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Abstract
Object and scene learning and recognition is a ma-
jor issue in computer vision, in robotics and in cog-
nitive sciences. This paper presents the principles
and results of an approach which extracts struc-
tured view-based representations for multi-purpose
recognition. The structures are hierarchical and dis-
tributed and provide for generalization and catego-
rization. A tracking process enables to bind views
over time and to link consecutive views. Scenes can
also be recognized using objects as components. Il-
lustrative results are presented.

1 Introduction
Object and scene learning and recognition is a major issue in
computer vision, in robotics, in neuroscience, and in cogni-
tive sciences as well. And one of the main questions to this
respect is how to extract knowledge from 2D patterns of light
in the camera or the retina.

For the recognition of objects, two models were proposed
in the literature. In the ’image-based’ or ’view-based’ model,
an object is represented as a collection of view-specific lo-
cal features[Poggio and Edelman, 1990; Ullman, 1998;
Tarr and B̈ulthoff, 1998; Riesenhuber and Poggio, 1999].
Representations are organized in trees in which a set of view-
tuned units constitutes the weighted inputs to a higher level
object-invariant unit. Each unit measures the similarity be-
tween the input image and its stored view, and the higher level
unit computes the weigthed sum from its incoming connec-
tions. If the resulting value reaches a given threshold, then the
learned object is recognized. Riesenhuber’s HMAX model
of object recognition in the ventral visual stream of primates
also proposes a similar grouping method where higher level
cells compute the maximum response of view-tuned cells
[Riesenhuber and Poggio, 1999].

The second model is based on structural descriptions. One
of the most important approaches is the ”Recognition-By-
Components” (RBC) model[Biederman, 1987] in which each
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object is represented as a collection of volume parts. Thus,
there is no need of multiple view-tuned representations since
3D models can be virtually rotated and compared to the in-
put image. Moreover, the use of such a model can make the
recognition invariant to illumination and color.

We can identify certain properties of the modeling process
for efficient learning and recognition. Firstly, the training and
thus the construction of new representations must be suffi-
ciently fast. Lack of speed is the principal cutoff of models
based on structural descriptions because building 3D models
from images remains a non trivial task. Secondly, an efficient
modeling process must organize knowledge in a structured
way. A first means of organizing the data is to build categor-
ical representations. Categorical structures make it possible
to obtain capacities of class generalization at low cost. In-
deed, to effectively exploit the extracted data, those must be
describable at various levels of specificity: a bottle can be
described as a container, a plastic object for recycling, etc.
Such a structure can also accelerate recognition that deals
with large collections of stored objects by reducing the num-
ber of candidate object models. Another mode to structure
meanings is the decomposition of a representation as the set
of its parts. Thanks to structural descriptions, RBC offers
more robustness, in particular with respect to noise and occlu-
sion. Moreover, it is interesting to share components among
several structural descriptions to save memory: one could use
the representation of a wheel to describe either a car, a truck
or a bike. Thirdly, a learning system for knowledge extrac-
tion and structuring must allow the addition of new repre-
sentations at non-prohibitive memory cost and without ex-
plosion of complexity. This open-endedness property can be
approached by using the two kinds of data structures referred
to above, in which a representation can be factorized in cate-
gories or shared as components.

While considering object recognition one must mention
important results achieved by template-based approaches for
object classification and recognition[LeCun et al., 2004].
Nearest Neighbor methods, Support Vector Machines and
Convolutional Networks provide efficient solutions but the
needs of structured knowledge, reusability, incremental and
autonomous learning are several points addressed here which
are not, to the best of the authors’ knowledge, well dealt with
by the pre-cited methods.

This paper presents an efficient approach[Paquier, 2004]



(which is partially implemented) for building structured rep-
resentations without using 3D primitives and exhibiting the
properties mentioned above. The paper is organized as fol-
lows. Section 2 presents the model we choose to both extract
and organize representations. Each essential property is pre-
sented and illustrated by an example produced by the imple-
mented system. Section 3 introduces the view-binding algo-
rithm and the incremental building of object-invariant detec-
tors. The use of objects as landmarks for buidling structured
representation of scenes is presented in section 4. We con-
clude in section 5.

2 Architecture for View-based Recognition
We will first describe themapstructure which constitutes the
basic building block of our model, and discuss its inherent
shift-invariant property. In the learning process, the maps will
specialize in certain features, and we will present the way we
associate them in order to prevent redundancy in this special-
ization and structure extracted features.

