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Abstract

This paper proposes a new method to rank the cases
classified by a decision tree. The method applies
a posteriori without modification of the tree and
doesn’t use additional training cases. It consists
in computing the distance of the cases to the deci-
sion boundary induced by the decision tree, and to
rank them according to this geometric score. When
the data are numeric it is very easy to implement
and efficient. The distance-based score is a global
assess, contrary to other methods that evaluate the
score at the level of the leaf. The distance-based

Stephan Bernard ®
(2) Cemagref, LISC
F-63172 Aubiere Cedex, France
stephan.bernard@cemagref.fr

conditional probability estimate at the leaf by some caséc
ratio that shifts the probability toward the prior probéiil

of the class. The raw conditional probability estimate at th
leaf is defined byp"(c|z) = %, wherek is the number of
training cases of the class label classified by the leaf,rand
is the total number of training cases classified by the leaf.
It is the same for all the cases that are classified by a leaf.
The most general type of correction generally used are the
m~estimatep™ (see equation (1)), which uses the prior prob-
ability of the class and a parameter, and the Laplace cor-
rectionp” which is a particular case ofi-correction when

all the C classes have the same priors (§€estnik, 1990;

score gives good results even with pruned tree, so Zadrozny and Elkan, 2001

if the tree is intelligible this property is preserved
with an improved ranking ability. The main reason
for the efficacity of the geometric method is that in
most cases when the classifier is sufficiently accu-
rate, errors are located near the decision boundary.
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The main interest of smoothing methods is that they don’t
modify the structure of the tree. But in order to improve the

. probability estimate, these methods are often applied o un
1 Introduction pruned trees (sel@rovost and Domingos, 201)3so the in-
Decision Trees (DT) are a very popular classification toel be telligibility of the model is very much reduced, althouglisit
cause they are easy to build and they provide an intelligibl®ne of the main interest of decision trees compared to other
model of the data, contrary to other learning methods. Thelassifiers (like Naive Bayes, Neural Networks for instgnce
need for intelligibility is very important in artificial imtli- Ensemble methods like bagging are also used successfully to
gence for applications that are not fully automatic, if ther rank cases, although the margin is agiriori an estimate of

is an interaction with the end-user, expert or not. This isthe class membership. Nevertheless, ensemble methods loos
the reason why DT algorithm are widely used for classifica-also the intelligibility of the model.

tion purpose (see Murthy199¢ for examples of real world The method we propose here aims firstly at preserving the
applications). But for some applications knowing the classgntelligibility of the model, so the objective is to improtee

of each case is not sufficient to make a decision, one needanking without modifying the tree itself. This method is
to compare the cases to one another in order to select themsed on the computation of the distance of the cases from
most promising examples. This is often the case in marketinghe decision boundary (the boundary of the inverse image of
applications, allocation of resources or of grants, etee(S the different classes in the input space), when it is possibl
[Zzadrozny and Elkan, 200or a description of the chari- to define a metric on the input space. The distance of a case
table donation problem). The traditional idea in this case i from the decision boundary defines a score that is specific to
to look for the probability of each case to belong to the pre-each case, unlike other methods for which the score is de-
dicted class, rather than just the class. The cases are théned at the level of the leaf and so it is shared by all cases
ranked according to the probability-based score. Unfortuclassified by the same leaf. In other geometric methods, like
nately, methods that are highly suitable for probabiliti-es Support Vector Machine (SVM) it has been proved that the
mate produces generally unintelligible models. This is thedistance to the decision boundary can be used to estimate the
reason why some recent works aim at improving decision treg@osterior probabilities (see Plaf200d for the details in the
probability estimate. Smoothing methods are particulerly two-class problem): an additional database is needed &rord
teresting for that purpose. They consist in replacing the ra to calibrate the probabilities. But since in many applicas



