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Abstract

Possibilistic logic offers a convenient tool for han-
dling uncertain or prioritized formulas and coping
with inconsistency. Propositional logic formulas
are thus associated with weights belonging to a lin-
early ordered scale. However, especially in case
of multiple source information, only partial knowl-
edge may be available about the relative ordering
between weights of formulas. In order to cope with
this problem, a two-sorted counterpart of possibilis-
tic logic is introduced. Pieces of information are
encoded as clauses where special literals refer to
the weights. Constraints between weights translate
into logical formulas of the corresponding sort and
are gathered in a distinct auxiliary knowledge base.
An inference relation, which is sound and complete
with respect to preferential model semantics, en-
ables us to draw plausible conclusions from the two
knowledge bases. The inference process is charac-
terized by using ”forgetting variables” for handling
the symbolic weights, and hence an inference pro-
cess is obtained by means of a DNF compilation of
the two knowledge bases.

1 Introduction
Information is often pervaded with uncertainty, and logics of
different types have been developed for handling uncertain
pieces of knowledge, some based on probability theory, oth-
ers based on non-additive formalisms such as possibility the-
ory. The lack of total certainty of a piece of information is
then assessed by means of an evaluation that estimates the
degree of certainty of the piece of information under the form
of a precise value, or at least of a bound that constrains its
value. For instance, a possibilistic logic expression of the
form

���������
encodes the constraint 	 �
���
���

, where
�

is a
proposition,

�������������
, and 	 is a necessity measure [Dubois

et al., 1994], with the intended meaning that p is certain at
level at least

�
.

In this paper, only partial information is supposed to be
available about the relative ordering between the weights of
the formulas in the base. More precisely, propositional for-
mulas are associated with symbolic weights, and a set of

constraints on these weights is specified to express the rel-
ative importance of these weights. These weights may be
compound symbolic expressions (e.g., as the result of formal
computations) involving maximum and minimum operations.

For handling these symbolic weights, we propose an ap-
proach that uses a logical encoding of the weights. Indeed,
one may think of expressing that a piece of information

�
is not totally certain, by stating that

�
is true under some (un-

specified) condition, namely ”things are not abnormal”. Thus,
the uncertain statement

�
can be written

�����
, which can be

read ”
�

is true or it is abnormal (A)”. Then note that if one
simultaneously asserts

�����
and � � �!��" , i.e. it is somewhat

certain that
�

is true and it is also somewhat certain that
�

is
false,

�#�$� "
can be derived from the two pieces of informa-

tion, which expresses that in a way or another we are in an
abnormal situation. In this paper, since

�
�%�
will be used

as an encoding of the possibilistic formula
�
�&�'�(�

,
�

may be
a propositional formula if

�
is a symbolic expression. For in-

stance, the case of multiple abnormality situations for
�

will
be encoded by

���
� )*�,+-+.+/�0�21
.

This suggests a way of dealing with propositional formulas
with partially constrained weights in a purely logical setting.
In possibilistic logic, formulas with a weight strictly greater
than the inconsistency level of the knowledge base are im-
mune to inconsistency and can be safely used in deductive
reasoning. In the proposed approach, the weights attached to
the inferred formulas are handled as symbolic expressions, as
well as the inconsistency level of the base. A procedure is
described which enables us to determine when the available
information is enough for knowing if a symbolic weight is
greater than another or not.

The paper proposes a unified and general framework to
represent and handle partially-constrained weighted formu-
las, using propositional logic. Its main contributions are:3 to encode available pieces of information 4 using a

propositional knowledge base 5
6 . Each symbolic
weight

�
is represented by a propositional expression

�
.

Each compound expression is associated with a propo-
sitional formula, obtained by replacing maximum by a
conjunction, and minimum by a disjunction. An uncer-
tain formula

���������
will be represented by a propositional

logical formula
�7�8�

, where
�

and
�

are built using two
different sets of variables: 9 and : . Intuitively,

���,�
means that

�
is uncertain, and its uncertainty degree is



encoded by a logical formula
�

.3 to encode constraints ; on symbolic weights with an-
other propositional knowledge base 5
< . The inequality�=�?>

will be represented using material implication.
The fact that

�
is at least as large as

>
, will be encoded

by a propositional formula
�A@CB

(i.e., � �$�8B ). Max-
imum and minimum operations are also encoded here
using respectively conjunctions and disjunctions.3 to define an inference relation in order to draw plausible
conclusions from 5 6 and 5�< . This inference is sound
and complete with respect to a semantics based on pref-
erential models. It extends the possibilistic logic (where
the constraints on symbolic weights induce a total pre-
ordering).3 to characterize this inference process by ”forgetting”
variables of 9 , and by ”forgetting” negative literals
from : . The inference process basically comes down
to infer from 506 and 5 < the strongest positive for-
mula (that does not contain negation symbol), denotedDFEHGJI � 5 6 � 5�< � , that only contains variables from : . In-
tuitively,

