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Abstract

We analyze the asymptotic conditional validity of
modal formulas, i.e., the probability that a formula
1 is valid in the finite Kripke structures in which
a given modal formulap is valid, when the size
of these Kripke structures grows to infinity. We
characterize the formulag that are almost surely
valid (i.e., with probability 1) in case is a flat,S5-
consistent formula, and show that these formulas
are exactly those which follow fromp according

to the nonmonotonic modal log&54. Our results
provide — for the first time — a probabilistic seman-
tics to a well-known nonmonotonic modal logic,
establishing a new bridge between nonmonotonic
and probabilistic reasoning, and give a computa-
tional account of the asymptotic conditional valid-
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each world) grows much faster than the cardinality of the set
B,, of Kripke structures which do not satisfy/p, and thus
lim, . |4,|/|Cn] = 1 whereC, is the set ofall Kripke
structures witm worlds over the considered alphabet.
Assigning asymptotic probabilities to modal formulas pro-
vides an interesting nonstandard semantics to modal logics
and has important connections to philosophy and to artificial
intelligence:
PHILOSOPHY: It has been observ@dalpern and Kapron,
1994; Gottlob, 199Pthat the modal formulas that are almost
surely true in all Kripke models are exactly those formulas
which are valid in Carnap’s modal logic, exposed in his well-
known foundational treatiséleaning and Necessif{arnap,
1947. Carnap argued that precisely these formulas are those
to be considered logically trug{true). The same logic has
since be considered by various philosophers and logicians

[Gottlob, 1999.
_ ARTIFICIAL INTELLIGENCE: Various nonmonotonic
1 Introduction modal logicshave been defined in the literature. Examples

Asymptotic Probabilities in Modal Logic. Asymptotic (or &€ autoepistemic logidloore, 1983, nonmonotonic logics
limit) probabilities of classical logic formulas have been in- K $4; etc.[Marek and Truszcyski, 1993, the logic MBNF
vestigated in various contex{Glebskii et al, 1969; Fa- LLifschitz, 1994 and the logic of minimal knowledgé5g
gin, 1976; Compton, 1988; Kolaitis and Vardi, 1990; Le [Halpern and Moses, 1985n these logics, the modal opera-
Bars, 1998 Halpern and Kapron have analyzed asymp_torK_lsmterpreted as an epistemic operator of knowledge or
totic probability in modal IogidHaIpern and Kapron, 199'4 of belief. AS observed nﬁGottIob, 1999, the formulas that
where, instead of relational structures, Kripke structures arn be derived from an empty set of premisealithese log-
considered, and where the size of a structure is measurdgS Precisely coincide with those formulas which are aimost
in terms of the number of its worlds. Among various re- surely true in all Kripke structures. This set of formulas is fur-
sults, 1 they have shown that every modal formula is ei- thermore identical to thstable sefStalnaker, 199based on
ther almost surely true or almost surely false in finite Kripke 1€ émpty set of formulas, thus, in a sense, to the "absolute
structures. Thus, there is &1 law for modal logic K, stable set, containing only those forr_nulas that are epistemic
analogous to the 0-1 law for function-free first-order logic cOnsequences of the empty theory, i.e., that can be assumed
[Fagin, 1976: Glebskit al, 1969. in the case of total factual ignorance (for a definition of stable
To giive a ,Simple exarﬁple ib is a propositional letter SEtS: See Section 4). We thus retain that in nonmonotonic and
of a considered finite alphabet, then the modal formufa ~ €PiStemic logics, in absence of further knowledge, a modal
Mp is almost surely true (w.r.t. modal logk). In fact, it formula is considered true if and only if this formula is al-
can be seen that it — oo, then the cardinality of the set MOst surely valid.
A, of Kripke structures for4 of size < n satisfying Mp
(i.e., where at least one world satisfyipds reachable from

ity problem in Kripke structures.

