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Abstract

We describe an approach to statistically verify-
ing complex controllers. This approach is based
on deriving practical Vapnik-Chervonenkis-style
(VC) generalization bounds for binary classifiers
with weightedloss. An important case is deriv-
ing bounds on the probability of false positive.
We show how existing methods to derive bounds
on classification error can be extended to derive
similar bounds on the probability of false posi-
tive, as well as bounds in a decision-theoretic set-
ting that allows tradeoffs between false negatives
and false positives. We describe experiments us-
ing these bounds in statistically verifying compu-
tational properties of an iterative controller for an
Organic Air Vehicle (OAV).

1 Introduction
The computational requirements for high-performance com-
plex control algorithms can vary considerably. The varia-
tion arises because the computation depends on a number of
factors such as the sensed/estimated state of the system un-
der control, environmental disturbances, and the operational
mode of the system. Furthermore, the variation in general
can not be determined analytically. In hard real-time systems
where the computation must complete in time for a command
to be issued to the actuator at the next sample instant, these
uncertainties pose a significant challenge. This is the rea-
son that PID (Proportional-Integral-Derivative) controllers,
with their deterministic execution time, are still the preferred
choice in many applications despite their lesser performance.

In order to bring practical acceptance to high-performance
complex control algorithms, we propose a compromise that
makes use of both types of controller algorithms. High-
performance algorithms will be used within asafe opera-
tional envelope(SOE) where they are guaranteed to complete
within the allocated time. Outside of the SOE, lower perfor-
mance and computationally simpler algorithms will be used.
The SOE is determined based on simulation data, and hence
is only safe with some statistical guarantees.

The problem of identifying the SOE is a binary classifica-
tion problem where a false negative merely means a conserv-
ative use of a low performance controller and a false positive

Figure 1:The Organic Air Vehicle (left), and the complexity of an
iterative equilibrium angle-of-attack computation as determined by
two factors: The flight path angleγ and the net lift forceq̄S

mg
(right).

The computational complexity here is equated with the number of
iterations. The safe operating envelope consists of those inputs that
require at most two iterations. The decision boundary is empirically
drawn using 1000 random samples.

may have drastic consequences such as loss of the vehicle.
Thus we would like to obtain an SOE that has some statisti-
cal guarantee that it is indeed safe, i.e., a classifier with prov-
ably smallprobability of false positive. This however is not
the only criterion, for otherwise the trivial classifier that clas-
sifies everything as negative, namely the current state of the
art, would be the top candidate. Instead, the goal is to push
the boundaries of the SOE as far as possible while keeping a
cap on the probability of false positive.

As an example, let us consider the computational property
of a high-performance controller for an OAV (Figure 1). The
OAV has a ducted fan propulsion unit, with control provided
by movable vanes in the propwash. The vanes are situated
in the propulsion airflow and consequently the interactions
between the propulsion and the control surfaces are highly
non-linear. The trim calculation for the OAV is an iterative
algorithm whose computational time depends on several fac-
tors [Elgersma and Morton, 2000]. We are interested in con-
ditions under which this calculation can be reliably used.

Our approach is based on statistical learning theory (SLT).
Specifically, we derive statistical guarantees for SOEs using
Vapnik-Chervonenkis-style generalization bounds for classi-
fication problems withweightedloss, of which the classifica-
tion problem with false positive loss is a special case. We are



interestedpractical bounds–bounds that are asymptotically
competitiveandhave small pre-constants. While the SLT lit-
erature contains a vast collection of VC-style bounds, the ma-
jority of these bounds are stated and proved only for theprob-
ability of misclassificationand only a few are directly applica-
ble to our problem. Furthermore, SLT bounds are often de-
rived with little emphasis on obtaining optimal pre-constants.
In addition to the emphasis on finding small pre-constants,
our analysis has two unique aspects. First, we assume that
it is possible to achieve small empirical loss (which is true
for the case of false positive loss). Second, our analysis is
upper-tail-oriented, as we are only interested in derivingup-
per bounds for the expected loss.