2.1 Mapsand Inter-mapsConnectivity
The Map: a Set of Local Classifiers
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Figure 1: Amapis a collection ofunitssharing the same set of
weights (kernel). Each unit is composed as a three stage cal-
culation pipeline. It receives signals incoming from previous
layers for integration and lateral signals frommapssituated
on the same layer for competition.

In order to satisfy real-time constraints, the learning and
recognition system must be able to update its representations
at a frequency that is compatible with the modifications of the
environment, and process images at a rather high frequency
(e.g., 15 fps). With this end in view we chose to implement
an integrate-and-fire model in local classifiers built as calcu-
lation pipelines (figure 1).

We call amapa collection of local classifiers calledunits,
organized in a retinotopic1 way. Eachmapis associated with
one or more afferentmapswhich are the locations of itsunits’
input domains (or their receptive fields). Receptive fields of
eachunit are static and eachunit is thus associated to a set of
afferentunits in each afferentmap. We denoteΩi the set of
afferentunitsof a givenunit Ui.

At time t and for a given unitUi, information flows from
its receptive fields through a set of learning weightsWi(t).
Learning weights are organized inkernels, and there are as

1A retinotopic mapping means that stimuli that are adjacent to
each other in the visual world are processed by adjacent sets ofunits.

many weight kernels as afferentmaps. All the units of a
mapare sharing the same set of weights, thus they can de-
tect and learn a pattern which is at different positions in the
inputmaps. As shown in figure 1, the coordinates of a unit in
a given map and its receptive field in the afferentmapare the
same. Therefore the position of an active unit corresponds
to the position of the detected pattern, which provides for a
shift-invariance property.

This type of mapping has been previously introduced by
Fukushima’sNeocognitronand was successfully applied to
handwritten digit recognition[Fukushima, 2003]. Figure 2
illustrates this intrinsicmap feature. In this experiment, we
produce an image containing a set of four randomly dis-
tributed letters (k, p, s, u). After less than a minute, the system
has learned autonomously its own distributed representation
of the input image. Each resultingmapcan extract its learned
feature at any location in the input image. To obtain this result
we must also provide our system with an inter-mapscommu-
nication channel, so thatmapsdon’t learn the same feature
several times. This procedure is called ”local competition”
and is introduced next.
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Figure 2: Letter extraction from noisy image input (20% ran-
dom noise, 20% scale and angle variation, 70 steps, 2 images
per second). a) weight kernels evolution across time. b) input
image and associatedmapsactivations.
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Figure 3: Hierarchicalmapsconnectivity and local compe-
tition. a) The letter ”L” is detected as a relative positioning
of horizontal and vertical bars. b) input image containing the
letters ”L” and ”T”: inter-mapscompetition with local inhi-
bition leads to distinct specialisations.

One previously mentioned requirement concerns the struc-



tural decomposition into several components. To achieve
such a decomposition, different maps observing the same in-
puts must ”decide” to specialize into distinct component de-
tectors. The undergoing process is illustrated in figures 3.a
and 3.b. In this example, we want to train twomapsto de-
tect the letters ”L” and ”T” in the input image. A first step
of extraction is composed of a layer of twomapswhich re-
spectively detect vertical and horizontal bars in their inputs.
When the letter ”L” is present in the image (figure 3.a), the
pattern is decomposed as the positions of these two local ori-
entations. The relative positioning of the two patterns is then
detectable and can be learned by a dedicatedmapon the next
layer (Layer3).

From this point, if we add another letter (”T”) to the input
image and a second learningmapto the third layer to learn it
(figure 3.b), then we must prevent this newmapfrom learn-
ing the ”L” pattern one more time. This differentiation is
achieved by using a local competition in which we compare
mapdetection values and choose the best fitted (See section
2.2 for the computation of the detection value).

Right after calculating its detection value, every unit of
eachmapbroadcasts it to all otherunitson mapsof the same
layer and at the same coordinates. Thus, everyunit whose
coordinates correspond to the position of the letter receives
incoming values at the ’Max’ stage of its pipeline architec-
ture (see figure 1). The ’Max’ stage, as its name indicates,
computes the maximum incoming value and sends it to its
own ’Learn’ stage. The learning process is then able to com-
pare the localunit activation incoming from the ’Integrate &
Fire’ stage to distant activations. By allowing learning only
to the best fittedunit, we ensure that nomapcould learn one
pattern if another is already specialized to detect it. We illus-
trate this inter-mapscompetition on Figure 3.b with the dark
discs which represent the blocking signal.

