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AbStraCt 1000 samples

We describe an approach to statistically veri
ing complex controllers. This approach is bas
on deriving practical Vapnik-Chervonenkis-sty
(VC) generalization bounds for binary classifie
with weightedloss. An important case is deri
ing bounds on the probability of false positiv
We show how existing methods to derive bour
on classification error can be extended to del
similar bounds on the probability of false pos
tive, as well as bounds in a decision-theoretic ¢
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ting that allows tradeoffs between false negati Figure 1:The Organic Air Vehicle (left), and the complexity of an
and false positives. We describe experiments iterative equilibrium angle-of-attack computation as determined by
ing these bounds in statistically verifying comp two factors: The flight path angteand the net lift forceZ>. (right).
tational properties of an iterative controller for The computational complexity here is equated with the number of
Organic Air Vehicle (OAV). iterations. The safe operating envelope consists of those inputs that

require at most two iterations. The decision boundary is empirically
1 Introduction drawn using 1000 random samples.
The computational requirements for high-performance com- ) )
plex control algorithms can vary considerably. The varia-May have drastic consequences such as loss of the vehicle.
tion arises because the computation depends on a number Bus we would like to obtain an SOE that has some statisti-
factors such as the sensed/estimated state of the system @@l guarantee that itis indeed safe, i.e., a classifier wali-p
der control, environmental disturbances, and the operaitio ably smallprobability of false positive This however is not
mode of the system. Furthermore, the variation in generaihe only criterion, for otherwise the trivial classifier tiutas-
can not be determined analytically. In hard real-time syste Sifies everything as negative, namely the current stateeof th
where the computation must complete in time for a command't, would be the top candidate. Instead, the goal is to push
to be issued to the actuator at the next sample instant, the§fge boundaries of the SOE as far as possible while keeping a
uncertainties pose a significant challenge. This is the reac@p on the probability of false positive.
son that PID (Proportional-Integral-Derivative) conlecs, As an example, let us consider the computational property
with their deterministic execution time, are still the meed  of a high-performance controller for an OAV (Figure 1). The
choice in many applications despite their lesser perfomman OAV has a ducted fan propulsion unit, with control provided
In order to bring practical acceptance to high-performancdy movable vanes in the propwash. The vanes are situated
complex control algorithms, we propose a compromise thatn the propulsion airflow and consequently the interactions
makes use of both types of controller algorithms. High-between the propulsion and the control surfaces are highly
performance algorithms will be used withinsafe opera- non-linear. The trim calculation for the OAV is an iterative
tional envelopéSOE) where they are guaranteed to completealgorithm whose computational time depends on several fac-
within the allocated time. Outside of the SOE, lower perfor-tors [Elgersma and Morton, 2000]. We are interested in con-
mance and computationally simpler algorithms will be usedditions under which this calculation can be reliably used.
The SOE is determined based on simulation data, and hence Our approach is based on statistical learning theory (SLT).
is only safe with some statistical guarantees Specifically, we derive statistical guarantees for SOEBgusi
The problem of identifying the SOE is a binary classifica- Vapnik-Chervonenkis-style generalization bounds fossila
tion problem where a false negative merely means a conservication problems wittweightedoss, of which the classifica-
ative use of a low performance controller and a false pasitiv tion problem with false positive loss is a special case. e ar



interestedpractical bounds—bounds that are asymptotically A C X, defineCnN A = {CN A : C € C}. Thegrowth

competitiveand have small pre-constants. While the SLT lit- functionof C is defined as

erature contains a vast collection of VC-style bounds, the m _ ) _

jority of these bounds are stated and proved only foptioé- Ai(€) = max{lc O Al A € X, [A] = k).

ability of misclassificatiomnd only a few are directly applica- Clearly,A;(C) < 2*. TheVC Dimensiorof C is defined as

ble to our problem. Furthermore, SLT bounds are often de- &

rived with little emphasis on obtaining optimal pre-coms$a d(C) = sup{k € Z: Ax(C) = 27}

In addition to the emphasis on finding small pre-constantsiet d = d(H). We assume that < oco.

our analysis has two unique aspects. First, we assume th@f,agrem 2.1. [Vapnik, 2000, Equations 3.26]

it is possible to achieve small empirical loss (which is true ’ ’

for the case of false positive loss). Second, our analysis is 1 %en 4
I(h) <s ln(h)+¢n <dln >

upper-tail-oriented, as we are only interested in derivipg — +Inz (2.1)

d )
per bounds for the expected loss.
The bound (2.1) is obtained by applying a very general re-