2 Preliminaries
Notations: We use the symbolsP, E, andV to denote the
probability, expectation, and variance, respectively.σ =
{σi}n

i=1 denotes a Rademacher sequence–a sequence of in-
dependent, symmetric−1/1-valued random variables.

Let X andY be non-empty sets andZ = X × Y . A
pair of (x, y) ∈ X × Y is denoted asz. Let (Z, µ) be a
fixed probability measure. Atraining set is a finite sample
Sn = {zi}n

i=1 = {(xi, yi)}n
i=1 ∈ Zn drawn independently

according toµ. The probability and expectation with respect
to Sn are written asPn and En. A hypothesis spaceis a
setH of functions fromX to Y . A loss functionis a func-
tion l : Y × Y → R. The loss of a hypothesish ∈ H
on z is l(h, z) = l(h(x), y). The expected lossof h is
l(h) = El(h, z). Theempirical lossof h on the training set
Sn is ln(h) = l(h,Sn) = 1

n

∑n
i=1 l(h, zi). We assume that

all loss functions have range[0, 1]. WhenY is finite, we have
a classificationproblem. When|Y | = 2, the classification is
binary, and letY = {−1, 1}. Here we only deal with binary
classification.

If we assume that correct classifications incur zero loss, i.e.
l(−1,−1) = l(1, 1) = 0, then what emerges is a loss function
that we refer to asweighted classification error, defined as:

l(ρ)(y, y′) =







0 if y = y′

ρ if y = −1, y′ = 1 (false negative)
1 if y′ = −1, y = 1 (false positive).

Hereρ is a number between 0 and 1. The idea is that false
positives (bad errors) are more costly than false negatives
(good errors). Whenρ = 1, i.e. when no difference is made
between the two types of errors, the loss is called themisclas-
sification error. Whenρ = 0, l(0)(h) is the probability of the
classifierh making a false positive error.

Given a training setSn, a hypothesish ∈ H, and a loss
function l, how can we bound the expected lossl(h)? Sta-
tistical learning theory (SLT) provides a probabilistic answer
to this question. A typical SLT result of the formPn(l(h) >
ǫ) < δ or, succinctly,l(h) <δ ǫ provides an upper boundǫ
on l(h) with confidence at least1− δ, whereǫ andδ are pos-
itive, reasonably small numbers. The upper boundǫ typically
depends onδ, the sample sizen, the empirical lossln(h), and
a complexity measure of the hypothesis spaceH. The most
important complexity measure in SLT isVC dimension. Let
C ⊆ 2X be a set of subsets ofX. Note thatH, as a set of
binary classifiers onX, is an example of such sets. For any

A ⊆ X, defineC ∩ A = {C ∩ A : C ∈ C}. The growth
functionof C is defined as

∆k(C) = max{|C ∩A| : A ⊆ X, |A| = k}.

Clearly,∆k(C) ≤ 2k. TheVC Dimensionof C is defined as

d(C) = sup{k ∈ Z : ∆k(C) = 2k}.

Let d = d(H). We assume thatd <∞.
Theorem 2.1. [Vapnik, 2000, Equations 3.26]

l(h) <δ ln(h) +

√

1

n

(

d ln
2en

d
+ ln

4

δ

)

. (2.1)

The bound (2.1) is obtained by applying a very general re-
sult of Vapnik to the special setting of learning binary clas-
sifiers with a specific loss functionl(ρ). It is thus natural to
ask if this bound can be improved. While many SLT results
have been obtained that address this issue, the majority of are
formulated and proved forl = l(1) only. One of the goals
of this paper is to examine if these results can be extended to
the loss functionsl(ρ), ρ ∈ [0, 1). It turns out that these re-
sults fall into two categories: those that are applicable for all
ρ ∈ [0, 1], and those that are applicable forρ = 0, 1 only.

We conclude the preliminaries with the statement of the
often-used Sauer’s lemma.