ConnectingMapsto Build Distributed and Hierarchical
Representations
We adopted a layered hierarchical architecture for several rea-
sons. Firstly we need this architecture forcategorization. As
our units achieve linear separation in their input set, complex
features cannot be extracted with a single layer. This is a
known limitation of the single layer perceptron that cannot
simulate an exclusive disjunction (logical XOR). The second
reason isreusability. A huge number of extracted features
are encountered in different shapes: oriented segments, arcs
of circles or color blobs are building blocks for more complex
images. Since extracted information is shared in the network,
we avoid redundancy and the resulting computational over-
head. Following the same idea, similar meanings should be
encoded using shared sets of units. For example, the inter-
nal representations of a truck and of a car should intersect.
This intersection representing the shared meaning could con-
tain the internal representation of the four wheels, the steering
wheel, etc. Thanks to this distributed representation architec-
ture, it is easier to pool similar objects into cross categories
(e.g., wheeled vehicules).

This capability of building hierarchical and shared repre-
sentations is shown in figure 4. In this experiment we trained
a network to recognize faces using a set of ten different im-
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Figure 4: An example of a hierarchical representation of
faces. a) network connectivity showing weight kernels and
mapsactivities. Layer0, Layer1, Layer2, Layer3 respec-
tively extract contrasts, oriented segments, eyes and mouth,
and face. b) recognition robustness for different subjects and
variable postures.

ages of each of 40 distinct subjects2. In the same way as in
the previous example of letter extraction,Layer2 learns to
detect the position of each eye in onemapand the position of
the mouth in the other one, sharing the same segments extrac-
tion in the previous layer (Layer1). In Layer3, we train an-
othermapwhich receives as inputs the detection values of the
mouth and eyes specializedmaps. As a result, this lastmap
learns the representation of the face with relative positioning
of eyes and mouth. We also see in this example that the re-
sulting face recognition is robust to high variations in subject
posture and morphology. Nevertheless, this kind of recogni-
tion only applies to images with limited face orientations. In
section 3, we will propose additional methods to recognize
3D objects based on the pooling of overlapping views.

2.2 Integration, Firing and Learning

Now that we have presented the global mechanisms involving
the computingunits, we present the internal workings of the
system more precisely and the computation of the detection
values mentioned in section 2.1.

2We used the faces database of the AT&T Laboratories, Cam-
bridge http://www.uk.research.att.com/facedatabase.html



Integration
Given aunit Ui, we denoteβi(t) ∈ [0, 1] its calculated output
burst at timet. The burst is the detection value mentioned be-
fore. Letwij(t) ∈ Wi(t) be the learning weight associated to
the connection betweenunitsUi andUj , andΩi+(t) a subset
of afferentΩi defined as:

Wi(t) = {wij(t), Uj ∈ Ωi} (1)

Ω+
i (t) = {Uj ∈ Ωi, βj(t) > 0} (2)

We also define three weight sums as follows :

S?
i (t) =

X
wij(t)∈Wi(t)

| wij(t) | (3)

Sβ+

i (t) =
X

Uj∈Ω+
i (t)

wij(t) (4)

S+
i (t) =

X
wij(t)∈W+

i (t)

wij(t) (5)

whereW+
i (t) = {wij(t), Uj ∈ Ωi and wij(t) > 0}.

Then the integrated potentialPi at timet+1, which expresses
a level of similarity between the learnt pattern and the inputs,
is given by:

Pi(t + 1) =
αP Pi(t) + (1 − αP )Sβ+

i (t)

S+
i (t)

(6)

WhereαP ∈ [0, 1] is a fixed potential leak.
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Figure 5: Burst sampling distribution and cumulative distri-
bution evolution. a) burst sampling distributions computed at
steps 0, 500 and 1500. Burst values are discretized within
64 levels. b) corresponding cumulative distribution used as a
transfer function for integration.

Firing
Output burstsβi generated by a unitUi are produced both for
integration processes situated on the the next layer and for its
own ”Learn” stage (see figure 1). In the first case, burst levels
are not taken into account since all positive bursts participate
to integration (see equation 2). In the second case, we previ-
ously explained that we need to compareunits activation in
order to find the best fittedmapin a competition process. The
burst level is thus computed as follows:

βi(t) =

(
0 if Pi(t) < Ti,

Fi(t, Pi(t)) otherwise.
(7)

WhereTi is a fixed threshold andFi is an adaptive transfer
function whose variations across time are illustrated by fig-
ure 5.b. The underlying idea of this function is that, as units

are learning, their output function must converge to a binary-
like response corresponding to a more strict linear separation.
At each step we compute a sample distribution of the input
burst by discretizing the output burst value in 64 levels. The
transfer functionFi is in fact the associative cumulative dis-
tribution at timet:

Fi(t, x) =
∑

0<b≤x

fi(t, b) (8)

Where functionfi is a sampling distribution of burst levels
updated at each step (figure 5.a). We thus obtain a sigmoidal
transfer function which permits a binary-like classification
behavior and a more effective competition process. Until
now, object detection is internally represented as the activa-
tion of a limited set of computingunits. Due to our connectiv-
ity scheme, recognitions are indeed only reflected at positions
located near the centre of the learned pattern. However pat-
terns presence are more than just their center since the whole
surface they cover is relevant. So we increase the pool of ac-
tivated units to cover a wider surface. As a first approach, we
chose a simple disc shape whose surface is given byS?

i (t).

Learning
We use in our model a hebbian-like learning rule in which
units tend to learn patterns responsible for their activation.
In other words, a learning process occurs when oneunit has
both fired and won the competition in its layer. Moreover, we
compute a stochastic standard deviationσij for each weight
wij which is computed and used as coefficient in the learning
calculation as follows:

µij(t + 1) = (1 − αW )µij(t) + αW | γij(t) |
σij(t + 1)2 = (1 − αW )σij(t) + αW [µij(t + 1) − γij(t + 1)]2

wij(t + 1) = (1 − αW )wij(t) + αW [1 − 2σij(t + 1)]γij(t + 1)

Whereµij is a stochastic mean andαW the learning rate.
Hence we ensure that weights corresponding to noisy inputs
(with high standard deviation) will tend to 0 and then won’t
take part in the representation.γij is a function of input burst
of unit i which takes its values in{−1, 0, 1}. Mapsamong
the same layer are in competition as shown in figure 3. If
at time t, an input burst fromunit j is receivedγij(t) = 1,
else if a burst is received from any other afferentunit then
γij(t) = −1. Finally if no burst was presentγij(t) = 0.

3 From Views to Objects
In this section, we consider the 3D-object recognition prob-
lem. Let us consider a camera rotating around an object. For
a given orientation we can train a dedicatedmapand obtain
enough robustness to detect this view, say within about a 45
degrees angle interval centered on the learnt prototype. Wider
intervals can be obtained with ”simple” objects, such as balls
or paper cups, whose views are relatively invariant during
view-point modification, while turning around them. Our ap-
proch is to pool overlapping view detectors. Then, a view-
invariant (or object-tuned) detector can be obtained simply by
computing the maximum view-tunedmapresponse[Riesen-
huber and Poggio, 1999]. This will provide for continuous
object recognition.
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Figure 6: Object invariant detection with view-tunedmaps. a) mapsactivities overlap to produce continuous detection. b)
resulting learning weights. These are composed of 8 kernels for eachmapwhich correspond to 8 afferent oriented segment
detectors situated on previous layer (see figure 4).

Assuming the support of an external module producing the
initial object detection (this could be simply a user’s selec-
tion on the input image, but this module could be based on
saliency, motion, etc...), we must resolve several remaining
problems. Firstly, the object-tunedmapmust keep track of
the object during point of view modifications (temporal bind-
ing). Secondly, as we have no initial information about the
object’s complexity and, therefore cannot anticipate the exact
number of required view-tunedmaps, we must find a method
which incrementally adds newmapsto the network and asso-
ciate them together.

Map-tracker : Short-term Memory for Temporal Binding
The different views of the same object tend to occur close to-
gether in time and space[Tarr and B̈ulthoff, 1998]. Several
authors proposed to take advantage of this property[Stinger
and Rolls, 2002; Wallis, 1996]. We particularly want to men-
tion Stinger and Rolls’s hypothesis about the functional archi-
tecture and the operation of the ventral visual system tested in
their model called VisNet . In this model, each activation of
a view-invariant neuron is maintained during a short period
of time. The pooling is then achieved by using an associative
memory to link temporal memory trace and current view de-
tection. Although this method seems biologically plausible, it
seems difficult to apply to real-time robotics. As the view-to-
object membership is nota priori known, there is no criteria
to decide whether or not a newly specializedmapcorresponds
indeed to the view of an object. If no preselection is applied,
the size of the associative memory could exceed computable
capacities. So, it is crucial to restrictmapspecialization to
relevant views. A solution comes from a tracking approach.
In this domain, temporal coherence is also used but in an-
other way. The aim of tracking is not so much extracting
knowledge but rather following the position of a collection of
pixels. Temporal coherence can here be exploited by consid-
ering that persitent informations are preserved between two
frames and can thus be extracted. We propose to use themap
architecture for pixel tracking in order to follow the position
of the object and use this information as a first step for an
incremental view-tunedmapcreation.