DKELGJI � 5�6 � 5 < � represents the logical counter-
part of the inconsistency degree of the knowledge base.3 to use recent results on compilations (e.g., [Darwiche,
2004]) to compute plausible inferences. More precisely,
the knowledge base 5
6KMN5 < is first compiled into DNF.
These formats allow then to have a linear computation ofDFEHGJI � 5 6 � 5�< � .

After a brief survey of possibilistic logic in Section 2, Sec-
tion 3 states the problem of reasoning from possibilistic for-
mulas with partially constrained uncertainty weights. Section
4 provides its purely logical counterpart as a two-sorted logic
and defines a sound and complete inference process from the
two knowledge bases encoding respectively the pieces of un-
certain information, and the constraints on the uncertainty
levels. The handling of symbolic weights in the inference
process is then characterized in section 5 in terms of forget-
ting variables, and in terms of DNF (or d-DNNF compilation)
of the knowledge bases. This section also briefly considers
the case of totally ordered information corresponding to stan-
dard possibilistic knowledge bases.

2 Brief background on possibilistic logic
We start with a brief refresher on possibilistic logic (for more
details see [Dubois et al., 1994]). A possibilistic logic for-
mula is a pair made of a classical logic formula and a weight�

expressing certainty. The weight
�O�P�Q�R�����

of a formula
�

is interpreted as the lower bound of a necessity measure 	 ,
i.e., the possibilistic logic expression

���������
is understood as	 �
���7�S� . Since 	 ����T�UV�KWYX ELG � 	 ���Z�[� 	 ��UV�\� it is always

possible to put a possibilistic formula
�
�&�����

under the form
of a conjunction of clauses

���Z]������
if
�P^_T`]a�b]

. The basic
inference rule in possibilistic logic put in clausal form is the
resolution rule:

� � �0�,U(�����[cd�����feg�h>��jiY�QU��keg�\X ELG �����'>��\� .
Classical resolution is retrieved when all the weights are equal
to 1. Let 4 Wmln�
��]o���(]H�7p E Wq�r� G`s be a knowledge base. The
level of inconsistency of 4 is defined as:

tuGJI � 4 �KWYX��nv&ld��p 47w i$x � s (by convention
X$�nv�yjWz�

).
where 4{w Wql���]`pb����]o�'�n]L�|� 4 � and

�(]`�S� s
.

It can be shown that
tuGJI � 4 �|W}� iff 4�~ W=l��b]Fp��
�b]����(]Q���4 s is consistent in the usual sense.

Refutation can be easily extended to possibilistic logic.
Proving

���&�'���
from 4 amounts to adding

� � �����d� , put in
clausal form, to 4 , and using the above rules repeatedly until
getting 4�M l(� � �����d� s i=�Lx������ . Clearly, we are interested
here in getting the empty clause

x
with the greatest possible

weight, i.e.,
tuGJI � 4kM l(� � �&���d� s �|��� . Indeed, the conclusion���������

is valid only if
�0� tuGJI � 4 � .

Semantic aspects of possibilistic logic, including sound-
ness and completeness results with respect to the above syn-
tactic inference, are presented in [Dubois et al., 1994]. Se-
mantically, a possibilistic knowledge base 4 W�l(��� ] ��� ] �kpE W��u� G`s

is understood as a complete pre-ordering on the
set of interpretations: � � 6�� " iff

X$�uv&ld�(]�p����b]����(]H�P�
4 and � "��� W���] s ��X$�nvJld�r�,p��
���r�'�V�d�
� 4 and � �� W��R� s

.
Thus � is all the less plausible as it falsifies formulas of higher
degrees.

3 Possibilistic logic with symbolic weights
3.1 Representing beliefs
Let 9 be a set of propositional variables. Let

D{�
be a propo-

sitional language built from 9 using the propositional con-
nectors

T|�h�|� � . Let � be a set of symbolic weights or vari-
ables. Each symbol in � takes its value in the interval � �R����� .