Sauer’s Lemma. [Sauer, 1972]∆n(H) ≤ (en/d)
d
.

3 VC Dimension-Based Bounds
Suppose thath is a hypothesis with “small” empirical loss:
ln(h) ≤ ǫ1. We would like to bound the probability that
l(h) is “large”: l(h) > ǫ for someǫ > ǫ1. This amounts to
boundingPn(Q) whereQ is defined as

Q = {Sn : ∃h : ln(h) ≤ ǫ1, l(h) > ǫ}.

There are two major approaches to do this: The classical ap-
proach of Vapnik and Chervonenkis [1971], and the approach
based on abstract concentration inequalities developed byTa-
lagrand and others.

3.1 The Classical Approach
The classical VC analysis begins with the observation that
Pn(Q) ≤ P(R)/P(R|Q) for anyR that satisfiesP(R|Q) >
0. We then defineR based onSn and an additional indepen-
dent sample whose size may or may not be equal ton. In this
analysis we take the former approach: LetS ′

n = {zi}2n
i=n+1

be an independent sample of sizen, commonly referred to
as theghost sampleand let l′n(h) = l(S ′

n, h), the empiri-
cal loss on the ghost sample. DenoteS2n = (Sn,S ′

n). Let
0 ≤ ǫ1 < ǫ2 ≤ ǫ. DefineR as

R = {S2n : ∃h : ln(h) ≤ ǫ1, l
′
n(h) > ǫ2}. (3.1)

Upper boundingPn(Q) now reduces to upper bounding
P2n(R) (the covering step) and lower boundingP2n(R|Q)
(the symmetrization step).

The Covering Step: Upper BoundingP2n(R). Intuitively,
P2n(R) is small because ifh has small empirical loss on a
sample, its empirical loss on a ghost sample should also be
small. We can change the definition ofR in (3.1) as

R =
{

S2n : ∃h : l′n(h) − ln(h) > η, whereη = ǫ2 − ǫ1
}

.



The next step uses the so-calledpermutation technique.

P2n(R) = E2n

(

∃h : l′n(h) − ln(h) > η
)

= E2nEσ

(

∃h :

n
∑

i=1

σi(l(h, zi+n) − l(h, zi)) > nη

)

.

Next, we fixS2n and bound the inner expectation. Let

H2n = {h2n = (h(x1), . . . , h(x2n)) |h ∈ H} ⊆ {−1, 1}2n.

The mappingh 7→ h2n is many-to-one. Denoteli(h2n) =
l(h, zi), 1 ≤ i ≤ 2n. The inner expectation can be written as

Eσ

(

∃h2n ∈ H2n :

n
∑

i=1

σi (li+n(h2n) − li(h2n)) > nη

)

which, by the union bound, is bounded by

∑

h2n
∈H2n

Eσ

(

n
∑

i=1

σi (li+n(h2n) − li(h2n)) > nη

)

. (3.2)

The cardinality ofH2n is at most∆2n(H), which is at most
(2en/d)d by Sauer’s lemma. For a fixh2n ∈ H2n, the sum-
mand in (3.2) can be written as

Pσ

(

n
∑

i=1

σi (li+n(h2n) − li(h2n)) > nη

)

which, by Ḧoeffding’s right-tail inequality, is bounded by

exp

(

−2n2η2

4
∑

i(li+n(h2n) − li(h2n))2

)

≤ exp

(

−nη
2

2

)

.

Thus we have arrived at the following result.
Lemma 3.1. [Vapnik and Chervonenkis, 1971]

P2n

(

ln(h) ≤ ǫ1, l
′
n(h) > ǫ2

)

≤
(

2en

d

)d

exp
(

−.5n(ǫ2 − ǫ1)
2) .

