal to 1for every possible



probability distributionassigning rational truth probabilities
to the propositional variables. It turns out that in the context
of [Halpern and Kapron, 1994] both concepts are equivalent,
thus all relevant results of[Halpern and Kapron, 1994] extend
to strong almost sure validity. In the context of conditional
probabilities, these concepts differ, however. In this paper we
choose to characterize the notion ofstrongalmost sure con-
ditional validity, which is independent of a particular fixed
probability distribution. However, we will use (Section 4) the
concept of almost sure conditional validity (i.e., the one cor-
responding to the uniform distribution of Kripke structures)
as a tool for establishing (Section 5) our main result on strong
almost sure validity.

More formally, we associate to each propositional atom
a ∈ A a rational probabilitym such that0 < m < 1, which
is interpreted as the probability that the propositiona is true.
Such an assignment is part of the input. Assignments giving
probability 1 (resp. 0) toa are not considered, since in such
cases the propositiona is certainly true (resp. false) and all its
occurrences in a formula can be eliminated in a simple way.
We assume without loss of generality thatm is a finite sum of
the negative powers of two. Hence, we say thatP is aproba-
bility assignmentover an alphabetA if P is a function map-
ping each propositional symbol fromA to a rational number
m such that there exists a finite binary sequencem1 . . .mp

such thatm =
∑p

i=1
mi

2i .
It is immediate to verify the following relationship between

the cardinality of a set of interpetations and the number of
differentn-structures defined over such interpretations.5

Lemma 3.1 Let I be a set of propositional interpretations,
and letWn be the set ofn-structures defined using the set of
interpretationsI. Then,|Wn| = |I|n · 2n2

.

Let ϕ,ψ ∈ LK(A), and letP be a probability assignment
overA. Then,pn

P(ψ|ϕ) denotes the probability thatψ is
valid in then-structures in whichϕ is valid, under the proba-
bility assignmentP. We are now ready to define almost-sure
and strong almost-sure conditional validity.
Definition 3.2 (P-almost-sure validity)Let P be a proba-
bility assignment overA. We say thatψ conditioned by
ϕ is P-almost-surely validif limn→∞ pn

P(ψ|ϕ) = 1, i.e.,
the asymptotic probability thatψ conditioned byϕ is valid
is 1 under the probability assignmentP. Conversely, if
limn→∞ pn

P(ψ|ϕ) < 1, then we say thatψ conditioned by
ϕ is notP-almost-surely valid.

Definition 3.3 (strong-almost-sure validity)ψ conditioned
by ϕ is strongly almost-surely validif limn→∞ pn

P(ψ|ϕ) =
1 for each probability assignmentP over A. Conversely,
if there exists a probability assignmentP overA such that
limn→∞ pn

P(ψ|ϕ) < 1, then we say thatψ conditioned by
ϕ is not strongly almost-surely valid.
We denote bySAS(ϕ,A) the set of formulasψ from LK(A)
such thatψ conditioned byϕ is strongly almost-surely valid.

4 Counting structures
In this section we prove the correspondence between the no-
tion of stable set in nonmonotonic modal logics and strong

5We adopt the well-knownrandom worldsmethod[Groveet al.,
1996b; 1996a].

almost-sure conditional validity with respect to objective for-
mulas, and establish a first correspondence betweenS5G and
strong almost-sure conditional validity in modal logic.

From now on, we denote byh the number of propositional
interpretations ofA, i.e., h = 2|A|. Moreover, given a for-
mulaf ∈ L(A), we denote byhf the number of interpreta-
tions ofA satisfyingf .

We start our analysis by studying the properties of the set
of n-structures forf , i.e., then-structures in which a propo-
sitional formulaf is valid. First of all, from Lemma 3.1, it
follows that the number ofn-structures forf is hf · 2n2

.
Then, we recall the definition ofstable setof modal for-

mulas. Letf be a satisfiable propositional formula over the
propositional alphabetA. The stable set off in A (de-
noted byStable(f,A)) is the unique set of modal formulas
T ⊂ LK(A) that satisfies the following conditions: (i) for
eachψ ∈ L(A), ψ ∈ T iff f ⊃ ψ is a tautology; (ii) ifψ ∈ T
thenKψ ∈ T ; (iii) if ψ ∈ LK(A) − T then¬Kψ ∈ T ;
(iv) T is closed under propositional consequence[Marek and
Truszczýnski, 1993].

Next, we prove the correspondence between formulas
strongly almost-surely valid with respect to an objective for-
mulaf and the formulas inStable(f,A). The proof is easily
obtained by extending an analogous result in[Halpern and
Kapron, 1994].

