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Abstract object is represented as a collection of volume parts. Thus,
there is no need of multiple view-tuned representations since
3D models can be virtually rotated and compared to the in-
put image. Moreover, the use of such a model can make the
recognition invariant to illumination and color.

Object and scene learning and recognition is a ma-
jor issue in computer vision, in robotics and in cog-

nitive sciences. This paper presents the principles
and results of an approach which extracts struc-

tured view-based representations for multi-purpose We can identify certain properties of the modeling process
recognition. The structures are hierarchical and dis- for efficient learning and recognition. Firstly, the training and
tributed and provide for generalization and catego- thus the construction of new representations must be suffi-

rization. A tracking process enables to bind views ~ Ciently fast. Lack of speed is the principal cutoff of models
over time and to link consecutive views. Scenescan ~ P@sed on structural descriptions because building 3D models
also be recognized using objects as components. II- from images remains a non tr|v.|al task. Secondly, an efficient
lustrative results are presented. modellng process must organize knowledge in a structured
way. A first means of organizing the data is to build categor-
. ical representations. Categorical structures make it possible
1 Introduction to obtain capacities of class generalization at low cost. In-
Object and scene learning and recognition is a major issue ideed, to effectively exploit the extracted data, those must be
computer vision, in robotics, in neuroscience, and in cogni-describable at various levels of specificity: a bottle can be
tive sciences as well. And one of the main questions to thislescribed as a container, a plastic object for recycling, etc.
respect is how to extract knowledge from 2D patterns of lightSuch a structure can also accelerate recognition that deals
in the camera or the retina. with large collections of stored objects by reducing the num-
For the recognition of objects, two models were proposeder of candidate object models. Another mode to structure
in the literature. In the 'image-based’ or 'view-based’ model, meanings is the decomposition of a representation as the set
an object is represented as a collection of view-specific loof its parts. Thanks to structural descriptions, RBC offers
cal features[Poggio and Edelman, 1990; Ullman, 1998; more robustness, in particular with respect to noise and occlu-
Tarr and Bilthoff, 1998; Riesenhuber and Poggio, 1R99 sion. Moreover, it is interesting to share components among
Representations are organized in trees in which a set of viewseveral structural descriptions to save memory: one could use
tuned units constitutes the weighted inputs to a higher levethe representation of a wheel to describe either a car, a truck
object-invariant unit. Each unit measures the similarity be-or a bike. Thirdly, a learning system for knowledge extrac-
tween the inputimage and its stored view, and the higher leveion and structuring must allow the addition of new repre-
unit computes the weigthed sum from its incoming connec-sentations at non-prohibitive memory cost and without ex-
tions. If the resulting value reaches a given threshold, then thplosion of complexity. This open-endedness property can be
learned object is recognized. Riesenhuber's HMAX modelapproached by using the two kinds of data structures referred
of object recognition in the ventral visual stream of primatesto above, in which a representation can be factorized in cate-
also proposes a similar grouping method where higher levajories or shared as components.
cells compute the maximum response of view-tuned cells While considering object recognition one must mention
[Riesenhuber and Poggio, 1999 important results achieved by template-based approaches for
The second model is based on structural descriptions. Ongbject classification and recognitidheCun et al, 2004.
of the most important approaches is the "Recognition-By-Nearest Neighbor methods, Support Vector Machines and
Components” (RBC) mod¢Biederman, 1987n which each  Convolutional Networks provide efficient solutions but the
*The work described in this paper was partially conducted Withinneeds of structurgd knowledge, reu.sab'“ty’ incremental an.d
the EU Integrated Project COGNIRON (“The Cognitive Compan- @Utonomous learning are several points addressed here which
ion”) funded by the European Commission Division FP6-IST Future@r€ Not, to the best of the authors’ knowledge, well dealt with
and Emerging Technologies under Contract FP6-002020. by the pre-cited methods.
Tsupported by the European Social Fund. This paper presents an efficient approéhaquier, 2004