Whenǫ1 ≪ ǫ2, it is possible to improve upon Lemma 3.1.
The idea is, instead of bounding the probability that theab-
solute discrepancyl′n(h)− ln(h) is large, we bound the prob-

ability that therelative discrepancyl′
n
(h)−ln(h)√

l′
n
(h)+ln(h)

is large. We

“weaken” the definition ofR in (3.1) as

R =
{

S2n : ∃h : l′n(h) − ln(h) > η′
}

,

η′ = (ǫ2 − ǫ1)

√

l′n(h) + ln(h)

ǫ2 + ǫ1
= η

√

l′n(h) + ln(h)

ǫ2 + ǫ1
.

Now, proceed identically as before, except thatη is now re-
placed withη′, we arrive at the following results.
Lemma 3.2. [Vapnik and Chervonenkis, 1971]

P2n

(

ln(h) ≤ ǫ1, l
′
n(h) > ǫ2

)

≤
(

2en

d

)d

exp

(

−n(ǫ2 − ǫ1)
2

2(ǫ2 + ǫ1)

)

.

Corollary 3.3. [Vapnik and Chervonenkis, 1971]

P2n

(

ln(h) = 0, l′n(h) > ǫ2
)

≤
(

2en

d

)d

exp (−.5nǫ2) .

By considering the relative discrepancy, we have man-
aged to insert the termǫ2 + ǫ1, resulting in a tighter bound
in Lemma (3.2). Further tightening is possible whenǫ1 = 0.
Instead of using Hoeffding’s inequality, Blumeret al. [1989]
use a combinatorial argument that leads to the following im-
provement of Corollary 3.3.

Lemma 3.4. [Blumeret al., 1989]

P2n

(

ln(h) = 0, l′n(h) > ǫ2
)

≤
(

2en

d

)d

exp (−nǫ2 ln 2) .

The Symmetrization Step: Lower BoundingP2n(R|Q). To
lower boundP2n(R|Q), we can fixSn, ignore the condition
ln(h) ≤ ǫ1, and bound the following conditional probability:

PS′

n

(

{S ′
n : ∃h : l′n(h) > ǫ2}|∃h : l(h) > ǫ

)

,

or, equivalently,Pn ({∃h : ln(h) > ǫ2}|∃h : l(h) > ǫ) .

Let h be a hypothesis such thatl(h) > ǫ. It suffices to lower
boundPn(ln(h) > ǫ2). Intuitively, this quantity is large be-
cause the empirical loss should be large (> ǫ2) wherever the
expected loss is large (> ǫ). Sinceǫ2 < ǫ, we have

Pn(ln(h) ≤ ǫ2) ≤ P(l(h) − ln(h) > ǫ− ǫ2)

≤ exp

(

− 6n(ǫ− ǫ2)
2

4(ǫ− ǫ2) + 3

)

:= ι(n, ǫ, ǫ2), (3.3)

by Bernstein’s left-tail inequality. Coupled this with
Lemma 3.2, we obtain the following result.
Corollary 3.5.

Pn (ln(h) ≤ ǫ1, l(h) > ǫ)

≤
(

1 ∨ (1 − ι(n, ǫ, ǫ2))
−1)

(

2en

d

)d

exp

(

−n(ǫ2 − ǫ1)
2

2(ǫ2 + ǫ1)

)

.

In this inequality, the parameterǫ2 is unspecified, and we
can minimize the bound overǫ2 ∈ (ǫ1, ǫ).

Whenρ = 0, 1, the loss functionl(ρ) is binary, andnln(h)
is a binomial random variable with parametersn and l(h).
We can thus use several lower bounds on the right-tails of the
binomial to obtain

nǫ > 1 ⇒ Pn ({ln(h) > ǫ/4}|∃h : l(h) > ǫ) > 1/4 (3.4)

nǫ > 2 ⇒ Pn ({ln(h) > ǫ/2}|∃h : l(h) > ǫ) > 1/2 (3.5)

For the caseǫ1 > 0, we can setǫ2 = ǫ and combine (3.4)
with Lemma 3.2 to obtain the following result.
Corollary 3.6. [Vapnik and Chervonenkis, 1971] Forl =
l(ρ), ρ = 0, 1,

l(h) <δ 2ln(h) +
4

n

(

d ln
2en

d
+ ln

4

δ

)

. (3.6)

For the caseǫ1 = 0, we can setǫ2 = ǫ/2 and combine (3.5)
with Lemma 3.4 to obtain the following result.