Size of AN N estimator at the leaf, without modification of the tree struc

Database dataset  (UT-PT) (uT) ture. This method improves significantly the class proligbil
bupa 345 1958068 3052055 gst_imates. But the p_ractice_1| use of kernel dgnsity estimato
glass 214 2980.16 6.25.0.15 !|m|ted to very low Q|menS|or], and t'he setting of parameters
ionosphere 351 5.220.25 11.08-0.2 is not easy. Kohavi[1996 builds Naive Bayes classifiers at
iris 151  1.49-0.12 4.94-0.11 the level of the leaf, using its own induction algorithm. The
letter 20000 31.740.76 61.18-0.58 objective of the tree partition is not to separate the ckabsé
newThyroid 215  2.9%0.19  7.25:0.13 to segment the data so that the conditional independence as-
optdigits 5620  9.140.35 19.3%:0.3 sumption is better verified. The size of the tree is limited to
pendigits 10992 8.94#0.35 23.330.3 cover each leaf with enough data. In our experiment the size
pima 768 3288111  47.2:0.96 of the Naive Bayes Trees (NBT) is comparable to the size of
zgt mentati 6423150 13;%'1'2 zj'gé&tg'gé the pruned trees (but the segmentation of the space is com-
9 ana : : pletely different). With different objectives and struas,
sonar 208 6.380.24 11.36:0.15 - - .
vehicle 846 8.040.29 18.16-0.25 the interpretation of DT and NBT cannot compare easny.
vowel 990 2.580.19 8.56-0.14 Other methods try to correct the probability estimate at
wdbc 569 5.160.23 10.03-0.18 each nodes by propagating a case through the different pos-
wine 178  1.430.10 4.22-0.09 sible path from each node. These methods, like fuzzy trees

[Umanoet al., 1994, fuzzy split[Quinlan, 1993 or more
Table 1: Comparison of the size of pruned (PT) and uncollapsedrecently[Ling and Yan, 200B deal with a different issue:
unpruned (UT) trees: Mean and standard deviation of the differencélanaging the uncertainty in the input case and in the train-
of the number of leaved’ over 100 resamples. ing database. Generally the computation of the probability
estimate is very complex and in some cases difficult to under-
stand: a lot of nodes can be involved, although non-convex
tgrea of the input space corresponding to one class can be di-
vided arbitrarily into several leaves. So from the pointiefw
npf intelligibility these methods are not totally convingin
We propose here to keep the structure of the pruned tree
but to rank the cases accordingly to their distance from the
gecision boundary which is defined by the tree.

we don't need the exact posterior probability, it is gerlgral
possible to use directly the score induced by the distance
rank and to select the most interesting cases.

The paper is organized as follow: Section 2 examines fro
the intelligibility viewpoint the methods applied to deicis
trees to rank cases or to estimate posterior probabilies:
tion 3 presents our method for obtaining a distance-base
score, and it explains why it is interesting from a theoreti- . . .
cal point of view. Section 4 presents the experimental re3 ~Distance ranking methods for decision trees
sults which have been drawn from the numerical databases fle consider here axis-parallel DT (ADT) operating on nu-
the UCI repository, in comparison with the results obtainedmerical data: Each test of the tree involves a unique attibu
from the smoothing methods applied on the same databasesle notel the decision boundary induced by the tr€econ-

We make further comments about geometric score and hybrigists of several pieces of hyperplanes which are normal to

method in the concluding section. axes.
We consider a multi-class problem, with a class of interest
2 Decision Tree methods for ranking: the c (the positive class). Let be a case¢(r) the class label
intelligibility viewpoint assigned ta: by the treed = d(z,I") the distance of from

the decision boundarly. We use the distance of an example

The success of Decision Trees as classification method is ffom the decision boundary to define its geometric score.
a good part due to the intelligibility of the model produced

by the algorithms. Pruning methofBreimanet al, 1984; 3.1 Global and local geometric ranking
Bradley and Lovell, 1995; Espositet al, 1997 produce Definition 1 Geometric score
shorter trees with at least the same performance than longer the geometric scorg(z) of = is the distance af from the

trees, since the generalization performance are enhancegkcision boundary if(z) = ¢ and its opposite otherwise.
They also produce shorter tree on purpose, seeking for a com-

promise between accuracy (or other performance critenia) a d(z,T) if ¢(x) is the positive class
the size of the tree. Table 1 shows that unpruned trees can 9(z) = {—d(x I') otherwise

be very large compared to pruned trees with similar accuracy ’

(the mean absolute difference over the databases is 0.38% afheorem 1 Global geometric ranking

itis always less than 2.3%). Because of this size probleis, it  The geometric score induce a quasi-orderover the ex-
desirable to improve the probability estimate given by BiT, i amples classified by the tree.

order to allow a compromise between size and ranking ability . .