(which is partially implemented) for building structured rep- many weight kernels as afferentaps All the units of a
resentations without using 3D primitives and exhibiting themap are sharing the same set of weights, thus they can de-
properties mentioned above. The paper is organized as fotect and learn a pattern which is at different positions in the
lows. Section 2 presents the model we choose to both extragtputmaps As shown in figure 1, the coordinates of a unitin
and organize representations. Each essential property is pra-given map and its receptive field in the affergratpare the
sented and illustrated by an example produced by the implesame. Therefore the position of an active unit corresponds
mented system. Section 3 introduces the view-binding algoto the position of the detected pattern, which provides for a
rithm and the incremental building of object-invariant detec-shift-invariance property.

tors. The use of objects as landmarks for buidling structured This type of mapping has been previously introduced by
representation of scenes is presented in section 4. We cofukushima’sNeocognitronand was successfully applied to

clude in section 5. handwritten digit recognitioiFukushima, 2008 Figure 2
illustrates this intrinsianapfeature. In this experiment, we
2 Architecture for View-based Recognition produce an image containing a set of four randomly dis-

- . . . tributed letters (k, p, s, u). After less than a minute, the system
\l;\élesivc\:mtl)ﬂirlztir?gsbﬁgglf g;egjrnggu dC(;lIJr(:\r\:\éhlgirs]ccl?snss?ttsl,ﬂiﬁzé?gn tgas learned au(tor?omogsly its own distributed rgpreser):tation
> . g . of the input image. Each resultimgapcan extract its learned
sh|ft-]n\(ar|z_1nt property. In the learning process, the maps W'"feature at any location in the inputimage. To obtain this result

specialize in certain features, and we will present the way Weye 15t also provide our system with an inteapscommu-
associate them in order to prevent redundancy in this speciafiication channel, so thahapsdon't learn the same feature
ization and structure extracted features. several times. This procedure is called "local competition”
2.1 Mapsand Inter-mapsConnectivity and is introduced next.

The Map: a Set of Local Classifiers a) . - Weight kernels evolution _
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Figure 1: Amapis a collection olunitssharing the same set of

weights kerne). Each unit is composed as a three stage calgjgyre 2: Letter extraction from noisy image input (20% ran-
culation pipeline. It receives signals incoming from previousgom noise, 20% scale and angle variation, 70 steps, 2 images
layers for integration and lateral signals fromapssituated  per second). a) weight kernels evolution across time. b) input
on the same layer for competition. image and associatedapsactivations.

In order to satisfy real-time constraints, the learning and
recognition system must be able to update its representatiofyeventing Redundancy with Competition
at a frequency that is compatible with the modifications of the
environment, and process images at a rather high frequency
(e.g., 15 fps). With this end in view we chose to implement . ?
an integrate-and-fire model in local classifiers built as calcu-
lation pipelines (figure 1). , :

We call amapa collection of local classifiers calleits :
organized in a retinotoptovay. Eachmapis associated with é
one or more afferemhapswhich are the locations of itsnits
input domains (or their receptive fields). Receptive fields of
eachunit are static and eaalmit is thus associated to a set of
afferentunitsin each afferenmap We denote?; the set of
afferentunitsof a givenunit U;.

At time ¢t and for a given uniU;, information flows from
its receptive fields through a set of learning weightg(¢).
Learning weights are organized kernels and there are as
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Figure 3: Hierarchicamapsconnectivity and local compe-
tition. a) The letter "L” is detected as a relative positioning
of horizontal and vertical bars. b) input image containing the
letters "L” and "T": intermapscompetition with local inhi-
bition leads to distinct specialisations.

IA retinotopic mapping means that stimuli that are adjacent to ) ) )
each other in the visual world are processed by adjacent setstaf One previously mentioned requirement concerns the struc-



tural decomposition into several components. To achievea)
such a decomposition, different maps observing the same in-
puts must "decide” to specialize into distinct component de-
tectors. The undergoing process is illustrated in figures 3.a
and 3.b. In this example, we want to train tweapsto de-

tect the letters "L” and "T” in the input image. A first step

of extraction is composed of a layer of twaapswhich re-
spectively detect vertical and horizontal bars in their inputs.
When the letter "L” is present in the image (figure 3.a), the
pattern is decomposed as the positions of these two local ori- ‘ \
entations. The relative positioning of the two patterns is then A ? ; p P\ _mapso
detectable and can be learned by a dedicatadon the next 1 1
layer (Layers).