In the following, ordinary propositions are denoted by
lower case letters

�&�'U(�\eg��+.+-+.�
symbolic weights are denoted by

lower case letters from the beginning of the alphabet
���'>/� I +.+-+

.
Let 4 W�l(��� ] �'� ] �,p E W��u��+-+.+-� G`s

be a knowledge base
with symbolic weights, where

�
�Z]\�'�n]H�
expresses that

��]
is a

believed with a symbolic weight
��]

.
�(]

can be a compound
expression, namely a max/min expression. More precisely,
max/min expressions are obtained only using the two follow-
ing rules: i)

�0� � is a max/min expression, ii) if
�

and
>

are
max/min expressions, then

X$�nv������h>��
and

X ELG �����'>��
are also

max/min expressions.

Example 1 Let
�

and
e

be two propositional symbols. Let���'>/� I ���b���
be five symbolic weights. In the following, we will

use the following base:4 Wqln�
�&�\X$�nv��Q�b�h>��\����� � ���
eg�\X EHG � I ���(�\����� � eg���g�\� s ,
to illustrate the main concepts of the paper. 4 reflects that

�
is asserted by two sources having reliability

�
and

>
respec-

tively, while for � �!�$e it is unsure if the information should
be considered as having reliability equal to

I
or to

�
.

3.2 Representing constraints
Constraints bearing on symbolic weights are described by a
set of inequalities. A simple form of constraints is:

� ] �q> ]
,

where
�(]

and
>�]

are elements of � . These constraints
�R]`�S>�]

restrict the possible values that
��]

and
>[]

can take in � �R����� .
More generally, the set of constraints are inequalities be-

tween max/min expressions of the form:; Wmld�(]`�P>[]`p E Wm�r��+.+-�'� and�(]
and

>�]
are max/min expressions

s
.



Note that any set of constraints ; can be equivalently
rewritten into a canonical form:; W l�X$�nv����(]�)/��+.+-+.�'�(].1�����X EHG �H>[]�)/��+-+-+.�h>[].� ��p E W�r��+.+-�\eg�

and
�(]�� � � �'>'�'��� � s +

This follows from the facts that i)
�
�SX��nv��H>/� I �

is equiv-
alent to

�,��>
and

�%� I
, ii)

X ELG �H>/� I �8���
is equivalent to>2���

and
I ���

, and iii) max and min are distributive.
In the following, we assume that constraints in ; are in this

canonical form.
Given a set of constraints ; , we are interested in checking

whether a given equality
�
�Y>

(
�

and
>

are max/min expres-
sions) follows from this set of constraints.

Definition 1 Let a and b be two max/min expressions.3 An assignment
t

is a function that assigns to each sym-
bolic weight a degree belonging to

�Q�R�����
.3 An assignment

t
is a solution of ; if it satisfies each

constraint of ; .3 �m�?>
follows from ; if each solution of ; is also a

solution of
�0��>

.

The derivation of strict inequality can be defined recur-
sively as follows. Let

�
and

>
be two elements of � , then����>

follows from C iff
����>

follows from ; and
>0���

does not follow from ; (i.e., there is no proof for
>,���

).
Now, let

��)
, ...,

�(1
,
>�)

, ...,
>[�

be symbolic weights in � .
Then

X$�uv���� ) ��+-+.+-��� 1 ���=X ELG �Q> ) ��+.+-+-�'> � �
is derived from ;

if there exist
� ]

and
> �

such that
� ] �m> �

. Lastly, the deriva-
tion from ; of strict inequality between two general max/min
expressions can be defined using the fact that this derivation
is equivalent to a derivation of a set strict inequalities of the
canonical form

X��nv�����)/��+-+-+.�'�n1R�{�#X EHG �H>�)/��+.+-+-�'>[���
, with

�(]
’s

and
>[]

’s as symbolic weights.

Example 2 With the base of the above example, we will also
consider the following set of constraints :; Wmld�!�S�n� I �����'�!��� s +

Note that since
�!�q�

does not belong to the reflexive and
transitive closure of ; , we may consider using a closed world
assumption that the inequality is strict. The same holds for
other inequalities.

3.3 Plausible inference and semantics
Given a knowledge base with symbolic weights,

tuGJI � 4 �
is now a max/min expression of symbolic weights and the
plausible inference of

�
amounts to establish from ; thattuGJI � 4,M ln� � �����/� s �|� trGJI � 4 � .