With smoothing methods the probability estimate is the vz y < g(@) = g(y) (3)
same for all the examples classified by a leaf. In order tadCases are ranked in decreasing order relatively to the geome
produce more specific probability estimates, other methodsdc score. The most promising cases have the highest geomet-
learn directly the probability class membership at the.leafric score, which means that their predicted class is theipesi
For instance[Smythet al, 1999 use kernel-based density one and that they are far from the decision boundary.

)



With the geometric score, examples are ranked individupositive examples is plotted against the ratio of all othegf
ally, not leaf by leaf. ative) examples as the score varies. With methods that give

The geometric score is specific to each example, so it isonstant probability estimates at the leaf, the points & p
also possible to first rank the leaves with a smoothing methoted from one leaf to another. The affine interpolation betwee
(or an equivalent method that ranks the leaves, not the casesonsecutive points assumes that examples are selected ran-
and then to rank the cases inside a leaf. domly inside a leaf (or a set of leaves with the same score). If
we use a ROC curve to visualize the ranking, geometric rank-
ing will be very good at the beginning of the curve, as seen in
Figure 1.

Theorem 2 Local geometric ranking
The geometric score induce a quasi-order over the ex-
amples classified by a leaf.

plelz) > p(ely) @ -
p(cle) = plely) andg(x) > g(y).  ~° | A

o
o
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With the local geometric score, the leaves are ranked ac-
cording to the probability estimate, then inside each leaf (
inside each group of leaves with the same output probability |

ranking method

L —— Y )

estimate), examples are ranked according to their geametri £ T resimate
score. % = local geometric N N .
The distance of a caseto the decision boundary is com- <] i gemslgeomerte
puted with the algorithm described[ialvarez, 2004. It con- ° E
sists in projectinge onto all the leaveg which class label !
differs frome(z). The nearest projection gives the distance. ol 44
e |
Algorithm 1 distanceFrom(x,DT) |
0.d = oo; |
1. Gather the sef’ of leavesf which class:(f) # ¢(z); s T e 1o 015 020 025
2. For eachf € F do: { negaive atio
i ggmga:g; g% _ zzcggje;p&r;g).ntoLeaf(,f), Figure 1: ROC curves of different ranking method (WD Breast-
5 if (4 (x) < d) thend ’: df(x)’} Cancer sar_nple). The local geometric ranking curve intersects the
basicm-estimate curve at leaf points.
6. Returnd = d(«,T")
Algorithm 2 projectionOntoLeaf(x,f = (T})icr) Since D_T.algorithms are generally design'ed to maximize
1.y=x accuracy, it is not unreasonable to hypothesize that elieors
2. Fori = 1 to size() do: { near_the decision boundary. Ir) a very |dgal_case, it is even
3. if y doesn't verify the tesE; theny, = b} possible to_demonstrgte that th|§ hypothesis is true.
whereT; involves attribute: with threshold valué A DT builds a partition in the input space. In a two class
4. Returny problem, it is possible to associate to a DT a unique function

o _ ) ) fg : E — {0,1} such thay(z) is the predicted class of (But

The projection onto a leaf is straightforward in the case Ofseveral decision trees are associated to the same function)

ADT since the area classified by a lgfs a hyper-rectangle e consider an ideal case of statistical decision, where the

defined by its tests. The complexity of the algorithm is ingint distribution P of observations would be uniform on the

O(Nn) in the worst case whgrb’ is the number of tests of graph of the indicator functioyi of a setS in E = [0, 1]*. We

the tree anck the number of different attributes of the tree. 3|59 suppose that the size of all the maximal hypercubss in