Reasoning and Asymptotic Conditional Truth. While al-
most sure validity provides an appealing probabilistic seman-
1Some of the results dHalpern and Kapron, 199Aave been tics of truth in the case of total factual ignorance, this does
corrected in[Le Bars, 2002, but those referred-to in the present NOt yet allow us toreasonon the basis ofremises which
paper are perfectly correct [rlalpern and Kapron, 1994 is the the most important goal of all logical formalisms, and,
2\We here uséX as the symbol for the necessity (= knowledge) in particular, of nonmonotonic and epistemic logics. In the
operator and/ (= —K—) for the possibility operator. setting of limit probabilities, the inference |= 1 of a (pos-



sibly modal) formulay) from a knowledge base (theory)  formulas of the underlying propositional language. Accord-
would most intuitively correspond to the statement that thang to this equation, we can associate a ldgito each modal
conditional probabilityP(v | ) is asymptotically equal to 1. logic S. Giveny € Lk (A), v € Lk (A), we say that) is
Assuming a uniform probability distribution of Kripke struc- entailed byy in S¢ (and writey =s. ) iff ¢ belongs to all
tures, this means that for the sets and B,, of Kripke mod-  Ss-expansions fop.
els of sizen satisfyingy A ¢ andy, respectively, the limit Among all ground nonmonotonic logics, the logi6g
lim,,,~ |4n|/|Br| €xists and is equal to 1. (which, unlike NM-S5, is a true nonmonotonic logic) has
There is, in general, no 0-1 law for conditional proba-received considerable attention in the literature and is gen-
bilities in our setting, which immediately follows from pre- erally referred to as thiegic of minimal knowledgiHalpern
vious results (see e.§Groveet al, 1996K) and from the and Moses, 1995(or the logic of maximal ignorance In
fact that modal logic corresponds to a fragment of function-fact, independently from its fixed-point characterizati®by
free first-order logic. The existence and determination ofwas characterized on a semantic basis, by means of a pref-
conditional probabilities in first and higher order logics haserence criterion among the models of an agent’s knowl-
been the subject of several studigSrove et al, 1996b; edge selecting just those models in which objective knowl-
19964. However, to our best knowledge, conditional prob-edge (i.e, the set of formulas of typ€, such thaty €
abilities for modal logics have never been studied. L(A)) is minimal[Halpern and Moses, 1985; Shoham, 1987;
Observe that reasoning via conditional limit probabilities Lifschitz, 1994. As shown in[Shoham, 1987 S5¢ has a
as explained above clearly constitutes a form of nonmonosimple, elegant model theory: Ti¥s models of a theory
tonic reasoning. For example, jifis a propositional letter, 7' are precisely those Kripke structures which are univer-
then =i, Mp but K—p i, Mp, thus, adding a premise sal (i.e., totally connected) and are maximal set of worlds
may invalidate a consequence (héfg,, denotes inference (w.r.t. set-containment). For details on ground nonmono-
of almost sure formulas under conditional limit probabili- tonic modal logics an&5¢, see[Halpern and Moses, 1985;
ties). The nonmonotonic behaviour of conditional inferenceLifschitz, 1994; Doniniet al, 1997.

has been pointed out in the context of FO and higher ordefain Problems Studied. The investigations reported in

classical logic (see e.giQrove et al, 19,965)- We deem  thjs paper were motivated by the following questions:
the context of modal logic particularly interesting, because

most nonmonotonic logics that have been defined are modal 1 Give.n a form.ulap, which form.ula&p are almost surely
logics. It would thus be very interesting to know how the  truein the Kripke models a, i.e., how can we charac-

nonmonotonic modal logic obtained from conditional limit terize the formulag that are true with limit probability
probabilities of Kripke structures relates to well-known and ~ ©n€ in the Kripke models op, when the size of these
well-studied nonmonotonic modal logics. Kripke models grows towards infinity? .

. . . - 2. Given that modal inference under almost sure validity
Nonmonotonic Modal Logics. For every *“classical constitutes a form of nonmonotonic reasoning, to which
monotonic system of modal logis, a nonmonotonic version of the nonmonotonic modal logics from the above-
NM-S is obtained by the following definition: A sef’ of mentioned plethora of logics does this form of reasoning
modal formulas is alNM-S-expansion of a knowledge base best correspond?

p iff E = Cns(p U {-Kyly € Lix(A) — E}), where 3 can we characterize the set of formujaghat guaran-
Cns is the consequence operator according to modal logic e g 0-1 law for the asymptotic probabilig(x|,) for
S andLk(A) is the underlying modal language, i.e., the set arbitrary modal formulag?

of all possible modal formulas over the alphabet of proposi- 4 \wnat is the complexity of modal reasoning based on

tions A3. In particular, Moore’s autoepistemic logic corre- asymptotic conditional probabilities?
sponds tdNM-KD45. For more background, consiiNarek . .
and Truszczfiski, 1993. For studying these questions, we make a very weak as-