Corollary 3.7. [Blumeret al., 1989] For l = l(ρ), ρ = 0, 1,

ln(h) = 0 ⇒ l(h) <δ
2

n ln 2

(

d ln
2en

d
+ ln

2

δ

)

. (3.7)

Shawe-Tayloret al. [1993] further improve (3.7), using an
argument that uses a second sampleS ′

k of sizek, andǫ2 = rǫ,
wherer = 1 −

√

2/(ǫk), k = n (ern/d− 1).

Theorem 3.8. [Shawe-Tayloret al., 1993] For l = l(ρ), ρ =
0, 1,

nǫ > 4d⇒ Pn (ln(h) = 0, l(h) > ǫ)

≤ 2 exp
(

2
√

2d− ǫn+ d ln ǫ+ 2d ln
en

d

)

. (3.8)



Compared with (3.7), the sample complexity derived
from (3.8) is smaller by a factor of4ln 2 (1 − √

ǫ) ≈ 5.7 for
typical valuesǫ (say,< 0.05).

We point out that Corollary 3.6, 3.7, and Theorem 3.8 were
previously stated and proved for the loss functionl = l(1)

only. Our analysis extends them to the casel = l(0) (and
shows that they donot hold when0 < ρ < 1). The cov-
ering argument remains the same, while the symmetrization
argument uses the simple observation thatnl

(ρ)
n (h) is a bino-

mial random variable with parametersn andl(h), regardless
of whetherρ = 0 or ρ = 1.

3.2 Talagrand’s Method
Observe thatl(h) ≤ ln(h) + suph∈H(l(h) − ln(h)). The
supremum is a random function ofSn, where changing a sin-
gle elementzi results in a change of at most1/n, and thus

is <δ-bounded byEn (suph∈H(l(h) − ln(h))) +
√

1
2n

ln 1
δ

by McDiarmid’s inequality [McDiarmid, 1997]. The next
quantity to bound is the expectation of the supremum. This
is accomplished using the concept of Rademacher aver-
age. LetG be a class of functions fromZ to the reals
R. The Rademacher averageof G is defined asRnG =
R(G,Sn, σ) = supg∈G

(

1
n

∑n
i=1 σig(zi)

)

. In this analy-
sis, the role ofG is played by the loss class associated with
H: G = lH = {z 7→ l(h, z) : h ∈ H}. The sym-
metrization inequality (e.g. [Bartlettet al., 2005]) states that
En (suph∈H(l(h) − ln(h))) ≤ 2ERnlH . Thus it remains
to bound the Rademacher average. The technique is well-
established and based on the concepts ofcovering number.
Denote byN(u, lH , L2(µ

n)) the u-covering number oflH
with respect to the metricL2(µ

n).

Lemma 3.9. [Dudley, 1999]

EσRnlH ≤ 12√
n

∫ 1

0

√

lnN(u, lH , L2(µn))du. (3.9)

The last piece of the puzzle reveals a bound on
N(u, lH , L2(µ

n))), defined based on the VC dimensiond.

Lemma 3.10. [Haussler, 1995] For allSn:

N(u, lH , L2(µ
n)) ≤ e(d+ 1)

(

2e

u2

)d

. (3.10)

Combining (3.9) and (3.10), with some algebra we obtain
the following result.