From this point, if we add another letter ("T") to the input
image and a second learnintapto the third layer to learn it
(figure 3.b), then we must prevent this nevapfrom learn-
ing the "L” pattern one more time. This differentiation is
achieved by using a local competition in which we compare
mapdetection values and choose the best fitted (See section
2.2 for the computation of the detection value).

Right after calculating its detection value, every unit of
eachmapbroadcasts it to all othemitson mapsof the same ~ P)
layer and at the same coordinates. Thus, ewsiy whose input
coordinates correspond to the position of the letter receives/s
incoming values at the 'Max’ stage of its pipeline architec-
ture (see figure 1). The 'Max’ stage, as its name indicates,
computes the maximum incoming value and sends it to its map2.1 map2.1 mapa,1 map2.1
own 'Learn’ stage. The learning process is then able to com-
pare the localnit activation incoming from the 'Integrate & Figure 4. An example of a hierarchical representation of
Fire’ stage to distant activations. By allowing learning only faces. a) network connectivity showing weight kernels and
to the best fittedinit, we ensure that nmapcould learn one  mapsactivities. Layero, Layer1, Layerz, Layers respec-
pattern if another is already specialized to detect it. We illustively extract contrasts, oriented segments, eyes and mouth,
trate this intermapscompetition on Figure 3.b with the dark and face. b) recognition robustness for different subjects and
discs which represent the blocking signal. variable postures.
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Representations ages of each of 40 distinct subjectdn the same way as in

We adopted a layered hierarchical architecture for several redl® pre\élous e_>§amp]lce ofrietter_extractlobgyﬁrg learns tof
sons. Firstly we need this architecture éategorization As hetectt ﬁ posr:uonr? eac eyr/]e In crmﬁpan the position o
our units achieve linear separation in their input set, comple>t< e moutniin the other one, sharing the same segments extrac-

features cannot be extracted with a single layer. This is 40N i the previous layeriayery). In Layer;, we train an-
known limitation of the single layer perceptron that cannotothermapwhich receives as inputs the detection values of the

simulate an exclusive disjunction (logical XOR). The seconoT“OUth and eyes specializedaps As a result, this lasmap
reason isreusability A huge number of extracted features €3NS the representation of the fa_ce vv_lth relative positioning
are encountered in different shapes: oriented segments, arg5€Yes and mouth. We also see in this example that the re-
of circles or color blobs are building blocks for more complexSUItIng face recognition is robust to high variations in SUbJeC.t
images. Since extracted information is shared in the networ{?©Sture and morphology. Nevertheless, this kind of recogni-
we avoid redundancy and the resulting computational overtion only applies to images with limited face orientations. In

head. Following the same idea, similar meanings should bgection 3, we will propose additional methods to recognize

encoded using shared sets of units. For example, the inter> OPi€Cts based on the pooling of overlapping views.

nal representations of a truck and of a car should intersect, . . .
This intersection representing the shared meaning could co-2 ~ Integration, Firing and Learning

wheel, etc. Thanks to this distributed representation architeghe computingunits we present the internal workings of the
ture, it is easier to pool similar objects into cross categoriegystem more precisely and the computation of the detection
(e.g., wheeled vehicules). values mentioned in section 2.1.

This capability of building hierarchical and shared repre-
sentations is shown in figure 4. In this experiment we trained 2we used the faces database of the AT&T Laboratories, Cam-
a network to recognize faces using a set of ten different imbridge http://iwww.uk.research.att.com/facedatabase.html



Integration are learning, their output function must converge to a binary-

Given aunit U;, we denotes; (¢) € [0, 1] its calculated output like response corresponding to a more strict linear separation.
burst at time. The burst is the detection value mentioned be-At each step we compute a sample distribution of the input

fore. Letw;;(t) € Wi(t) be the learning weight associated to pyrst by discretizing the output burst value in 64 levels. The

the connection betweamitsU; andU;, and(2i* (¢) a subset  transfer functionF; is in fact the associative cumulative dis-