It was often criticized that the above fixed-point equationSUMPtion onp, which assures that does not contradict some
is somewhat too liberal, because it allows a theory to have exRrinciples of knowledge: we assume thais S5-consistent,
pansions that are not sufficiently “grounded” in the premised-€-, We assume thatis consistent with the axioms of (mono-

and contain positive knowledge that a rational agent shouldni¢) S5, which means thap admits at least ong5-model.
never conclude from the premises. For this reagpayund his assumption is indeed very weak. It does neither mean

nonmonotonic modal logickave been defined by restrict- thaty contains thess axioms, or that these axioms should
ing the introspection of the agent to non-modai sentence%?'_'ow from ¢, nor thaty has to be interpreted undéb
The notion of groundedness has a rather intuitive motivation\/IPke structures only. Our assumption merely requires that
in fact, it corresponds to discarding any reasoning based offrmulas such a&’p A K—p which bluntly contradict some
epistemic assumptions, which, for example, would enable th@%10ms of (monotonicfs5 cannot be deduced from. If

agent to conclude that something is true in the world, by as¢ Salisfies this requirement, we say thatis knowledge-
suming to know it. The fixed-point equation defininga- ~ consistent We make this assumption because knowledge-
expansiorof g is: E = Cns(p U {~K~ | v € L(A) — E}) inconsistent theories are well-known to lmeonsistentfor

where£(A) denotes the set of all objective (i.e., non-modal) !l currently known nonmonotonic modal logics anyway, i.e.,
in each such nonmonotonic logic, a knowledge-inconsistent
3This definition is applicable to a large range of modal log- formula ¢ entails a contradiction ar_wd thus z_ill formulas of
ics, but a collapse happens$ becauseNM-S5=S5 [Marek and ~ the modal languag€ x (A). In particular, with regard to
Truszczyiski, 1993. our goal of comparing asymptotic conditional reasoning to



nonmonotonic modal logics, there is no point to considera finite alphabetd as part of the input. We denote 18(.A)
knowledge-inconsistent modal premises. Moreover, we chatthe set of propositional (or objective) formulas ovéy de-
acterize asymptotic conditional reasoning when the premisaote byl x (A) the set of modal formulas ovet, and denote
is aflat modal formula, i.e., a formula without nested occur-by ££(A) the set offlat modal formulas, i.e., the subset of
rences of the modal operator. The flat fragment of a modal ;- (A) of formulas overA satisfying the following abstract
logic of knowledge is certainly a very important (if not the syntax:

most important) syntactically restricted fragment. It consists pu=Kf|-p|p1Apa, Wheref € L(A)

of the Boolean closure dfnowledge bases.e., of objec-  We also use the symbdiue to denote the formula Vv —a,
tive theories under thé< operator. In particular, the flat and the symbdialse to denote the formula A —a.

fragment inS5¢ is extremely powerful and expressive. As  \We now recall some auxiliary definitions that we will use
shown in[Rosati, 1998 via appropriate translations, this in the following sectiondMarek and Truszczyski, 1993;
fragment captures the well-known formalisms of default logicDonini et al, 1997. Giveny € Lx(A), we denote by
and logic programming under the stable model semantics. IMA(y) the set ofmodal atomsrom ¢, i.e., the set of sub-
the present paper we limit our attention to this flat fragmentformulas of the formK+) occurring ine. In the following,
However, we think that (by slightly more involved methods) we say that an occurrence of a modal atAfg in a formula
our results carry over to the fully nested fragment (i.e., they ¢ L (A) is strict if it does not lie within the scope of a

fragment with nesting depth greater than 1). modal operator.
Results. By first answering the second of the above-stated Given a partition(, V) of the setMA(¢) and a formula
research questions, we show the following mainresult: ¢ € Lx(A), we denote by)(P, N) the formula obtained

; . . - _ from by substituting each strict occurrenceyirof a modal
g?lzv&/ebryto i(r?légstlon 2p almost surely entailg iff 1/ is en atom in P with true, and each strict occurrence ih of a
Y oc . ) modal atom inV with false. Notice that, ifP U N contains
This result gives a fresh probabilistic semantics to the welly 4(y), theny (P, N) is a propositional formula.
known nonmonotonic modal logl5¢, providing a new jus- Let ¢ € Lx(A) and let (P,N) be a partition of

tification for S5¢ based on probabilistic rationality. At the M A(y). We denote byb;j (P, N) the propositional formula
same time, it provides the answers to our questions 1 and %’bj (P,N) = o(P,N) /\7\ ’ W(P,N)
e\ V) = ) KyeP V)

too. In fact, as already mentioned, reasonin§5a has pre- . i
cise characterizations in terms of model-theory and complex- Given a partition(P, N) of the setMA(,), we say that