Here the weight
�

continues to be the top certainty level, i.e.,  ��� � ���8��� .
Our semantics is based on preferential models. We use

the principle of best-out ordering defined in [Benferhat
et al., 1993], to derive from 4 a partial pre-order on the
set of interpetations, denoted by

� 6 , in agreement with
possibilistic logic. Let � , and � " be two interpretations.
Then:

� � 6 � " iff for each
�
� � �'> � �

such that � �� W�� � , there exists��U�]\�'�(]Q�
such that � "*�� WzU�] and

�(]`�P>��
follows from ; .

Then, a conclusion
U

is said to be a plausible consequence
of
� 4 � ; � if

U
is true in all preferred models (w.r.t.

� 6 ).
An important result is the complete and soundness result,

namely :

Proposition 1
tuGJI � 4�M l(� � �����d� s ��� tuGJI � 4 � follows from; iff

�
is true in all preferred models w.r.t

� 6 .

Example 3 Let us consider the above example, where :4 Wql(���&��X��nv������'>����[�d� � ���
eg�\X ELG � I �'�n���[��� � eg���g�\� s , and; Wql/�!���n� I �������!�S� s +
Given 4 and ; we are interested to check if

e
follows from4 and ; . Let us compute

tuGJI � 4 � . By definition, we have:

tuGJI � 4 �NWSX EHG ��X��nv������'>����\X ELG � I �'�n�����g�[+ (1)
Let us simplify this expression, with the help of the constraints
in ; , we have:tuGJI � 4 �KWYX ELG ��X��nv��Q���'>����\X EHG � I ���(�[�'�g�WYX��nv��Q�n�\X EHG �H>/���g���

, hence:tuGJI � 4 �KWz�n+ (2)

We now need to compute
tuGJI � 4%M � � eg���/��� , we get:tuGJI � 47M � � eg���d�'�KWYX��nv�� trGJI � 4 �[��X ELG ��X��nv��Q���'>����\X EHG � I ���(�\���WYX��nv��Q�n�\X$�uv��¡X ELG ����� I �'�n���\X ELG �Q>/� I ���(�\���WYX��nv��Q�n�\X EHG �Q�����(�[�\X ELG �Q>/� I ���(�\�WYX��nv���X ELG �Q�b�'�n���\X ELG �Q>/� I ���(�\��+

It can be checked from ; that
trGJI � 4�M ln� � eg���d� s �=�tuGJI � 4 � , since for instance

X ELG �������(�|���
.

4 Propositional logic encoding of
partially-constrained weighted formulas

In standard possibilistic logic (recalled in Section 2), the
weights

�(]
’s are assumed to be known. In this section, these

weights are only partially known. Propositions are then as-
sociated with symbolic weights or variables. These symbolic
weights are related by a set of constraints. The following
subsections describe in detail the representation of uncertain
beliefs and constraints, in a propositional logic setting.

4.1 Encoding constraints
This subsection presents the encoding of constraints on the
set of symbolic weights using propositional logic. In the fol-
lowing we associate to each symbolic weight

�
of the knowl-

edge base a propositional symbol denoted by the correspond-
ing capital letter

�
. We denote by : the set of propositional

symbols associated with � (with :f¢$9 W}y ). Let
D7£

be the
propositional language built from : using the propositional
connectors

T|�h�|� � .
One possible way to check if

����>
follows from ; is to

use propositional logic, and encode ; as a set of clauses.
Given ; , its encoding in propositional logic is immediate.

Namely, a constraint
�%�=>

is translated into � �S�kB in the
agreement with the fact that

�
and

>
are lower bounds (of

a necessity measure) and thus
�

refers to the set of numbers� �R����� and � �������J¤ � >/����� holds iff
�!�P>

. The translation of
�0�>

into � ����B can be read as as ”if the situation is at least very
abnormal (

�
), it is at least abnormal (

B
)” (indeed, the greater�

, the more certain
�

in
���&�'���

, and the more exceptional a
situation where

�
is false).



To refer to the maximum (max), we use the conjunction
operator (

T
), namely max(a,b) will be encoded by

�OT�B
. In-

deed, the tautology � ���$T8B��n�8� reflects
X$�nv��Q�b�h>��|�S�

. To
refer to the minimum (min), we use the disjunctive operator
(
�

), namely min(a,b) will be encoded using
���
B

. A clause� ��)V��+-+.+-� � �2���NB )/��+.+-+.�NB21 will hence encodes a constraintX$�uv���� ) ��+-+.+-��� � �|��X ELG �Q> ) ��+.+-+-�'> 1 �
. More formally,

Definition 2 Let ; be a set of constraints. The propositional
logic base associated with ; , denoted by 5 < , is defined by :5 < Wql � ��)n�8+-+-+�� � ������B8)(�8+-+.+���B21�puX��nv��Q�R)/��+-+-+.�'�n� �|�X EHG �H> ) ��+.+-+.�h> 1 �7� ; s .
Example 4 A total order ; Wmld� ) ���n¥u���(¥ ���n¦r�+-+.+-��� 1(§J) ��� 1 s

is encoded by : 50< W�l � � ] �k� ]-¨�) p E W�r��+.+-� G�© � s
.