of afferent(2; defined as: tribution at timet:
Wi(t) = {wi;(t), Uj € S} @) Fi(t,z) = Y_ fi(t.b) (8)
O (t) = {U; € i, 8(t) > 0} &) 0<b<z
We also define three weight sums as follows : Where functionf; is a sampling distribution of burst levels
SHt) = Z | wi () | 3) updated at each step (figure 5.a). We thus obtain a sigmoidal

transfer function which permits a binary-like classification

w;j (t) €W, (t) b . . e .
N ehaV|0_r and a m'ore'efjfecnve competition process. Untll
ST =Y wy(t) (4)  now, object detection is internally represented as the activa-
U ent (1) tion of a limited set of computingnits. Due to our connectiv-
N ity scheme, recognitions are indeed only reflected at positions
57 (1) = Z wi; (t) () located near the centre of the learned pattern. However pat-
wii(HEWT (1) terns presence are more than just their center since the whole

surface they cover is relevant. So we increase the pool of ac-

whereW;t (¢) = {w;;(t),U; € Q; and w;;(t) > 0}. : ; ; .

i ig\v)s g i i : tivated units to cover a wider surface. As a first approach, we
Then the integrated potenti&) at timet+ 1, which expresses chose a simple disc shape whose surface is give%gbw
a level of similarity between the learnt pattern and the inputs, '

is given by: Learning
_ _ g+ We use in our model a hebbian-like learning rule in which
arPi(t) + (1+ ar)S; (t) (6) unitstend to learn patterns responsible for their activation.
S (t) In other words, a learning process occurs whenwaméehas
: s : both fired and won the competition in its layer. Moreover, we
Whereap € [0,1]is a fixed potential leak. compute a stochastic standard deviatignfor each weight

Pi(t+1)=

w;; which is computed and used as coefficient in the learning
a) BURST LEVEL SAMPLING DISTRIBUTION b) CUMULATIVE SAMPLING DISTRIBUTION Caiou'ation as fO”OWS:
008 | step 1500 08 step 1500 hij (t + 1) = (1 — CYW)/M]' (t) + aw | Yij (t) ‘
0.07 0.7
6 . 2 2
0os 0s o3t +1)" = (1 — aw)oi;(t) + aw[pi; (t + 1) — vi; (£ +1)]
0os 05 wij(t+1) = (1 — aw)w;;(t) + aw[l — 204 (t + 1)]yi;(t + 1)
002 S g 02
N e I Where;; is a stochastic mean andy the learning rate.
IS E0E 50 8 045505 6 S0 A a0 @ Hence we ensure that weights corresponding to noisy inputs

(with high standard deviation) will tend to 0 and then won't

Figure 5: Burst sampling distribution and cumulative distri- take partin the representation; is a function of input burst
bution evolution. a) burst sampling distributions computed a@f unit ¢ which takes its values if—1,0,1}. Mapsamong
steps 0, 500 and 1500. Burst values are discretized withif€ same layer are in competition as shown in figure 3. If

64 levels. b) corresponding cumulative distribution used as &t time¢, an input burst fronunit j is receivedy;;(t) = 1,
transfer function for integration. else if a burst is received from any other afferenit then

v:;(t) = —1. Finally if no burst was present;(¢) = 0.

Firin - :
Outp%t burstss; generated by a unif; are produced both for 3 From Views to Objects
integration processes situated on the the next layer and for it# this section, we consider the 3D-object recognition prob-
own "Learn” stage (see figure 1). In the first case, burst levelfem. Let us consider a camera rotating around an object. For
are not taken into account since all positive bursts participatg given orientation we can train a dedicatedpand obtain
E)oulsrllteg;atllaoirr]le(zet?waetq\lljvztlr?ene%j) 't(l)nctgne*l Sae'%ct’ggé?;eti'o"r‘ﬁnprevé'nough robustness to detect this view, say within about a 45
orde}; to ﬁnd the best fittechapin a comp?etition process. The _degrees angle mterve;l Ce”t‘?fe‘j' on thenlea_rnt prototype. Wider
burst level is thus computed as follows: intervals can be obtained with "simple” objects, such as balls
or paper cups, whose views are relatively invariant during
_Jo if Pi(t) < Ty, ; view—ppint modification, w_hile t.urning around them. Our.ap—
pilt) = Fi(t, P;(t)) otherwise ™ proch is to pool overlapping view detectors. Then, a view-
invariant (or object-tuned) detector can be obtained simply by
WhereT; is a fixed threshold and; is an adaptive transfer computing the maximum view-tunedaprespons¢Riesen-
function whose variations across time are illustrated by fig-huber and Poggio, 1999 This will provide for continuous
ure 5.b. The underlying idea of this function is that, as unitsobject recognition.
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Figure 6: Object invariant detection with view-tunethps a) mapsactivities overlap to produce continuous detection. b)
resulting learning weights. These are composed of 8 kernels forreaphwvhich correspond to 8 afferent oriented segment
detectors situated on previous layer (see figure 4).