Lemma 4.1 Letf ∈ L(A) be a satisfiable objective formula.
Then, SAS(f,A) = Stable(f,A).

We now introduce two auxiliary lemmas.

Lemma 4.2 Let ϕ be a flat and knowledge-consistent for-
mula, letWϕ

n be the set ofn-structures forϕ and letDn be
the set ofn-structures forϕ in which all worlds satisfy the
same partition(P,N) of MA(ϕ) S5-consistent withϕ. Then,
limn→∞ |Dn|/|Wϕ

n | = 1.

Proof sketch. The proof is divided in two steps: First,
we prove that, ifϕ is a flat and knowledge-consistent for-
mula, limn→∞ |D′n|/|Wϕ

n | = 1, whereD′n denotes the
set of n-structures forϕ in which no world satisfies an
S5-inconsistent partition ofMA(ϕ). Then, we concentrate
on the setD′n: let D′′n denote the subset ofD′n in which
two worlds satisfy two differentS5-consistent partitions of
MA(ϕ) (P1, N1), (P2, N2), let D1

n be the subset ofD′n in
which all worlds satisfy(P1, N1) and letD2

n be the subset of
D′n in which all worlds satisfy(P2, N2). We prove that either
limn→∞ |D′′n|/|D1

n| = 0 or limn→∞ |D′′n|/|D2
n| = 0.

The following property can be derived by an argument
analogous to the proof of Lemma 4.1.

Lemma 4.3 Let ϕ be a flat and knowledge-consistent for-
mula and let(P, N) be a partition of MA(ϕ) consistent with
ϕ. Let Wϕ

n (P, N) denote the set ofn-structures forϕ in
which all worlds satisfy the partition(P, N), and letDn be
the set ofn-structures forobjϕ(P, N)∧µ(N), whereµ(N) =∧

Kf∈N ¬Kf . Then, limn→∞ |Dn|/|Wϕ
n (P,N)| = 1.

Moreover,limn→∞ |Wϕ
n (P, N)| = (hobjϕ(P,N))n · 2n2

.

We now defineS5G-preferred partitions of modal atoms.

Definition 4.4 (S5G-preferred partition)Letϕ ∈ LK(A). A
partition (P,N) of MA(ϕ) is S5G-preferred forϕ if (P, N)



is S5-consistent withϕ and there exists no other parti-
tion (P ′, N ′) 6= (P,N) of MA(ϕ) such that (i)(P ′, N ′)
is S5-consistent withϕ; and (ii) the propositional formula
objϕ(P,N) ∧ ¬objϕ(P ′, N ′) is not satisfiable.

It is immediate to verify that S5G-preferred parti-
tions of MA(ϕ) are in one-to-one correspondence with
S5G-expansions ofϕ: in particular, each such parti-
tion (P,N) identifies theS5G-expansion corresponding to
Stable(objϕ(P, N),A).

We are now ready to show a first fundamental step towards
the correspondence betweenS5G and strong almost-sure con-
ditional validity: For each knowledge-consistent modal for-
mulaϕ, to compute (strong) almost sure conditional validity
we can safely consider only the set ofn-structures in which
all worlds satisfy one of the partitions ofMA(ϕ) that areS5G-
preferred forϕ.

Theorem 4.5 Let ϕ be a flat, knowledge-consistent formula,
let Wϕ

n denote the set ofn-structures forϕ, and letDn be
the union of the sets ofn-structures forϕ in which all worlds
satisfy the same partition(P,N) of MA(ϕ), where(P, N) is
S5G-preferred forϕ. Then,limn→∞ |Dn|/|Wϕ

n | = 1.

Proof. Let C′n be the union of the sets ofn-structures for
objϕ(P, N)∧ µ(N) for each partition(P, N) of MA(ϕ) that
is S5-consistent withϕ. First, by Lemma 4.2 and Lemma 4.3
it follows that limn→∞ |C′n|/|Wϕ

n | = 1. Moreover, letCn be
the union of the sets ofn-structures forobjϕ(P,N) ∧ µ(N)
for each partition(P,N) of MA(ϕ) that isS5G-preferred for
ϕ: By the same lemmas it follows thatlimn→∞ |Cn|/|Dn| =
1. Thus, we have to prove thatlimn→∞ |Cn|/|C′n| = 1.

Let (P,N) be a partition(P, N) of MA(ϕ) S5G-preferred
for ϕ, and consider all the partitions(P ′, N ′) of MA(ϕ) such
that objϕ(P,N) is satisfied by all propositional interpreta-

tions satisfyingobjϕ(P ′, N ′). Let C(P,N)
n be the set ofn-

structures forobjϕ(P, N) ∧ µ(N), and letC(P ′,N ′)
n be the

union of the set ofn-structures forobjϕ(P ′, N ′) ∧ µ(N ′)

for each such partition(P ′, N ′). Obviously, C(P,N)
n ⊆

C(P ′,N ′)
n (since (P, N) is one of such partitions(P ′, N ′)).