The following proposition shows that inequalities induced
from ; can be obtained using our propositional encoding:

Proposition 2 Let
�
, and

>
be two symbolic weights. Then :���P>

follows from ; iff 5 < � W � �#��B .

This proposition can be easily generalized for any inequal-
ity of the form

����>
where

�
and

>
are max/min expressions,

using remarks of Section 3.2. Namely any derivation of in-
equalities between max/min expressions, can be redefined in
terms of derivations between symbolic weights. For instance,
it can be checked that

�0��>
follows from ; iff 5 < � W � ���*B

holds but 5�< � W � BA�
� does not hold.
We call S-positive formulas the formulas built from : by

only using the conjunction and disjunction operator. For in-
stance,

���$B
is an S-positive formula, while � ���$B is not

an S-positive formula.

4.2 Encoding uncertain information
As suggested in the introduction, the idea is to manipulate
symbolic weights as formulas. Thus, a possibilistic formula���������

is associated with the classical clause
���,�

where
�

means something as ”the situation is abnormal”. Interestingly
enough, this view agrees with the qualitative representation of
uncertainty in terms of lower bounds of a necessity measure
used in possibilistic logic. The following definition gives the
propositional logic encoding of possibilistic knowledge base:

Definition 3 Let 4 Wªl(����]o�'�n]H� s
be a possibilistic knowl-

edge base. Let
� ]

be a S-positive formula associated
with

�(]
(by replacing in

�(]
the minimum with the dis-

junction, and the maximum by the conjunction). Then
the propositional base associated with 4 , denoted by5 6 , is defined by : 5 6 W l�� ] ��� ] p«��� ] �'� ] ���
4 and

�2]
is the S-positive formula associated with

��] s
4.3 Characterizing plausible inferences
Until now, we have shown how to encode in propositional
logic uncertain beliefs 4 and the constraints ; on weights
associated with these beliefs. This section defines the notion
of plausible conclusions that can be drawn from

� 4 � ; � . The
set 5�< is used at two stages: first it is used for simplifying
the expression of the inconsistency degree, and then it is used
to check, in the refutation, if the inconsistency degree of the
augmented base increases.

Definition 4 An S-prime formula of 5
6zMm5 < is an S-
positive formula, denoted by

DFELGJI � 5
6 � , such that i) 506kM5�< � W DKELGJI � 5 6 � , and ii) there is no ¬ (not equivalent toDKELGJI � 5 6 � ) such that 5 6 M
50< � W ¬ and ¬ � W DFELGJI � 5 6 � .
Up to logical equivalence,

DKELGJI � 5 6 � is unique.
This definition allows to have a sound and complete infer-

ence relation with respect to the semantics given above. In-
deed, the following proposition shows that

DKELGJI � 5
6 � is the
logical counterpart of

tuGJI � 4 � .
Proposition 3 Let 506 and 5 < . Let ­ � 4 � be a propositional
formula obtained from

tuGJI � 4 � by replacing maximum by a
conjunction, minimum by a disjunction, and the symbolic
weights by their associated literals. Then ­ � 4 � is logically
equivalent to

DKELGJI � 5�6 � given in Definition 4.

5 Computing plausible inference using DNF
formats

We propose a characterisation of plausible inference using
the idea of forgetting variables (see for instance [Lang et al.,
2003; Darwiche and Marquis, 2004] for more details). For-
getting a variable

�
from 5 comes down to remove any ref-

erence of
�

in 5 .