Assuming the support of an external module producing thenodule. We call this process "one-shot learning” because of
initial object detection (this could be simply a user’s selec-the use of a high learning rate. In the next frame, thanks to the
tion on the input image, but this module could be based omobustness of our model, the tracker-map can detect the ob-
saliency, motion, etc...), we must resolve several remainingect even if it has started to move. According to the hebbian
problems. Firstly, the object-tunedap must keep track of rule, this detection is followed by a learning phase. Then,
the object during point of view modifications (temporal bind- another learning occurs which almost completly renews the
ing). Secondly, as we have no initial information about thestored prototype due to the high learning rate. From now
object’s complexity and, therefore cannot anticipate the exadhe process can restart allowing continous detection. Tracker-
number of required view-tunadaps we must find a method mapscan be viewed as short-term memories that never reach
which incrementally adds nemapsto the network and asso- stable representations.
ciate them together.

Map-tracker : Short-term Memory for Temporal Binding Temporal Binding

The different views of the same object tend to occur close to-
gether in time and spad@arr and Rilthoff, 1994. Several Now that we can use temporal coherence to track the object
authors proposed to take advantage of this prod&tinger  position, we must resolve the remaining problem of building
and Rolls, 2002; Wallis, 1996We particularly want to men-  incrementally view-specific representations of the tracked ob-
tion Stinger and Rolls’s hypothesis about the functional archiject. To reach this goal we granted trackeapsthe capability
tecture and the operation of the ventral visual system tested iof creating new maps during runtime. As we are in the con-
their model called VisNet . In this model, each activation oftext of moving objects and/or moving point of views, one-
a view-invariant neuron is maintained during a short periodshot learning (learning with high learning rate will also be
of time. The pooling is then achieved by using an associativeised to catch object’s views during movement. The very spe-
memory to link temporal memory trace and current view de-ific resulting prototype will be refined as view-tuned maps
tection. Although this method seems biologically plausible, itcompute standard learning rates. The binding algorithm de-
seems difficult to apply to real-time robotics. As the view-to- velops as follows: if no view-tuneaiaprecognizes the object
object membership is nat priori known, there is no criteria at the position of the trackenags detection during a short
to decide whether or not a newly specializedpcorresponds  period of time (we use a 5 frames time-out), which is initially
indeed to the view of an object. If no preselection is appliedthe case, then the tracker creates a nempand forces it to
the size of the associative memory could exceed computablearn the unknown view with a one-shot-learning signal. If a
capacities. So, it is crucial to restrioctap specialization to  view is detected, becauser@mphas previously learnt it, then
relevant views. A solution comes from a tracking approacha standard learning process occurs in thepand the detec-
In this domain, temporal coherence is also used but in antion produces a one-shot learning signal for the trackap
other way. The aim of tracking is not so much extractingin order to focus tracking on this view. This process ensures
knowledge but rather following the position of a collection of that long-term memory of a specific view has a higher priority
pixels. Temporal coherence can here be exploited by considturing object detection than the tracker. This algorithm has
ering that persitent informations are preserved between twpeen used in the experiment of figure 6 in which the image of
frames and can thus be extracted. We propose to usaedpe a rotating object has been used to train a three-layers network.
architecture for pixel tracking in order to follow the position In figure 6.a, we see that the tracker always detects the object,
of the object and use this information as a first step for anthanks to the feedback from long-term to short-term memory,
incremental view-tunechapcreation. and that activity ofmapg is about 3 times longer than the
We can obtain the desired tracking capability by increasingthers. Indeed, thimaplearned to detect orientations that
the learning ratevy;, of a map (see section 2.2), which we will are rather invariant during rotation. Our model can thus adapt
call trackermap to a value near 1. The tracker-map is trainedthe number of requirethapsdepending on the complexity of
at the time the first object position is produced by the externabbjects.



a) Learning image-based representation of objects
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b) Scene recognition based on view independant object detection
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Figure 7: Representing scenes as arrangements of objects in an office environment. a) examples of object-invariant detections
from different points of view learn. b) results of scene recognition by relative positioning of object-invariant detections.