Theorem 3.11. (Dudley-Haussler)

l(h) <δ ln(h) + 30

√

d

n
+

√

ln(1/δ)

2n
. (3.11)

The bound (3.11) is based on an analysis of the absolute
discrepancyl(h) − ln(h). Its deviation term isO(

√

d/n),
which should not come as a surprise. It is natural to ask if
this approach can be used to analyze some form of relative
discrepancy between the expected lossl(h) and the empirical
lossln(h). Consider

L̃n = sup

{

l(h) − ln(h)
√

l(h)
: h ∈ H, l(h) > 0

}

. (3.12)

Simple algebra shows that for allh ∈ H, l(h) ≤ (1 +

L̃n)ln(h) + L̃2
n. Consequently, an upper bound onL̃n can be

translated into an upper bound onl(h). Unlike the previous
analysis, it appears that we can not use McDiarmid’s bounded
difference inequality, as the introduction of the term

√

l(h)
renders the “difference” unbounded. The solution to this
problem originates from the work of Talagrand on abstract
concentration inequalities and their applications to bounding
the suprema of empirical processes [Talagrand, 1994, 1996].
Talagrand’s inequalities were later improved using the so-
called entropy method. The following version provides the
best known bound.
Lemma 3.12. [Bousquet, 2002] LetF be a countable set of
functions fromZ to R. Let b = supf∈F (sup(E(f) − f)),
v = supf∈F V(f) andBn = B(Sn) = supf∈F (E(f) −
1
n

∑n
i=1 f(zi)). Then for anyα > 0,

Bn <δ (1 + α)En(Bn) +

√

2v ln(1/δ)

n
+

(

1

3
+

1

α

)

b ln(1/δ)

n
.

We now apply Lemma 3.12 withf(z) = l(h, z))/
√

l(h),
b = v = 1, to obtain

L̃n <δ (1 + α)En(L̃n) +

√

2 ln(1/δ)

n
+

(

1

3
+

1

α

)

ln(1/δ)

n
.

We then proceed to boundEn(L̃n) with a technique from
Massart [2000] that is referred to aspeelingand the concept
of sub-root functions. A functionψ : (0,∞) → (0,∞) is
calledsub-rootif ψ is non-decreasing andψ(r)/

√
r is non-

increasing. Any sub-root functionψ(r) is known to have a
unique fix-pointr∗ (i.e. ψ(r∗) = r∗) [Bartlett et al., 2005].
Now, suppose thatψ is a sub-root function with fixed point
r∗ such that

En (sup{|l(h) − ln(h)| : l(h) ≤ r}) ≤ ψ(r),∀r > 0.

Then we can show that∀α > 0, L̃n is<δ-bounded by

(1+α)

(√
r∗
(

1 +
e

2
(1 + ln(

1

r∗
))

))

+

√

2 ln 1
δ

n
+

(3 + α) ln 1
δ

3αn
.

The final step is to boundr∗ using d. This can be done
[Koltchinskii and Panchenko, 2000] by settingψ(r) to be
Dudley’s entropy integral. What we end up with is a<δ

bound onl(h) that isO(d lnn/n), asymptotically compa-
rable to those obtained using the classical approach such as
Theorem 3.8, albeit with worse constants.

3.3 Summary of VC Dimension-Based Bounds
Given a sampleSn of size n and a hypothesish that has
empirical lossln(h) on Sn, what can we say about the ex-
pected lossl(h) of h? The results in this section provide
several answers to this question. They all have the general
form of “If ln(h) is small, then with high probability,l(h) is
small”. The common assumption is thath is selected from a
hypothesis spaceH with finite VC dimensiond. In the gen-
eral case whenl is only assumed to have range[0, 1], Corol-
lary 3.5 seems most useful. Whenl = l(ρ), ρ = 0, 1, we
can exploit several binomial tail inequalities to obtain much



simpler bounds. Whenln(h) > 0, Corollary 3.6 should be
used. Whenln(h) = 0, Theorem 3.8 provides the best-known
bound. These results are all based on the idea of uniform
convergence ofrelativediscrepancies (UCRD). Even Corol-
lary 3.7 and Theorem 3.8 can be viewed as based on degener-
ate cases of UCRD, with special-purpose combinatorial argu-
ments replacing the general-purpose Hoeffding’s bound. Re-
sults that are based on uniform convergence of absolute dis-
crepancies such as Lemmas 3.1 and Theorem 3.11 are not
as useful for our purpose, as they have to cover situations that
Vapnik and Chervonenkis [1971] refer to aspessimistic cases.
Simply put, pessimistic bounds are loose since they need to
account for hypotheses with expected losses close to0.5. In
contrast, we only need to concern ourselves with hypotheses
with zero or small empirical losses.