2 Preliminaries sult of Vapnik to the special setting of learning binary elas
) sifiers with a specific loss functiol). It is thus natural to
Notations: We use the symbolB, E, andV to denote the ask if this bound can be improved. While many SLT results

probability, expectation, and variance, respectively. =  have been obtained that address this issue, the majoritg of a
{oi}iL, denotes a Rademacher sequence-a sequence of iymulated and proved far = (V) only. One of the goals
dependent, symmetrie1/1-valued random variables. of this paper is to examine if these results can be extended to

Let X andY be non-empty sets and = X x Y. A he |oss functions(”), p € [0,1). It turns out that these re-
pair of (z,y) € X x Y is denoted as. Let (Z,u) be @  gyjis fall into two categories: those that are applicabeafb
fixed probability measure. Araining setis a finite sample p € [0,1], and those that are applicable for= 0, 1 only.

Sn = {ziticy = {(zi,3:)}i=, € 2" drawn independently " \ye conclude the preliminaries with the statement of the
according tou. The probability and expectation with respect gfen-used Sauer’s lemma.

to S,, are written asP,, andE,,. A hypothesis spacis a , d
setH of functions fromX to Y. A loss functionis a func-  Sauer's Lemma. [Sauer, 1972]A,,(H) < (en/d)".

tionl : Y xY — R. The loss of a hypothesis € H . .
on zis I(h,z) = I(h(z),y). The expected losef his 3 VC Dimension-Based Bounds

I(h) = El(h, z). Theempirical lossof h on the training set Suppose that is a hypothesis with “small” empirical loss:
Sy isly(h) = 1(h,Sn) = =30, I(h, z;). We assume that 1,(h) < €. We would like to bound the probability that
all loss functions have rande, 1]. WhenY is finite, we have (%) is “large”: I(h) > € for somee > ¢;. This amounts to
aclassificationproblem. WherY'| = 2, the classification is boundingP,,(Q) whereQ is defined as
binary, and letY” = {—1,1}. Here we only deal with binary Q =1{Su : 3h: l(h) < e1,l(h) > €}
classification. ) i )

If we assume that correct classifications incur zero loss, i. There are two major approaches to do this: The classical ap-
I(—1,—1) = I(1,1) = 0, then what emerges is a loss function proach of Vapnik and Chervonenkis [1971], and the approach
that we refer to aseighted classification errodefined as: based on abstract concentration inequalities developd&d-by

lagrand and others.

0 ify=1y
19(y,y) = { p ify=—1y =1 (false negative) 3.1 The Classical Approach
1 ify = -1,y =1 (false positive). The classical VC analysis begins with the observation that

ere s a rumber between 0 and 1. Th idea i tht s = FULYEYL) for sy nt satefes () >
positives (bad errors) are more costly than false negativegent sample whose size may or may not be equal 1a this
(good errors). Whep = 1, i.e. when no difference is made gnglysis we take the former approach: IS8t = {z}2%,
between the two types of errors, the loss is calledifselas-  he an independent sample of sizecommonly referred to
sification error Whenp = 0, 1{%) (h) is the probability of the  as theghost samplend letl’,(h) = I(S’,h), the empiri-
classifierh making a false positive error. cal loss on the ghost sample. Dendg, = (S,,,S’,). Let
Given a training ses,,, a hypothesis: € H, and aloss (< e¢; < ey < €. DefineR as
function [, how can we bound the expected ld§k)? Sta-

tistical learning theory (SLT) provides a probabilisticsarer R= {8 : 3 :ln(h) < €1, 1 (h) > €2} (3.1)

to this question. A typical SLT result of the fori, (I(h) > ypper boundingP,,(Q) now reduces to upper bounding

€) < ¢ or, succinctly,/(h) <5 e provides an upper bound ; :
on!(h) with confidence at leadt— ¢, wheree and$ are pos- ﬁfw%(f;ngﬁgtﬁgggggitzgp) and lower boundiiig,, (£|Q)

itive, reasonably small numbers. The upper boatypically . A . .

depends o, the sample size, the empirical loss, (7), and Thg Qovermlglj Step. Up%eL Boundlﬂ’gn(R_) - 'nlt‘f't'vely'

a complexity measure of the hypothesis spaceThe most 2t [0 1% ST BROMEC T 1o bOg! SR, (U8 OO
important complexity measure in SLT ¥C dimension Let smaﬁ We ean ghange the defini(f:]ioanin (3p1) s

C C 2% be a set of subsets of. Note thatH, as a set of ' ’
binary classifiers orX, is an example of such sets. For any R = {Sz, : 3h:1;,(h) — ln(h) > n, Wheren = ez — €1} .