4 Objects as landmarks for scene recognition  complex features in a unified language. Thus, building het-

We present in this section experimental results of our systerfifogeneous libraries of meanings becomes feasible. These
in the context of scene recognition. We can define a scené&Presentations could be then provided as input to a symbolic

as a particular arrangement of objects. We demonstrated pré&asening level.

viously with face recognition that our architecture is able to

construct hierarchical representations of an image. We caleferences

use this same technique in order to learn a scene as relati{Biederman, 19871  Biederman. Recognition-by-
arrangement of objects. For this experiment we observed a components: a theory of human image understanding.
standard office environment including 3 basic objects: a pa- Psychological Reviey®4:115-147, 1987.

per basket, a phone and a chair. In a first phase, object repeykushima, 2008 K. Fukushima. Neocognitron for hand-
resentations are learnt on the fly using temporal coherence yritten digit recognition. Neurocomputing51:161—180,
by the means of trackenaps(section 3). The resulting net-  April 2003.
work then detects each object simultaneously in view-specifit[:

. ; L . LeCunet al, 2004 Y. LeCun, F.-J. Huang, and L. Bottou.
mapsand in the corresponding object-invariant trackep Learning methods for generic object recognition with in-

In a second phase, three higher lewepsconnected to all : 2 ;
object-invariant detectors learn representations of the scene variance to pose and lighting. GVPR'04 2004.

from three different points of view. Figure 7.a shows the out-[Paquier, 2004 W. Paquier. ~ Apprentissage Ouvert de
puts of the three object-invariant detectors built as presented Repesentations et de Fonctionn&g en Robotique :

in section 3 with natural images. Without needing any addi- Analyse, Modle et Impémentation PhD thesis, 2004.

tional algorithm, our model extracts a view-point specific rep-[Poggio and Edelman, 19p0". Poggio and S. Edelman. A
resentation of the scene in a hierarchical structure (figure 7.b). network that learns to recognize three dimensional objects.
From now, a location-invariamhapcan be trained thanks to Letters to Nature343:263-266, 1990.

trackermapsfor scene-invariantapspooling as explained [Riesenhuber and Poggio, 19981.  Riesenhuber  and
in section 3. These multi-layered architecture allowed by 1 Poggio. Hierarchical models of object recognition in

parallel-pipeline calculations is the key property which per- — ¢orey Nature Neuroscienc@8:1019-1025, 1999.
mits to combine view-based representations and structural dfétinger and Rolls, 2002S. M. Stinger and E. T. Rolls. In

seriptions variant object recognition in the visual system with novel
: views of 3d objects.Neural Computation14(11):2585—

5 Conclusion 2596, November 2002.

In this paper we have introduced several methods and algcrmrr and Rilthoff, 1999 M. Tarr and H. Rilthoff. Image-

rithms to extract knowledge from visual data. Our model is based object recognition in man, monkey and machine
able to build representations by decomposition of image fea- Cognition (67):1—20, 1998 ’ '

tures into local components structured in a global hierarch , ) i

of concepts. Such decompositions are minimal requiremen)(féJ"m_an’ 1998 S. Ullman. Three-dimensional object recog-
for both sharing representation in order to save memory and Nition based on the combination of viewsCognition
computational time, and providing generalization capabilities 67:21-44, 1998.

due to the fact that extracted components can be used as d#&vallis, 1994 G. Wallis. How neurons learn to associate
scription blocks to recognize new elements. The main advan- 2d-views in invariant object recognition. Technical Re-
tage of our model is that one does not need any prior knowl- port 37, Max-Planck-Institutelif Biologishe Kybernetik,
edge or model to build robust dedicated detectors of simple to Tubingen, Germany, 1996.