We can obtain the desired tracking capability by increasing
the learning rateαW of a map (see section 2.2), which we will
call tracker-map, to a value near 1. The tracker-map is trained
at the time the first object position is produced by the external

module. We call this process ”one-shot learning” because of
the use of a high learning rate. In the next frame, thanks to the
robustness of our model, the tracker-map can detect the ob-
ject even if it has started to move. According to the hebbian
rule, this detection is followed by a learning phase. Then,
another learning occurs which almost completly renews the
stored prototype due to the high learning rate. From now
the process can restart allowing continous detection. Tracker-
mapscan be viewed as short-term memories that never reach
stable representations.

Temporal Binding

Now that we can use temporal coherence to track the object
position, we must resolve the remaining problem of building
incrementally view-specific representations of the tracked ob-
ject. To reach this goal we granted tracker-mapsthe capability
of creating new maps during runtime. As we are in the con-
text of moving objects and/or moving point of views, one-
shot learning (learning with high learning rate will also be
used to catch object’s views during movement. The very spe-
cific resulting prototype will be refined as view-tuned maps
compute standard learning rates. The binding algorithm de-
velops as follows: if no view-tunedmaprecognizes the object
at the position of the tracker-map’s detection during a short
period of time (we use a 5 frames time-out), which is initially
the case, then the tracker creates a newmapand forces it to
learn the unknown view with a one-shot-learning signal. If a
view is detected, because amaphas previously learnt it, then
a standard learning process occurs in thismapand the detec-
tion produces a one-shot learning signal for the tracker-map
in order to focus tracking on this view. This process ensures
that long-term memory of a specific view has a higher priority
during object detection than the tracker. This algorithm has
been used in the experiment of figure 6 in which the image of
a rotating object has been used to train a three-layers network.
In figure 6.a, we see that the tracker always detects the object,
thanks to the feedback from long-term to short-term memory,
and that activity ofmap6 is about 3 times longer than the
others. Indeed, thismap learned to detect orientations that
are rather invariant during rotation. Our model can thus adapt
the number of requiredmapsdepending on the complexity of
objects.
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Figure 7: Representing scenes as arrangements of objects in an office environment. a) examples of object-invariant detections
from different points of view learn. b) results of scene recognition by relative positioning of object-invariant detections.

4 Objects as landmarks for scene recognition
We present in this section experimental results of our system
in the context of scene recognition. We can define a scene
as a particular arrangement of objects. We demonstrated pre-
viously with face recognition that our architecture is able to
construct hierarchical representations of an image. We can
use this same technique in order to learn a scene as relative
arrangement of objects. For this experiment we observed a
standard office environment including 3 basic objects: a pa-
per basket, a phone and a chair. In a first phase, object rep-
resentations are learnt on the fly using temporal coherence
by the means of tracker-maps(section 3). The resulting net-
work then detects each object simultaneously in view-specific
mapsand in the corresponding object-invariant tracker-map.
In a second phase, three higher levelmapsconnected to all
object-invariant detectors learn representations of the scene
from three different points of view. Figure 7.a shows the out-
puts of the three object-invariant detectors built as presented
in section 3 with natural images. Without needing any addi-
tional algorithm, our model extracts a view-point specific rep-
resentation of the scene in a hierarchical structure (figure 7.b).
From now, a location-invariantmapcan be trained thanks to
tracker-mapsfor scene-invariantmapspooling as explained
in section 3. These multi-layered architecture allowed by
parallel-pipeline calculations is the key property which per-
mits to combine view-based representations and structural de-
scriptions.

5 Conclusion
In this paper we have introduced several methods and algo-
rithms to extract knowledge from visual data. Our model is
able to build representations by decomposition of image fea-
tures into local components structured in a global hierarchy
of concepts. Such decompositions are minimal requirements
for both sharing representation in order to save memory and
computational time, and providing generalization capabilities
due to the fact that extracted components can be used as de-
scription blocks to recognize new elements. The main advan-
tage of our model is that one does not need any prior knowl-
edge or model to build robust dedicated detectors of simple to

complex features in a unified language. Thus, building het-
erogeneous libraries of meanings becomes feasible. These
representations could be then provided as input to a symbolic
reasoning level.
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