; it P, N) is S5-consistent withp if (P, N) satisfies the follow-
ity, hence the same characterizations now apply to asymptotic > = N X .
cgnditional reasoning over Kripke models: PeY ymp |ng.C(_)nd|t|ons: (1) the propositional formu@jw(P’ N) is

i ) . . satisfiable; (2) for eacliy) € N, the propositional formula
Answer to Question 1p almost surely entailg iff ¢ is sat- obj,(P,N) A = (P, N) is satisfiable. It is immediate to see

isfied by all Kripke models of that are universal and have a that there exists a partition M A () S5-consistent withy iff

maximal set of wgrlds. o  is knowledge-consistent, i.e., there existSarstructureS
Answer to Question 4Deciding whetherp almost surely en-  such that(w, S) = K¢ wherew is a world ofS. Finally,
tails y is I15-complete’ given a structuré = (W, R, V) and a worldw € W, we say

A theory is honest[Halpern and Moses, 198%f it has  that (P, N) is the partition ofMA(y) satisfied by(w, S) if,
exactly oneS5¢-model. It has been argued that the epistemidor eachKvy € MA(y), (w, S) |= K1 iff K1 € P.
state of a perfectly rational agent is necessarily honest, e.% St I t diti | validit
it could not be of the form(K'Ty) v (K1) whereT; and rong almost-sure condiional validity
T, are theories that contradict each other. Honest premisds the work of Halpern and KaprofHalpern and Kapron,
drastically simplify asymptotic conditional reasoning: 1994, almost sure structure validity is studied by considering

Answer to Question 3The class of knowledge-consistent all possible Kripke structures equally likely, i.e., uniformly
premisesp that imply a 0-1 law is exactly the class of honest distributed. This amounts to assume that that every proposi-
formulas. In other words, the honest formulas are preciseljional variable is true with probability 1/2 in a randomly cho-
the formulasy such that, for alty, the asymptotic probability Sen world. Under such an assumption, the asymptotic prob-
that+ holds in the structures in which is valid is either 0 ability of x w.r.t. a propositional alphabet corresponds to

or 1. Moreover, asymptotic conditional reasoning based ofhe€ limitlim, ... [Wg|/|[Wx|, where: ()V,, denotes the set
honest theories is onlp’-complete. of all n-structuresover A, i.e., the structures with worlds

of the form (W, R, V), whereW = {1,...,n}, the accessi-
%ility relation R is a binary relation ovel/, andV is a func-
tion mapping each world into a propositional interpretation
2  Preliminaries over A, (ii) Wy denotes the set of all-structures in whichp
holds; (iii) | S| represents the cardinality of a setMoreover,
under the above uniform probability assumption, asymptotic

with a propositional alphabet such that either4 is finite o e : L
and fixed, i.e., it is the same for every problem instance4 or c:.ondltlor;]a/:}g);gitzﬁt/);l)l/t&/@(ifw given: corresponds to the fimit
11y — 00 n nl:

is not bounded, but each problem instance comes along with ) _ i
It would be more appealing to consider the notiostoéng

“T1% is the complement oE5=NP""'; ©% is the class of problems ~almost sure validity, where the asymptotic probability of a
solved in PTIME by a logarithmic number of calls to an NP-oracle. formula ) is required to be equal to for every possible

Due to space limitations, we can only include the sketche
of some results in the present version of the paper.

We assume familiarity with modal logi¢s andS5. We deal



probability distributionassigning rational truth probabilities almost-sure conditional validity with respect to objective for-

to the propositional variables. It turns out that in the contextmulas, and establish a first correspondence betwgerand

of [Halpern and Kapron, 1994o0th concepts are equivalent, strong almost-sure conditional validity in modal logic.

thus all relevant results ¢Halpern and Kapron, 1994xtend From now on, we denote bythe number of propositional

to strong almost sure validity. In the context of conditional interpretations of4, i.e., h = 2/Al. Moreover, given a for-

probabilities, these concepts differ, however. In this paper wenula f € £(.A), we denote by:; the number of interpreta-

choose to characterize the notionstfongalmost sure con- tions of A satisfyingf.