The statistical/computational learning theory literature
contains a vast collection of generalization bounds in the gen-
eral case of function learning and in the special case of learn-
ing binary classifiers. To our knowledge no work has explic-
itly derived generalization bounds for binary classifiers with
weighted error penalties as defined in this paper. The bounds
in Section 3.1 originate from the seminal work of Vapnik and
Chervonenkis [1971]. Our contribution here is the extensions
to the caseρ = 0, and Corollary 3.5.

Talagrand’s approach provides a completely different way
to arrive at generalization bounds for all loss function
l(ρ), ρ ∈ [0, 1] that are asymptotically equivalent with clas-
sical bounds. This approach analyzes the mean (or me-
dian [Panchenko, 2002]) of the supremum of the (sometimes
weighted) discrepancies between the expected and empiri-
cal losses using Talagrand’s various concentration inequali-
ties, completed invariably with the symmetrization inequal-
ity, Dudley’s entropy integral bound, and Haussler’s packing
bound. The resulting bounds often have much larger con-
stants and are not as useful for our non-asymptotic purpose.

4 Experiments
We now describe the applications of the bounds derived in
Section 3 to our OAV experiment as described in the introduc-
tion. We identify four factors that affect the computational
time of the iterative algorithm, and choose 4-dimensional
axis-parallel hyper-rectangles as our hypothesis space. The
VC dimension of this hypothesis space is 8, as it is known that
the VC dimension of axis-parallel hyper-rectangles inR

m is
2m. Thus forδ = .05, ǫ = .05, we need 34,000 samples us-
ing Theorem 2.1. But using Theorem 3.8, we need only 1810
samples. With 34,000 samples, if we setδ = .05, ǫ can be as
small as 0.0035. The improvement in generalization bound
(ǫ) is about 14-fold and in samples complexity (n) is about
18-fold.

The search for the best hyper-rectangle in this experiment
is rather simple. For each sampled input, we determine if
the iterative algorithm converges. It turns out that in 32,114
instances (roughly 94%), the algorithm converges. Despite
this high (empirical) rate of success, in current practice it
still loses out to a PID-like controller with fixed deterministic
computation time. Next, we randomly choose an axis-parallel
4-dim hyper-rectangle in the input ranges as a hypothesis. If

the hyper-rectangle contains a sampled point for which the
algorithm does not converge (an unsafe point), then we elim-
inate that hyper-rectangle (since the guarantees are basedon
Theorem 3.8 and require zero false positives). Otherwise, we
count the number of safe points that lie outside the hyper-
rectangle (false negatives), and choose the hyper-rectangle
that has the fewest number of false negatives. After look-
ing at 10,000 random hyper-rectangles, we are able to come
up with one that contains 18,616 safe points and no unsafe
points. This hypothesis thus has 32,114 - 18,616 = 13,498
false negatives. Note that the number of false negatives is still
quite large. This is because we use hyper-rectangles which
constitute a simple hypothesis space that does not approxi-
mate the decision surface very well (this SOE is nevertheless
a big improvement over the trivial, empty SOE that is the
current state of the art). The advantage to this is that the VC
dimension is low, and thus only a small number of samples
are required to obtain the statistical guarantee, which reads
“The found hyper-rectangle has probability of false positive
bounded by0.0035, and we have at least95% confidence in
this statement.”

There are a number of alternatives to the above proce-
dure. For example, we can use Corollary 3.6 instead of The-
orem 3.8, if the requirement of zero empirical loss is too
restrictive. In the OAV example with 34,000 samples, this
leads to a hypothesis with 111 false positives but only 3272
false negatives (a reduction of 75%!) while still maintaining
99% confidence that the probability of false positive is less
than 0.01. Furthermore, we can replace the criterion “as few
false negatives as possible” with other criteria, for example
one that prefers hypotheses with large volumes. Finally, if
we are willing to make a decision-theoretic tradeoff between
false negatives and false positives (e.g. one false positive is as
costly as one thousand false negatives), we can setρ = .001
and apply Corollary 3.5.