Definition 5 Let
�

be a propositional symbol of 9 . Then :®8¯ ed°(�d± 9 �ue E ��>[²��(� 5 ���Z�*W 5�³�´&µ � 5�³�´&¶
5 ³�´&µ (resp. 5 ³�´�¶ ) is the knowledge base obtained

from 5 by replacing
�

by false (resp. true). To forget a
set of variables, we forget variable by variable, namely if

�
denotes a set of variables, then:

®8¯ e�°��d± 9 �ne E �(>�²��(� 5 ���2�jW®8¯ ed°(�d± 9 �ue E ��>[²��(� ®8¯ e�°��d± 9 �ne E ��>[²Q�(� 5 �Q������� © l�� s � .
It is also possible to only forget literals (atoms or negated
atoms):

Definition 6 Let
²

be a literal. Then :®8¯ ed°(�d± DFE ±o�deg�(²\� 5 ��²H�*W 5!·
´�¶ �k� � ²�T 5 �
Some properties of ForgetVariable ([Darwiche and Mar-

quis, 2004], [Lang et al., 2003]), viewing a base as a conjunct
of its formulas:

(1)
®8¯ ed°���± 9 �ne E ��>[²Q�n�H¸N� ¬ ���2�KW ®8¯ ed°(�d±º¹(�ne E ��>[²Q�n�H¸����2�r�®8¯ °��d±º¹n�ne E �(>�²��(� ¬ ���2��+

(2) if ¬ does not contain any varaible of A,
then

®8¯ e�°��d± 9 �ne E �(>�²��(�Q¸»T ¬ ���2� W ¬ T®8¯ ed°���± 9 �ne E ��>[²Q�n�H¸����2�
(3) if

¸
is a consistent conjunction of literals, then®8¯ ed°���± 9 �ne E ��>[²Q�n�H¸����2� consists in removing the vari-

ables in
�

from
¸

.

ForgetLiteral satisfies (1) and (2) which is enough for
the purpose of the paper. The following shows that gettingDKELGJI � 5�6 � is equivalent to first forget all formulas of the lan-
guage, and then all negative literals of :
Proposition 4 Let NegS be the set of negative literals in 5 6 M5 < . Let

® W ®8¯ ed°��d± 9 �ne E ��>[²Q�(� 5�6 � 9 � . Then
DKELGJI � 506 � is

equivalent to
®8¯ ed°(�d± DKE ±o�deg�(²\� 5 < T ® � 	 ��° : �[+



This result is very important since it provides an efficient
way to draw plausible conclusion from 4 and ; . Indeed, for-
getting a variable (resp. literal) can be achieved in a polyno-
mial time if knowledge bases are in some formats like DNF
or d-DNNF [Darwiche and Marquis, 2004]. The procedure
for checking if a proposition

�
can be derived from 4 and ;

can be described as follows:

Step 1: transform 4 and ; into 506 and 5 <
Step 2: Put 5 6 into a DNF (or d-DNNF) form

Step 3.1: Forget Variables of 9 from 506
Step 3.2: Forget Negated atoms of : from 5
<�M!5 6 . This

gives
DKELGJI � 506 � .

Step 4: Put 5 6 M l � � s into a DNF (or d-DNNF) form

Step 5.1: Forget Variables of 9 from 506�M l � � s
Step 5.2: Forget Negated atoms of : from 5
<FM*5 6 M l � � s .

This gives
DKELGJI � 5 6�¼R½'¾r³�¿ � .

Step 6: Use proposition 2 and results of Section 4.1 to
check if p is a plausible consequence of 4 and ; or not.

Forgetting a variable in a DNF amounts to forget it in each
term, and forgetting it in a term amounts just to suppress the
term. This clearly shows that this is polyomial in time. A sim-
ilar procedure applies as well to d-DNNF format. This for-
mat known as Deterministic, Decomposable Negation Nor-
mal Form has been proposed recently [Darwiche, 2004] is a
compact format, and has allowed the computation of gener-
ally intractable logical queries in time polynomial in the form
size. An algorithm has been presented in [Darwiche, 2004]
for compiling Conjunctive Normal Forms into d-DNNF di-
rectly. Our approach can clearly take advantage of this format
as well.

Let us illustrate the above procedure with the following ex-
ample:

Example 5 Let us consider again Example 3, where we
have: 4 WÀl(�����\X$�uv������'>��\�[�d� � ���Seg�\X ELG � I �'�n���[�d� � eg���g��� s ,
and ; WÁl/�=�Â�n� I �Â�����Ã�Â� s +

Let
����B0� ; ��ÄO��Å be

the propositional symbols associated with symbolic weights���'>/� I ���b���
.