The next step uses the so-calf@ermutation technique
Pon(R) = Ean (3h : 1,(R) — ln(h) > n)

= EonEs <3h : z": oi(l(hy zign) — U(h, 2)) > nn) .

i=1
Next, we fixSs,, and bound the inner expectation. Let
Hap = {hon = (h(z1),. .., h(z2,))|h € H} C {—1,1}*".

The mappingh — ha, is many-to-one. Denotg (hs,) =
I(h, z;),1 <14 < 2n. The inner expectation can be written as

E, (thn € Hap, : Z 0 (lign(h2n) — li(h2n)) > nr])

i=1

which, by the union bound, is bounded by

> E
hon€Hap
The cardinality ofHs,, is at mostAs,, (H), which is at most

(2en/d)? by Sauer’s lemma. For a fik,,, € Hs,, the sum-
mand in (3.2) can be written as

(Z i (Livn(han) — li(han)) > nn) . (32

=1

P, <Z i (litn(ha2n) — li(han)) > nn)

which, by Heffding’s right-tail inequality, is bounded by
—2n2772 m72
op (42i<zi+n<hzn> = thzn))?) =P (*T> '

Thus we have arrived at the following result.
Lemma 3.1. [Vapnik and Chervonenkis, 1971]

d
Py, (ln(h) <e,l,(h) > 62) < (%) exp (—.Em(eg — 61)2) .

Whene; < e, itis possible to improve upon Lemma 3.1.
The idea is, instead of bounding the probability that dbe
solute discrepancy, (k) —I,,(h) is large, we bound the prob-

ability that therelative discrepancyM is large. We

17, (R)+1n(h)
“weaken” the definition of? in (3.1) as

R={Szn:3h: (k) = lu(h) > 1},

!
= (e2 — €
" (2 ) €2+ €1 €+ e

Now, proceed identically as before, except thas now re-
placed withry’, we arrive at the following results.
Lemma 3.2. [Vapnik and Chervonenkis, 1971]

Pay, (In(h) < €1,1,(h) > €2) < (2Zn>dexp (%) .

Corollary 3.3. [Vapnik and Chervonenkis, 1971]

d
0,0, (h) > €) < (2%1) exp (—.5nez) .

Por (In(h)

Lemma 3.4. [Blumeret al, 1989]

d
Pan (In(h) = 0,1, (h) > €2) < (%) exp (—nez2In2).

The Symmetrization Step: Lower Boundihg (R|Q). To
lower boundP,,, (R|Q), we can fixS,,, ignore the condition
I,(h) < €1, and bound the following conditional probability:

Ps: ({85, : 3h: 1, (h) > e2}|3h : U(h) > €)
or, equivalentlyP,, ({3h : ln(h) > e2}|3h : I(h) > €).
Let h be a hypothesis such thigh) > ¢. It suffices to lower
boundP, (I,,(h) > €3). Intuitively, this quantity is large be-

cause the empirical loss should be largee) wherever the
expected loss is large>(¢). Sincees < ¢, we have

Po(ln(h) < €2) < P(U(h) — ln(h) > € — €2)

6n(c — €2)? .

S exp (_4(6 —€e)+ 3) T

by Bernstein's left-tail inequality.  Coupled this with
Lemma 3.2, we obtain the following result.

Corollary 3.5.
Py (In(h) < e1,l(h) > €)

<(AV(1-unee))t) (M)dex (M)

- &2 d P 2(62 + 61) ’

In this inequality, the parametes is unspecified, and we
can minimize the bound oveg € (e, €).

Whenp = 0, 1, the loss functiori(”) is binary, andhl,, (h)
is a binomial random variable with parametersand (k).
We can thus use several lower bounds on the right-tails of the
binomial to obtain

t(n, € €2), (3.3)

(3.4)
(3.5)

ne > 1= P, ({ln(h) > ¢/4}3h : 1(h) > €) > 1/4
ne > 2= P, ({ln(h) > ¢/2}3h : 1(h) > €) > 1/2

For the case; > 0, we can set; = ¢ and combine (3.4)

with Lemma 3.2 to obtain the following result.