. . . and F\S has a lower bound > 0 (to prevent pathological

3.2 Theoretical viewpoint situation for.S and its boundary). In this case, decision trees

We expect geometric ranking to give interesting resultsrwhe built on samples drawn fron? can approaclf as closely as

errors occur near the decision. wanted if the size of the sample can grow indefinitely. For
If this property is verified, positive cases (cases whichsla this particular case of functiofi, errors are located near the

is the class of interest) that are not recognized have nvegati decision boundary.

geometric score but with a small absolute value. False posrheorem 3 Proximity of errors. For a DT which associated
itive, that is negative cases classified as positive have alsfynctiong is close enough tg, errors are near the decision
small (but positive) geometric score. On the contrary, trugyoundarydg of g.

positive have higher geometric score and true negative have ¢ \va noteA the area wheref — ¢ # 0 (set of errors),A

negative geometric score wit_h high absolute value. So i”de_the interior of A, and if we consider small enough so that
pendently from the score estimated at the leaf, the geatnetri

score tends to bring side by side false negative and false pog <V, we have:

itive, and to repel true positive and true negative. Thislzan

seen on a Receiver Operating Characteristic (ROC) curve (in (/ If —g| <eandz € A) = d(z,09) < a, e . (5)
the way described iPAdams and Hand, 199p The ratio of E



Proof. Let z be in 4, we considerB(z, g) the maximal In this case the geometric score cannot be good. So we expect
hypercube centered at in its connected component. The the geometric score to be better with more accurate trees.
volume of B is included intof,, | f — g, so we haved" < )

e < v™. So the size o3 is smaller thans andd < /e. The 4 Experimental Results

boundary ofB, 9B, encounters the decision boundaryfof 4.1 Experimental Design

g on at least two meeting points of two different hyperplanes
since B is maximal. If f is not constant o3, then botho f
anddg crossB, and so necessarity(x, dg) < g\/ﬁ If fis
constant onB, since the size oB is smaller tharv, at least

We have studied the geometric ranking on the database of the
UCI repository[Blake and Merz, 1998that have numerical
attributes only and no missing values. We are not directly
one of e meeting potliesa (atenvie he sze lr _ SCTCETIEA T 1S S iy e pren of e prevaence of
would be smgller than thi lower t\)%und of the maximal balls), ..~ applies on the grown tree. So we didn't pay any par-
So once agaid(z, dg) < 5v/n < 3= {/e. o o ticular attention to the relative frequency of the classethe
_Even if real conditions are very far from this ideal casegatasets. We chose as positive class either the class \with th
(in first place, generally doesn't exist), we can test if the |5yest frequency in the database, either a class which gbup
hypothesis of proximity of errors is generally verified. Tab  {ggether several classes when it was more logical. When the
2 shows the mean of the difference of the mean distance Qfjasses were equiprobable and with no particular meaning
correctly classified cases (hits) and errors from the detisi \ye chose it randomly. Although there is a lot of work on
boundary. We also computed for each sampléhe inverse e analysis of multi-class problem, for simplicity we have

deviation of the distance of correctly classified exampiesif For each database, we divided 100 bootstrap samples into
the decision boundary, antl ando. the same magnitude for separate training and test sets in the proportion 2/3 1/3, re
error examples. specting the prior of the classes (estimated by their freque
A\ = dp — de (6) in the total database). Even if it is not the best way to build
\oi+o? accurate trees for unbalanced dataset or different ersisco

here we are not interested in building the most accurate or
efficient tree, we just want to study the effect of geometric
ranking on pruned trees. For the same reason we grow trees
with the default options of j48 (WekafWitten and Frank,
200d implementation of C4.5) although in many cases dif-
ferent options would build better trees. For unpruned trees
e disabled the collapsing function.

We used Laplace correction and m-estimate smoothing
methods to correct the raw probability estimate at the leaf
for reduced-error pruned tree and normal pruned tree. The

Table 2 shows the percentage of the samples for whigh2,
which is the97.5% confidence coefficient under the normal
assumption (the test is unilateral). We can see that errers a
closer from the decision boundary for a majority of database
Datasets for which this property is not verified have gemeral
a low mean accuracy2% for bupa and;9% for sonar). If
we consider only the samples for which the accuracy is bett
than70%, the proportion shifts ta9% and50% respectively.