ditional validity, which is independent of a particular fixed We start our analysis by studying the properties of the set

probability distribution. However, we will use (Section 4) the of n-structures forf, i.e., then-structures in which a propo-

concept of almost sure conditional validity (i.e., the one cor-sitional formulaf is valid. First of all, from Lemma 3.1, it

responding to the uniform distribution of Kripke structures) foiows that the number af-structures forf is hy - on? .

as a tool for establishing (Section 5) our main result on strong Then, we recall the definition aftable seof modal for-

almost sure validity. _ y mulas. Letf be a satisfiable propositional formula over the
More formally, we associate to each propositional atomyropositional alphabetd. The stable set off in A (de-

a € A arational probabilityn such tha < m < 1, which  noted byStable(f,.A)) is the unique set of modal formulas

is interpreted as the probability that the propositidis true. 7 £, (A) that satisfies the following conditions: (i) for

Such an assignment is part of the input. Assignments givingachy, € £(A), ¢ € T iff f S v is a tautology; (i) ify € T

probability 1 (resp. 0) ta are not considered, since in such then iy ¢ 7 (iii) if ¢ € Lx(A) — T then—Kv € T;

cases the propositianis certainly true (resp. false) and all its (jy) 7 is closed under propositional consequefidarek and

occurrences in a formula can be eliminated in a simple waygyyszczyiski, 1993.

We assume without loss of generality thais a finite sum of Next, we prove the correspondence between formulas

the negative powers of two. Hence, we say tas aproba-  gtrongly almost-surely valid with respect to an objective for-

bility assignmenbver an alphabetl if 7 is a function map- - myja  and the formulas iStable( f, A). The proof is easily

ping each propositional symbol from to a rational number  gptained by extending an analogous resulfHialpern and

m such that there exists a finite binary sequence ..m,  Kapron, 199%.

such thatn = 37| ™ ’ - o
Itis immediate to v2erifythe following relationship between _Il__ﬁrgp 681:@10 Lj; f_ EStL (b“;l )(?e;)saﬂsflable objective formula.

the cardinality of a set of interpetations and the number of ' 1Y) = LT, A

differentn-structures defined over such interpretatidns. We now introduce two auxiliary lemmas.

Lemma 3.1 Let Z be a set of propositional interpretations, Lemma 4.2 Let ¢ be a flat and knowledge-consistent for-
and letW,, be the set ofi-structures defined using the set of mula, letWWy be the set ofi-structures fory and letD,, be
interpretationsZ. Then,|W, | = |Z|" - on® the set ofn-structures fory in which all worlds satisfy the

Let o, 4 € Lic(A), and letP be a probability assignment same partition P, N') of MA(p) S5-consistent witlp. Then,

. . lim,, 00 |Dp, el =1.
over A. Then,p,” (|¢) denotes the probability that is lm [Dnl/ 7] o ) )
valid in then-structures in whichp is valid, under the proba- Proof sketch.  The proof is divided in two steps: First,
bility assignmenfP. We are now ready to define almost-sure We prove that, 'fslﬂ is a flat and knowledg(/a-consstent for-
and strong almost-sure conditional validity. mt:la,f hm?Hoct \Dn|/f|W?f|. = hl_, hWhere qudentpt]gs the
" o set of n-structures fory in which no world satisfies an

Definition 3.2 (P-almost-sure validity)Let P be a proba- ; : o
bility assignmént overd. We say t%)aw conditiorlloed by Sb-inconsistent partition oMA(¢). Then, we concentrate

is P-almost-surely validf lim pnP(ble) = 1, ie on the setD;: let D;; denote the subset db;, in which
;ﬁe asymptotic probability thabn(;)orfdizion edwbytp is valid  wo worlds satisfy two dlﬁerenﬁf—consmtent part|t|o/n$ of
is 1 under the probability assignme. Conversely, if MA(p) (P1, N1), (P, Na), let Dy, be the subset oD, in

. o which all worlds satisfy P;, N1) and letD? be the subset of
lim,, o0 2" (¥|@) < 1, then we say that conditioned by ;e , D n .
© is notP-almost-surely valid. D, in which all worlds satisfy( P», N3). We prove that either