Corollary 3.6. [Vapnik and Chervonenkis, 1971] Fdr =

1(e), p=0,1,

1(h) <5 20 (h) + & (dln N | é) .
n

; 5 (3.6)

For the case; = 0, we can set, = ¢/2 and combine (3.5)
with Lemma 3.4 to obtain the following result.

Corollary 3.7. [Blumeret al, 1989] Forl = [(?), p = 0,1,
ch +1 g
a s )

Shawe-Tayloet al.[1993] further improve (3.7), using an
argument that uses a second sangjjlef sizek, andes = re,

wherer =1 — +/2/(ek), k =n(ern/d — 1).

In(h) = 0= 1(h) <5 % (dln (3.7)

By considering the relative discrepancy, we have man=paorem 3.8. [Shawe-Tayloret al, 1993] Forl = (), p —

aged to insert the termy, + €1, resulting in a tighter bound
in Lemma (3.2). Further tightening is possible when= 0.
Instead of using Hoeffding’s inequality, Blumet al. [1989]

use a combinatorial argument that leads to the following im-

provement of Corollary 3.3.

0,1,
ne > 4d = Py, (In(h) = 0,1(h) > ¢€)

SZexp<2\/2d—6n+dlne+2dln%>. (3.8)



Compared with (3.7), the sample complexity derivedSimple algebra shows that for &l € H, I(h) < (1 +
from (3.8) is smaller by a factor ofi5 (1 — \/e) ~ 5.7 for [, )1, (h)+ L2. Consequently, an upper bound bp can be
typical values (say,< 0.05). translated into an upper bound &fk). Unlike the previous
We point out that Corollary 3.6, 3.7, and Theorem 3.8 wereanalysis, it appears that we can not use McDiarmid’s bounded
previously stated and proved for the loss function- i) ifference inequality, as the introduction of the tegfi(h)
only. Our analysis extends them to the case I®) (and  renders the “difference” unbounded. The solution to this
shows that they dmot hold when0 < p < 1). The cov- problem originates from the work of Talagrand on abstract
ering argument remains the same, while the symmetrizatiogoncentration inequalities and their applications to latiog
argument uses the simple observation #i4f (1) is a bino-  the suprema of empirical processes [Talagrand, 1994, 1996]
mial random variable with parametetsandi(h), regardless  Talagrand's inequalities were later improved using the so-

of whetherp = 0 or p = 1. called entropy method. The following version provides the
best known bound.
3.2 Talagrand's Method Lemma 3.12. [Bousquet, 2002] LefF be a countable set of

Observe that(h) < I,,(h) + supcp(i(h) — I,(h)). The  functions fromZ to R. Letb = sup;cr (sup(E(f) — f)),
supremum is a random function &f,, where changing asin- v = sup;. V(f) and B, = B(S,) = supsc#(E(f) —
gle elementz; results in a change of at mostn, and thus 1 S, (). Then for anyx > 0,

is <s-bounded byE,, (supj,c (I(h) — 1, (h))) + /5 In+

by McDiarmid's inequality [McDiarmid, 1997]. The next Bn <s (1 + a)En(Bn) +

guantity to bound is the expectation of the supremum. This

is accomplished using the concept of Rademacher aver- we now apply Lemma 3.12 witlfi(z) = I(h, z))/\/1(R)

age. LetG be a class of functions fron¥ to the reals p =y = 1, to obtain

R. The Rademacher averagef G is defined ask,G =

R(G,8,,0) = supyeq (230 0i9(2)). In this analy- i 1 E.(F 2In(1/6) <1 l) In(1/6)

sis, the role ofG is glayed by the loss class associated with " <5 (1+ @)Ba(ln) + t3ta n

H: G =1lg = {2 v~ lh,z) : h € H}. The sym- - . .

metrization inequality (e.g. [Bartlegt al, 2005]) states that Ve then proceed to boun, (L,) with a technique from

E, (suppep(I(h) — 1n(h))) < 2ER,ly. Thus it remains Massart [2000] that is referred to peelingand the concept

to bound the Rademacher average. The technique is welff Sub-root functions. A function : (0,00) — (0, 00) is

established and based on the conceptsovering number ~ calledsub-rootif ¢ is non-decreasing and(r)//r is non-