Step 1 : Encoding 4 and ;
The encoding of ; in propositional logic gives :5 < Wml � ����Å!� �*; �
��� � Ä���Å s
The encoding of 4 gives :5�6 Wml��j�%���#T�B���� � ���
e{� ; ��Äf� � e{��Å s .
Step 2 : Putting 5 6 into a DNF form

We first put 5 6 in a DNF form, which gives :����T ; T � eV���%�
��T�Ä�T � eV�������#T�BzT � ��T � eV�&�%�Q��TBPT ; T � eV�a�O�Q��T�BPT
Ä}T � eg�a�k���jT0eNT0Å����k���jT ; TÅ����f���8T!Ä}T!Å����f����T�B�T � � T�Å��Z�f����T!BST�eFT�Å��������T
BYT ; T�Å��J�,���#T�BzT
Ä�T�Å��
Step 3.1: Forgetting Variables of V

Now we forget the two variables p and r of V. By using prop-
erties (1)-(3); and after simplification, we get:®8¯ e�°��d± 9 �ne E �(>�²��(� 5 6 � 9 �K^ ; �0Ä���ÅP�%���#T�B��
Note that this is exactly the logical counterpart of

tuGJI � 4 �
given by (1) in Example 3 (after remplacing,

�
by minimum

operation,
T

by maximum operation).

Step 3.2: Forgetting Negated atoms of :
Now, let us forget literals from 5 < T®8¯ ed°(�d± 9 �ue E ��>[²��(� 5 6 � 9 � . We get:DKELGJI � 5 6 �FWYÅ .

Again this is exactly the logical counterpart of the expres-
sion (2) given in Example 3.
We are now interested to check if

e
is a plausible consequence

of 4 and ; .
Step 4 : Putting in DNF form 4%M l � e s

The DNF form associated with 4kM l � e s is:����T ; T � eV���%�
��T�Ä�T � eV�������#T�BzT � ��T � eV�&�%�Q��TB�T ; T � eV���$���,T�B�T�ÄzT � eV�b�$�
�2T ; T�Å�T � eV�b�$�
��TÄzT!Å�T � eV���$�Q�%T�B�T � � T!Å#T � eV�Z�f����T�B�T ; T�Å�T� eV�&�%����T0BzT�ÄmT�ÅYT � eV�
Step 5.1. : Forgetting variables of V in 4,M l � e s®8¯ ed°(�d± 9 �ue E ��>[²��(� 4fM l � e s � 9 �KW�� ; T � ���a�O�QÄ}T � �2�a�� ; T�Å��J�,��Ä�T�Å��&�,�Q�#T
BzT�Å��
Step 5.2 : Forgetting Negative atoms

Forgetting negative literals of : gives :DKELGJI � 5 6 M l � e s �FW=���OT�B�T�Å����
� ; T�Å�T��2���
��ÄqT�Å��
Step 6: Checking plausible inference

Using results of Section 4.1, it can be checked that
e

is a
plausible consequence of 4 and ; , as we have already seen
in Example 3 that .

We finish this section by briefly discussing the case where
weights associated with constraints are totally ordered. Let4 WCl(����]o���(]H�$p E WÆ�u��+-+.+-� G`s

. We assume without loss of
generality that

�R)$�Ç� ¥ �È+-+-+N�Ç�(1
. The knowledge bases5 6 and 50< are :5 6 Wml�� ] ��� ] p���� ] �'� ] �|� 4 s , and5 < Wql � ��]����2].¨�) p E W��r��+.+-+.� G0© � s .

Let
Ä

be the result of putting 5
6�M$5 < into a DNF form,
and

DKELGJI � 5 6 � 5�< � be the result of forgetting variables of 9
and negative atoms from � . Then for totally ordered weights,
it is possible to compute a compiled base (as in standard pos-
sibilistic logic), denoted by ; ¯/G �u� 5 6 M�5�< � , as follows:3 If the inconsistency degree of 4 is

� �
(namely

tuGJI � 4 �KW�r�
), then ; ¯/G �n� 506�MS5 < � is logically equivalent to®8¯ ed°���± 9 �ne E ��>[²Q�n� � ��)`T,+-+.+/T � �{��§a)FT
ÄO� � �3 If 4 is consistent, then

DFELGJI � 5 6 � 5�< � ; ¯/G �n� 5 6 M|5�< �
is logically equivalent to

®8¯ ed°(�d± 9 �ne E ��>[²��(� � � ) T�+.+-+rT� �21 T�Äf� � � .
Note that ; ¯/G �n� 506kM�5 < � is under DNF form, and we

have:
�

is a possibilistic consequence of 4 iff ; ¯/G �u� 5 6 M5 < �Fij�&+
Example 6 Let 4 Wmln��������+ Én�[���QU(����+ Êu�[��� � �j� � U(�'�R+ Ën���� � ������+ Ìu� s . Let

�j�'B�� ; �'Å be propositional symbols asso-
ciated respectively with the weights of the knowledge base
(namely