5 Summary and Related Work

It has been said that the divide between SLT and practice is
of Grand Canyon proportions, perhaps because VC bounds
are often too loose to be useful in practice. This paper of-
fers a counterargument in the form of an SLT-based approach
to verifying complex controllers. We demonstrated this ap-
proach on a problem of significant industrial and military
interest: Deriving a safe operating envelope for a complex
control algorithm. This approach offers control engineers
a principled way to increasingly replace low-performance,
simple control algorithms with high-performance, complex
ones while still maintaining a statistically high confidence in
safety. A key to making this offer attractive lies in deriv-
ing practical VC-style generalization bounds for weightedbi-
nary classification (a problem that hitherto has not been given
much attention). Our VC analysis, which builds upon stan-
dard VC analysis of unweighted binary classification, shows
that such bounds are indeed possible. They are significantly
better than a general bound by Vapnik. Our analysis precisely
pointed to the place where the false negative penalty had an
effect, namely the symmetrization argument. We have suc-
cessfully applied this verification framework to several other



control applications, to be reported in an extended versionof
this paper. We expect these results to have applications out-
side of the controller verification problem.

From a practical point of view, SLT-based generalization
bounds have been used mostly in the model selection problem
(see e.g. [Bartlettet al., 2002]). Aside from this, they have
also been used in several control systems applications, forex-
ample, in deriving randomized algorithms for robust control
problems whose exact solution is NP-hard, and in the con-
text of system identification [Vidyasagar, 2003, Chapter 11].
Also, machine learning researchers have long recognized the
importance of learning classifiers with general loss function.
The work in this area is generally referred to ascost-sensitive
learning[Turney, 2000].

The bounds derived in Section 3 consist of the empirical
loss and a VC confidence term that is independent of the prob-
ability measureµ and the particular sampleSn. They are thus
necessarily “loose” since they need to hold for “bad” distri-
butions and “bad” samplesSn. Recent research has focused
on data-based measures of hypothesis space complexity such
as Rademacher averages [Koltchinskii, 2001; Bartlettet al.,
2005]. This direction relies on Talagrand’s approach as de-
scribed in Section 3.2. Although this approach yields VC
dimension-based bounds that have worse constants compared
to bounds using the classical approach such as (3.6), it can be
used to derive bounds based entirely on data (i.e.Sn) without
a priori information about the hypothesis spaceH (such as
its VC dimensiond). The following result is an example of
such data-dependent bounds.

Theorem 5.1. [Bartlett et al., 2005, Corollary 6.2] Letl =

l(ρ), ρ = 0, 1. Let the random function̂ψn be defined on
(0,
√

1/2) as

ψ̂n(r) = 20 sup
β∈[

√
2r,1]

βEσRn{z 7→ l(h, z) : ln(h) ≤ 2r

β2
}+26

n
ln

3

δ
.

Thenψ̂n is sub-root with fixed point̂r∗, and for anyα > 0,

l(h) <δ (1 + α)ln(h) + 6
α+ 1

α
r̂∗ +

16α+ 5

αn
ln

3

δ
.

Compared to similar result in Section 3.2, the present one
is completely data-dependent: In the definition ofψ̂n(r), the
bound2r/β2 is on the empirical (as opposed to the expected)
lossln(h), and the empirical Rademacher averageEσRn (as
opposed toERn) is used. Thus in theory we can obtain a
bound without a priori knowledge of the complexity (such as
the VC dimension) of the hypothesis spaceH or of the un-
derlying probability measureµ. However, in practice, com-
puting or estimatinĝψn and its fixed pointr∗ is far from easy,
although Bartlettet al. [2005, Section 6] had made some ini-
tial progress in this direction.
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