Denote by N (u,l7, L»(u™)) the u-covering number of ;; increasing. Any sub-root function(r) is known to have a

with respect to the metri€s (1i"). unique fix-pointr* (|._e. (r*) = r*) [Ba_rtlett et aI'., 2005]_.
Now, suppose thap is a sub-root function with fixed point

Lemma 3.9. [Dudley, 1999] +* such that

2v1In(1/6) N (1 n l) bIn(1/6)

n n

3 «

EoRnly < % /1 VIn N (u, L, La (™)) du. (3.9) E,, (sup{|l(h) — Lp(R)] : I(R) < 7}) < 4(r),Vr > 0.

The last piece of the puzzle reveals a bound onThen we can show thato > 0, Ly, is <s-bounded by

N(u,lp, La(p™))), defined based on the VC dimensién . 1 2l (3+a)lnl
Lemma 3.10. [Haussler, 1995] For allS,,: (1+a) (\/7 (1 + 5(1 + ln(F)))) /= Sy o 3,
n 2¢\* The final step is to bound* usingd. This can be done
N(u,lg, L <e(d+1)|—= | . 3.10 . . ’ .
(s L, L2 (")) < e(d + )(u2) (3.10) [Koltchinskii and Panchenko, 2000] by settingr) to be

Dudley’s entropy integral. What we end up with is<g
Tvound oni(h) that is O(dIlnn/n), asymptotically compa-
rable to those obtained using the classical approach such as

Combining (3.9) and (3.10), with some algebra we obtai
the following result.

Theorem 3.11. (Dudley-Haussler) Theorem 3.8, albeit with worse constants.
d In(1/6 . [ ion-
1(h) <5 Ln(h) +30\/7+ /In(1/ )' (3.11) 3.3 Summary of VC.D|menS|on Based Bounds
n 2n Given a sampleS,, of sizen and a hypothesié that has

Th 11) i lvsis of th | mpirical lossl,,(h) on S,,, what can we say about the ex-
e bound (3.11) is based on an analysis of the abso Ut%ected losd(h) of h? The results in this section provide

discrepancyl(h) — I (k). Its deviation term i)(y/d/n), everal answers to this question. They all have the general

which should not come as a surprise. It is natural to ask i% B . . . -~ :
this approach can be used to analyze some form of relativiorm Of “If 1,,(h) is small, then with high probability(#) is

discrepancy between the expected liga3 and the empirical ~ Small”. The common assumption is thais selected from a
lossi,, (k). Consider hypothesis spac# with finite VC dimensiond. In the gen-

eral case whehis only assumed to have ranffe 1], Corol-
_ U(h) — ln(h) | lary 3.5 seems most useful. Whén= 1(?) p = 0,1, we
Ln = Sup{ VIR he Hih) >0 (3.12) can exploit several binomial tail inequalities to obtainahnu