��+ É����R+ÍÊ��'�R+ Ë��'�R+ÍÌ
). The two propositional bases are:5 6 WÎld�Y�
�&�'B=�%U(� ; � � ��� � U(�'Å�� � � s , and 50< Wl � ���0B0� � Bz� ; � �*; ��Å s +

The DNF associated with 5
6�M05 < is:
D =

�
��T|U�T ; T|Å�T � �2�����
��T7B0T ; T7Å���� �Q��T|B
T ; T7Å��
Let us forget variables of 9 , and negative atoms from � , we
get :; T�ÅS��BYT ; T�ÅS���#T�BYT ; T0Å



which is equivalent to : ; TfÅ Now let us add � �ST � B toÄ
we get:
D =

��T�U|T ; T
ÅYT � ��T � B
Now forgetting variables of S gives : ; ¯/G �n� 5
6kM�5 < �0W��TOU

, from which it can be checked that ¬ is a possibilistic
consequence of 4 iff

��T
U8i ¬ +

6 Related works
Using abnormality predicates in a logical setting is explic-
itly underlying several non-monotonic formalisms such as
circumscription [McCarthy, 1980]. The idea is then to mini-
mize abnormality and circumscribe it to a minimal number of
individuals. The use of abnormality propositional literals is
different here. Namely, no minimization process takes place
(we are not dealing with exception-tolerant reasoning), and
the symbolic weight attached to a formula

�
can itself be a

compound formula reflecting the complex conditions under
which it holds that

�
is true. What is proposed is more in the

spirit of multiple source information, where the confidence
of the information depends on the source, or on the topic, for
instance.

Our representation framework for qualitative uncertainty
does not require the knowledge of a complete pre-ordering of
the different certainty levels attached to formulas. The uncer-
tainty pervading a proposition may be either viewed as a pre-
cise notion, or as imprecisely stated by means of constraints
that are opened to revision if new information becomes avail-
able. In both kinds of framework, one may only have a partial
knowledge of the uncertainty. In the first case, uncertainty
is handled under the form of absolute statements such as°a�����KWz�

(where
°

is an uncertainty measure and
�

is a propo-
sition), or under the form of relative statements such as

�f��U
(where

�
is a partial ordering encoding a plausibility relation

expressing here that the plausibility of
�

is strictly greater than
the one of

U
, as discussed in [Halpern, 1997]. Then, adding

the piece of information that
�

entails
U

leads to inconsistency
since if

�
entails

U
classically, it is expected that the plausibil-

ity of
U

is at least equal to the one of
�

. However, note that in
possibilistic logic 	 �������P� and 	 ��UV���Y> together with the
inequality

���«>
is a weaker statement that 	 �
���!� 	 �QUV� .

Benferhat et al. [Benferhat et al., 2004] propose a semantic
approach for reasoning with partially ordered information in
a possibilistic logic setting. The logical handling of formulas
with unknown certainty weights together with the constraints
relating these weights presented here turns to be much sim-
pler and computationally more tractable.

7 Conclusion
The problem of reasoning with pieces of information having
different confidence levels is raised by the handling of
multiple source information. In case of partial information
on the relative values of these levels, the problem becomes
more difficult. An elegant method is proposed here for
solving it, by rewriting the uncertain pieces of information
in a two-sorted logic, and encoding the available information
on the relative values of the certainty levels in a logical way.
Putting the two bases in DNF format and using forgetting
variables techniques enable us to compute the symbolic

counterpart of the inconsistency level of a knowledge base in
a linear way, and then to draw plausible inferences. More-
over, the representation technique that is used also provides
a way for compiling a standard possibilistic knowledge base,
a result analogous to the one obtained by Darwiche and
Marquis [Darwiche and Marquis, 2004] for another type of
weighted logic, the penalty logic, using d-DNNF format.
This paper also briefly discusses the case of totally ordered
weights, from which the number of extra variables (used to
encode weights) and the number of extra binary clauses (used
to encode the total ordering) necessary for the inference
process is equal to the number of different weights used in
base. The full development of a compilation of standard
possibilistic knowledge bases in propositional logic is left
for further research. Besides, another potential expected
benefit of the approach, is a contribution to the solution
of the drowning problem in possibilistic logic. Indeed, it
can be checked that the symbolic inconsistency level of5 W�l'���f��� � �!�$B���U2� ; s , is

trGJI � 5 �{W=���fB , where
C does not appear, which should provide a way for finding
out the ”free” formulas in K that are not involved in any
inconsistency conflict.
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