We now prove thatlimn→∞
|C(P,N)

n |
|C(P ′,N′)

n |
= 1. Let C′′n =

C(P ′,N ′)
n − C(P,N)

n . That is,C′′n is the set ofn-structures for
objϕ(P ′, N ′) ∧ µ(N) for each partition(P ′, N ′) that isS5-
consistent withϕ and such thatobjϕ(P, N) is satisfied by
all propositional interpretations satisfyingobjϕ(P ′, N ′), and
there exists at least an interpretation satisfyingobjϕ(P, N)∧
¬objϕ(P ′, N ′). Now letk be the number of interpretations of
A satisfyingobjϕ(P,N): It is immediate to verify that there
can be at mostk such different partitions(P ′, N ′). More-
over, for each such partition(P ′, N ′), there exists at least a
propositional interpretationI that satisfiesobjϕ(P, N) and
does not satisfyobjϕ(P ′, N ′). Therefore, from Lemma 4.3

we have that |C′′n |
|C(P,N)

n | ≤
k·(k−1)n·2n2

kn·2n2 = k · ((k − 1)/k)n.

Consequently,limn→∞
|C′′n |

|C(P,N)
n | = 0, which proves that

limn→∞
|C(P,N)

n |
|C(P ′,N′)

n |
= 1. Hence,limn→∞

|Cn|
|C′n| = 1.

5 Asymptotic conditional probability and S5G

In this section we prove the main result of the paper, which
establishes the correspondence between strong almost-sure
conditioned validity and entailment in the logicS5G. To this
aim, we need some preliminary definitions and properties.

Let A′ be the set of propositional atomsai such thata ∈
A and 1 ≤ i ≤ m. We define thecanonical probability
assignmentPc overA′ as follows:Pc(a) = 1

2 for eacha ∈
A′. LetA be a propositional alphabet and letIf be the set
of propositional interpretations overA that satisfyf . The
canonical probabilityof a propositional formulaf , denoted
by cp(f), is defined ascp(f) = |If |

2|A| .
The following auxiliary lemma establishes a sufficient

condition over the partitions ofMA(ϕ) which implies that
limn→∞ pn

Pc(ψ|ϕ) < 1.

Lemma 5.1 Let ϕ ∈ LF
K(A). If there exists a partition

(P, N) of MA(ϕ) such that: (1)(P,N) is S5G-preferred for
ϕ; (2) for each partition(P ′, N ′) that isS5G-preferred forϕ,
cp(objϕ(P, N)) ≥ cp(objϕ(P ′, N ′)); (3) ψ does not hold in
the structures forobjϕ(P,N), then lim

n→∞
pn
Pc(ψ|ϕ) < 1.

Let a ∈ A and letP(a) = k wherek is a rational number
satisfying the definition of probability assignment. Then, we
can construct a propositional formulafk(a) defined over an
alphabetAk = {a1, . . . , amk} (wheremk is a number de-
pending onk) such thatP(a) = cp(fk(a)). Then, given a
probability assignmentP overA, we defineτP(ϕ) as the for-
mula obtained fromϕ by replacing, for eacha ∈ A, each
occurrence ofa in ϕ with fP(a)(a). Now, in order to prove
our main result, we need some auxiliary lemmas.

Lemma 5.2 Let ψ ∈ LK(A), and letf ∈ L(A). Then,ψ ∈
SAS(f,A) iff τP(ψ) ∈ SAS(τP(f),Ak).

Lemma 5.3 Let ϕ,ψ ∈ LK(A). then, for each par-
tition (P, N) that is S5G-preferred for ϕ, the partition
(τP(P ), τP(N)) is S5G-preferred forτP(ϕ), while for each
partition (τP(P ), τP(N)) that is S5G-preferred forτP(ϕ),
the partition(P, N) is S5G-preferred forϕ.

Lemma 5.4 Letϕ ∈ LK(A). If a partition(P, N) of MA(ϕ)
is S5G-preferred for ϕ, then the stable set ofobjϕ(P, N)
in A is an S5G-expansion forϕ. Moreover, if a setT ⊂
LK(A) is anS5G-expansion forϕ, then there exists a parti-
tion (P, N) of MA(ϕ) such that(P, N) is S5G-preferred for
ϕ andStable(objϕ(P,N),A) = T .