simpler bounds. Wheh, (k) > 0, Corollary 3.6 should be the hyper-rectangle contains a sampled point for which the
used. Whe, (k) = 0, Theorem 3.8 provides the best-known algorithm does not converge (an unsafe point), then we elim-
bound. These results are all based on the idea of uniforrinate that hyper-rectangle (since the guarantees are based
convergence ofelative discrepancies (UCRD). Even Corol- Theorem 3.8 and require zero false positives). Otherwise, w
lary 3.7 and Theorem 3.8 can be viewed as based on degeneount the number of safe points that lie outside the hyper-
ate cases of UCRD, with special-purpose combinatorial-argurectangle (false negatives), and choose the hyper-rdetang
ments replacing the general-purpose Hoeffding’s bound. Rethat has the fewest number of false negatives. After look-
sults that are based on uniform convergence of absolute digag at 10,000 random hyper-rectangles, we are able to come
crepancies such as Lemmas 3.1 and Theorem 3.11 are ngb with one that contains 18,616 safe points and no unsafe
as useful for our purpose, as they have to cover situati@is thpoints. This hypothesis thus has 32,114 - 18,616 = 13,498
Vapnik and Chervonenkis [1971] refer toesssimistic cases false negatives. Note that the number of false negativeilis s
Simply put, pessimistic bounds are loose since they need tquite large. This is because we use hyper-rectangles which
account for hypotheses with expected losses clo$estoln  constitute a simple hypothesis space that does not approxi-
contrast, we only need to concern ourselves with hypothesarate the decision surface very well (this SOE is nevertlseles
with zero or small empirical losses. a big improvement over the trivial, empty SOE that is the
The statistical/computational learning theory literatur current state of the art). The advantage to this is that the VC
contains a vast collection of generalization bounds infre g dimension is low, and thus only a small number of samples
eral case of function learning and in the special case ofifear are required to obtain the statistical guarantee, whicsea
ing binary classifiers. To our knowledge no work has explic-“The found hyper-rectangle has probability of false posdti
itly derived generalization bounds for binary classifieithw bounded by).0035, and we have at lea$% confidence in
weighted error penalties as defined in this paper. The boundhis statement.”
in Section 3.1 originate from the seminal work of Vapnik and There are a number of alternatives to the above proce-
Chervonenkis [1971]. Our contribution here is the extemsio dure. For example, we can use Corollary 3.6 instead of The-
to the case = 0, and Corollary 3.5. orem 3.8, if the requirement of zero empirical loss is too
Talagrand’s approach provides a completely different wayestrictive. In the OAV example with 34,000 samples, this
to arrive at generalization bounds for all loss functionleads to a hypothesis with 111 false positives but only 3272
1) p e [0, 1] that are asymptotically equivalent with clas- false negatives (a reduction of 75%!) while still maintaupi
sical bounds. This approach analyzes the mean (or m&9% confidence that the probability of false positive is less
dian [Panchenko, 2002]) of the supremum of the (sometime#ian 0.01. Furthermore, we can replace the criterion “as few
weighted) discrepancies between the expected and empifialse negatives as possible” with other criteria, for exiemp
cal losses using Talagrand’s various concentration irlequa one that prefers hypotheses with large volumes. Finally, if
ties, completed invariably with the symmetrization indgua Wwe are willing to make a decision-theoretic tradeoff betwee
ity, Dudley’s entropy integral bound, and Haussler's pagki false negatives and false positives (e.g. one false pesitias
bound. The resulting bounds often have much larger concostly as one thousand false negatives), we cap set001
stants and are not as useful for our non-asymptotic purposeand apply Corollary 3.5.

4 Experiments 5 Summary and Related Work

We now describe the applications of the bounds derived int has been said that the divide between SLT and practice is
Section 3 to our OAV experiment as described in the introducef Grand Canyon proportions, perhaps because VC bounds
tion. We identify four factors that affect the computatibna are often too loose to be useful in practice. This paper of-
time of the iterative algorithm, and choose 4-dimensionalfers a counterargument in the form of an SLT-based approach
axis-parallel hyper-rectangles as our hypothesis spabe. T to verifying complex controllers. We demonstrated this ap-
VC dimension of this hypothesis space is 8, as itis known thaproach on a problem of significant industrial and military
the VC dimension of axis-parallel hyper-rectangle®Rifi is  interest: Deriving a safe operating envelope for a complex
2m. Thus foré = .05,¢ = .05, we need 34,000 samples us- control algorithm. This approach offers control engineers
ing Theorem 2.1. But using Theorem 3.8, we need only 181& principled way to increasingly replace low-performance,
samples. With 34,000 samples, if we 8et .05, e can be as  simple control algorithms with high-performance, complex
small as 0.0035. The improvement in generalization boun@nes while still maintaining a statistically high confiderin
(e) is about 14-fold and in samples complexity) (s about  safety. A key to making this offer attractive lies in deriv-
18-fold. ing practical VC-style generalization bounds for weighted

The search for the best hyper-rectangle in this experimemary classification (a problem that hitherto has not beeargiv
is rather simple. For each sampled input, we determine ifnuch attention). Our VC analysis, which builds upon stan-
the iterative algorithm converges. It turns out that in 32,1 dard VC analysis of unweighted binary classification, shows
instances (roughly 94%), the algorithm converges. Despitéhat such bounds are indeed possible. They are significantly
this high (empirical) rate of success, in current practice ibetter than a general bound by Vapnik. Our analysis pracisel
still loses out to a PID-like controller with fixed deternmstic ~ pointed to the place where the false negative penalty had an
computation time. Next, we randomly choose an axis-pdralleeffect, namely the symmetrization argument. We have suc-
4-dim hyper-rectangle in the input ranges as a hypothefsis. ktessfully applied this verification framework to severdlest
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