L - o, limy, o0 |DZ|/|D71L| = 0orlim, .o ‘D’/ril/|D’r2L| = 0. o
Definition 3.3 (strong-almost-sure validity)) conditioned i i
by ¢ is strongly almost-surely validf lim, oo pn” (16]¢) = The following property can be derived by an argument
1 for each probability assignmer®® over A. Conversely, analogous to the proof of Lemma 4.1.
if there exists a probability assignmeft over A such that |emma 4.3 Let ¢ be a flat and knowledge-consistent for-
limy, oo P’ (¥]) < 1, then we say that conditioned by mula and let{ P, N') be a partition of MA() consistent with
¢ is not strongly almost-surely valid. ¢. LetW¢(P,N) denote the set ofi-structures forey in
We denote by5ASp, A) the set of formulag) from L (A) ~ which all worlds satisfy the partitiof?, V), and letD,, be
such thaty conditioned byp is strongly almost-surely valid. —the setofi-structures forobj (P, N) Au(N), whereu(N) =

4 Counting structures Nigen 7K f. Then, lim, o [Dn|/WVE(P,N)| = 1.

. 2
In this section we prove the correspondence between the nbv_loreover,hmnﬂoo (Wi (P, N)| = (hobjw(PvN))n 2t
tion of stable set in nonmonotonic modal logics and strong We now defineS5¢-preferred partitions of modal atoms.

SWe adopt the well-knowrandom worldsnethod[Groveet al, ~ Definition 4.4 (S5¢-preferred partition)Lety € L (A). A
1996b; 1996k partition (P, N) of MA(¢p) is S5¢-preferred fory if (P, N)




is S5-consistent withy and there exists no other parti-
tion (P',N') # (P,N) of MA(p) such that (i) (P’, N’)
is S5-consistent withp; and (ii) the propositional formula
0bj (P, N) A —obj,(P', N') is not satisfiable.

It is immediate to verify thatS5¢g-preferred parti-

5 Asymptotic conditional probability and S5¢
In this section we prove the main result of the paper, which

establishes the correspondence between strong almost-sure

conditioned validity and entailment in the log6ég. To this
aim, we need some preliminary definitions and properties.

tions of MA(p) are in one-to-one correspondence with Let A’ be the set of propositional atom$ such thain €

Sh5g-expansions ofyp: in particular, each such parti-
tion (P, N) identifies theS5s-expansion corresponding to
Stable(obj ,(P,N), A).

Aandl < ¢ < m. We define thecanonical probability
assignmen®,. over A’ as follows: P.(a) = 3 for eacha €
A’. Let A be a propositional alphabet and &t be the set

We are now ready to show a first fundamental step towardsf propositional interpretations ovet that satisfyf. The

the correspondence betweshy, and strong almost-sure con-

ditional validity: For each knowledge-consistent modal for-
mula, to compute (strong) almost sure conditional validity

we can safely consider only the setioftructures in which
all worlds satisfy one of the partitions bA () that areS5¢-
preferred forp.

Theorem 4.5 Let ¢ be a flat, knowledge-consistent formula,

let W¢ denote the set ai-structures fory, and letD,, be
the union of the sets ef-structures fory in which all worlds
satisfy the same partitioP, N') of MA(p), where(P, N) is
S5g-preferred fore. Thenlim, .« |Dy,|/|WF| = 1.

Proof. LetC], be the union of the sets of-structures for
0bj (P, N) A u(N) for each partitior( P, N) of MA(y) that
is S5-consistent withp. First, by Lemma 4.2 and Lemma 4.3
it follows thatlim,, .. |C},|/|W¢| = 1. Moreover, letC,, be
the union of the sets of-structures forbj, (P, N) A u(N)
for each partition P, N') of MA(yp) that isS5¢-preferred for
©: By the same lemmas it follows thhtn,, . [Cy|/|Dn| =
1. Thus, we have to prove thitn,, . |C,|/|C)| = 1.

Let (P, N) be a partition(P, N') of MA(yp) S5¢-preferred
for ¢, and consider all the partitior{$’, N') of MA(y) such
that obj,(P, V) is satisfied by all propositional interpreta-
tions satisfyingobj,(P’, N'). Let ciPN) pe the set ofa-

structures forobj (P, N) A u(N), and letc” ") be the
union of the set ofe-structures forobj ,(P', N') A u(N')

for each such partition P/, N’). Obviously, e ¢
ciPND (since (P, N) is one of such partition$P’, N')).