Theorem 5.5 Let ϕ ∈ LF
K(A), ψ ∈ LK(A), and letϕ be a

knowledge-consistent formula. Then,ψ conditioned byϕ is
strongly almost-surely valid iffϕ |=S5G

ψ.

Proof. First, if ϕ |=S5G
ψ, then, from definition of en-

tailment in S5G and from Lemma 5.4 it follows that, for
each partition(P,N) that isS5G-preferred forϕ, ψ belongs
to Stable(objϕ(P,N),A), consequently, by Lemma 4.1,
ψ ∈ SAS(objϕ(P, N),A). Hence, by Lemma 5.2 and
Lemma 5.3, for each probability assignmentP over A,
τP(ψ) ∈ SAS(τP(objϕ(P, N)),Ak). Therefore, by Theo-
rem 4.5,limn→∞ pn

Pc(τP(ψ)|τP(ϕ)) = 1, which implies
thatψ conditioned byϕ is strongly almost-surely valid.



Conversely, ifϕ 6|=S5G
ψ, then by Lemma 5.4 it follows that

there exists a partition(P, N) that isS5G-preferred forϕ and
such thatψ does not belong toStable(objϕ(P,N),A), con-
sequently, by Lemma 4.1,ψ 6∈ SAS(objϕ(P, N),A). There-
fore, by Lemma 5.2,τP(ψ) 6∈ SAS(τP(objϕ(P, N)),Ak).
Moreover, it is immediate to verify the existence a prob-
ability assignmentP ′ over A such that, for each partition
(P ′, N ′) that isS5G-preferred forϕ, cp(τP′(objϕ(P, N))) ≥
cp(τP′(objϕ(P ′, N ′))). Consequently, by Lemma 5.1, it fol-
lows that limn→∞ pn

Pc(τP(ψ)|τP(ϕ)) < 1, i.e., ψ condi-
tioned byϕ is not strongly almost-surely valid.

6 Complexity results
As explained above, we consider both the case in whichA is
a fixed finite alphabet and the case in which it is considered
as finite but not fixed in advance. IfA is finite and fixed,
then, based on the algorithm for entailment inS5G reported
in [Donini et al., 1997] it can be easily shown that entailment
in S5G can be decided in polynomial time, and therefore, by
Theorem 5.5, strong almost-sure conditional validity can be
decided in polynomial time as well. Consider now the case
of a finite, non-fixed alphabetA.

Theorem 6.1 Let ϕ ∈ LF
K(A), ψ ∈ LK(A), and letϕ be

a knowledge-consistent formula. Deciding whetherψ condi-
tioned byϕ is strongly almost-surely valid is aΠp

2-complete
problem.

Proof. Follows immediately from Theorem 5.5 and from
the fact that the entailment problemϕ |=S5G

ψ whenϕ ∈
LF

K(A) is Πp
2-complete, which is an immediate consequence

of Corollary 4.12 of[Donini et al., 1997] and of Theorem 11
of [Rosati, 1998]).

Next, we study a subclass of flat modal formulas for which
deciding strong almost-sure conditional validity is computa-
tionally easier than in the general case: the class ofhonest
formulas, introduced by[Halpern and Moses, 1985]. A flat
formula ϕ is honest iff it has exactly oneS5G-model. It is
known that deciding whetherϕ is honest is aΘp

2-complete
problem. Moreover, ifϕ is honest, then deciding the entail-
mentϕ |=S5G

ψ is alsoΘp
2-complete. Therefore, from Theo-

rem 5.5 the following property holds.

Theorem 6.2 Let ϕ ∈ LF
K(A), ψ ∈ LK(A), and letϕ be

a honest formula. Deciding whetherψ conditioned byϕ is
strongly almost-surely valid isΘp

2-complete.

Furthermore, the notion of honesty precisely characterizes
the subclass of formulas, among the formulasϕ such thatKϕ
is S5-consistent, that condition according to a 0-1 law, i.e.,
such that eitherlimn→∞ pn

P(ψ|ϕ) = 1 for each probability
assignmentP or limn→∞ pn

P(ψ|ϕ) = 0 for each probability
assignmentP, which is immediately implied by Theorem 5.5
and by the fact that a honest formula has a singleS5G-model.

7 Conclusions
The present work can be extended in several directions. In
particular, we are currently investigating the following is-
sues: (i) strong almost-sure validity for (classes of) condi-
tioning formulas with nested occurrences of modalities; (ii)

extending the study of asymptotic conditional validity to the
framework of multimodal logic; (iii) computingP-almost-
sure conditional validity, i.e., the value of the asymptotic con-
ditional validity for a given probability distributionP of the
truth of primitive propositions.
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[Marek and Truszczýnski, 1993] W. Marek and M. Truszczýnski.
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