UL — 1 Lete! =
* n

We now prove thaflim,, ., W

PN _ PN That is,C,! is the set ofn-structures for
obj,(P', N') A u(N) for each partition( P, N') that isS5-
consistent withy and such thabbj (P, N) is satisfied by
all propositional interpretations satisfyirgj (P, N'), and
there exists at least an interpretation satisfyibg, (P, V) A
—obj,(P', N'). Now letk be the number of interpretations of
A satisfyingobj (P, N): Itis immediate to verify that there
can be at mosk such different partitiongP’, N’). More-
over, for each such partitiof?’, N'), there exists at least a
propositional interpretatiod that satisfiesbj (P, N) and

does not satisfybj (P, N'). Therefore, from Lemma 4.3
Gl < ket k- ((k—1)/k)".

em] = e
Consequently,limnﬁm% = 0, which proves that

led™ ™|
e

we have tha

lim,, oo = 1. Hencelim,, o 14

canonical probabilityof a propositional formulgf, denoted
— 1Zsl

by cp(f), is defined agp(f) = 547
The following auxiliary lemma establishes a sufficient
condition over the partitions df1A(¢) which implies that

lim,, oo pn e (1)) < 1.

Lemma5.1Let o € LE(A). If there exists a partition
(P, N) of MA(¢p) such that: (1)(P, N) is S5¢-preferred for
©; (2) for each partition(P’, N') that isS5¢-preferred fore,
cp(obj,(P,N)) > cp(obj (P, N")); (3) ¢ does not hold in
the structures foobj , (P, N), then lim P (Y)p) < 1.

Leta € A and letP(a) = k wherek is a rational number
satisfying the definition of probability assignment. Then, we
can construct a propositional formuf4 (a) defined over an
alphabet4* = {al,... a™*} (Wherem; is a number de-
pending onk) such thatP(a) = cp(f*(a)). Then, given a
probability assignmer#® over.A, we definerp () as the for-
mula obtained fromp by replacing, for eaclu € A, each
occurrence ofi in ¢ with f7(%)(a). Now, in order to prove
our main result, we need some auxiliary lemmas.

Lemma5.2 Lety € Lk (A), and letf € L(A). Theny €
SASf, A) iff Tp(v)) € SASTR(f), AY).

Lemma5.3 Let 9,vp € Lk(A). then, for each par-
tition (P, N) that is S5¢-preferred for p, the partition
(7p(P),mp(N)) is Shg-preferred forrp(¢), while for each
partition (rp(P),Tp(IN)) that is S5¢-preferred forrp (),

the partition(P, N) is S5¢-preferred forp.

Lemma 5.4 Lety € Lk (A). Ifapartition (P, N) of MA(p)
is Sbg-preferred forp, then the stable set ofbj, (P, N)
in A is an Shg-expansion forp. Moreover, if a setl’ C
Lx(A) is anS5g-expansion fokp, then there exists a parti-
tion (P, N) of MA(y) such that(P, N) is S5¢-preferred for
¢ and Stable(obj ,(P,N),A) = T.

Theorem 5.5 Letyp € L (A), ¢ € Lk (A), and lety be a
knowledge-consistent formula. Thefconditioned byp is
strongly almost-surely valid ifp =ss, 1.

Proof.  First, if ¢ |=ss. %, then, from definition of en-
tailment in S5¢ and from Lemma 5.4 it follows that, for
each partition P, N) that isS5¢-preferred forp, 1 belongs
to Stable(obj (P, N), A), consequently, by Lemma 4.1,
Y € SASobj,(P,N), A). Hence, by Lemma 5.2 and
Lemma 5.3, for each probability assignmeht over A,
mp(1) € SASTp(0bj,(P,N)), A*). Therefore, by Theo-
rem 4.5,1im,, .o p, "< (tp () |72 () = 1, which implies
thatvy conditioned byp is strongly almost-surely valid.



Conversely, ifp ~ss. ¢, thenby Lemma 5.4 it follows that  extending the study of asymptotic conditional validity to the
there exists a partitio(P, N) that isS5¢-preferred forp and ~ framework of multimodal logic; (i) computing?-almost-
such that) does not belong t&table(obj (P, N), A), con-  sure conditional validity, i.e., the value of the asymptotic con-
sequently, by Lemma 4.3; ¢ SAS0bj (P, N), A). There- ditional validity for a given probability distributiof® of the
fore, by Lemma SZT'P('L/J) ¢ SAS‘QTP(Obj@(Py N)), Ak) truth of prlmltlve prOpOSItlonS.

Moreover, it is immediate to verify the existence a prob-
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