A ofthe % of samples value ofm was chosen such that x p(c) = 10 wherep(c)
Database means A with A > 2 is the prior probability of the class of interest (as sugeg @t
bupa 0.0020.002  0.86+0.12 17 [Zadrozny and Elkan, 200
glass 0.0380.011  2.280.34 51 We used two different metrics in order to compute the dis-
ionosphere  0.03%0.006  1.36+0.19 35 tance from the decision boundary, the Min-Max (MM) metric
iris 0.092£0.003 ~ 5.34:0.28 95 and the standard (s) metric. Both metrics are defined with the
ge‘t’(‘;iﬂ:gmd 8-32%8-88; 22-‘;%2-1‘51 1(93%) basic information available on the data: An estimate of the
pgndiqgits 03320005 246124 100 range of each attributéor an estimate of its meah; and

of its standard deviation;. The new coordinate system is

ima 0.036:0.001 4.150.15 94 )
ot 0.135:0.005 12.59:0.56 100 defined by (7).
segment. 0.18£0.005  7.280.2 98 vy T — Min; s T —E .
sonar 0.0220.003  1.44+0.14 34 Vi T Maw = Min, O YT T4 ™
xgwglle g 'glzgttg'ggg 1@'?&8'3‘2 1?)5(; The parameters of the metric are estimated on each sample.
wdbe 0.113-0.002 10.24-0.29 100 The choice of the metric has a very limited effect on the geo-
wine 0.152-0.004  6.73-0.39 97.7 metric score; If we measure the difference between the Area

Under the ROC curve (AUC) , for each database, it is always

Table 2: Comparison of the mean distance of errors and hits to thd€ss thar2 102 + 9 10~*, except for the thyroid and vehicle
decision boundary, over the test bases of 100 samples per databag&tabases (less tham0~2) and the glass databagei10—3).

The mean of the difference is estimated for each sample. (Bad re: . . .
sults are bold) ple. 4.2 Comparison between distance-based ranking

and smoothing methods

A corollary of theorem 3 is that if a tree is not accurate, er-The geometric score is only used to rank the examples with-
rors may lie everywhere, not only near the decision boundaryout changing the tree structure. It is not used to estimate th



Red.-Error  Normal No Reduced-error Normal

Dataset pruning pruning pruning NBTree Dataset pruning pruning Unpruned
bupa 0.46:0.48 -0.14-0.47 -0.82£0.50 0.08+0.79 bupa 1.750.23 0.88-0.09 0.69:0.09
glass 1.780.72 -0.39+0.75-1.87+0.73 -2.04-0.83 glass 4.210.44 3.3%:0.34 2.610.31
iono. -1.11+04 -2.30t0.4 -2.85:0.42 -5.14t 0.72 iono 0.04+0.29 0.51+0.17 0.49-0.18
iris 4.69-0.40 3.850.35 3.6740.37 1.56-0.43 iris 3.71£0.25 3.310.26 2.92£0.25
letter  0.180.09 0.3#0.07-0.26+0.05 0.40+0.12 letter 0.19-0.09 0.36:0.07 0.13:0.02
thyroid 4.48:0.43 3.08:0.38 2.54t0.38-2.13+-0.62 thyroid 3.62£0.39 2.76:0.29 2.330.27
optdig. 0.53:t0.08 0.34:-0.06 0.07+0.06 -0.12-0.06 optd. 0.67-0.06 0.43-0.04 0.27%0.03
pendig. 0.46-0.04 0.46:0.03 0.28:-0.03 0.58:0.05 pend. 0.340.03 0.28-0.02 0.26:0.02
pima 1.34:0.43 -0.98+0.25-1.070.30 2.25+0.55 pima 2.59-0.26 0.824-0.07 0.55:0.05
sat 1.0%0.09 0.8%:0.07 0.46:0.05 0.97%0.09 sat 1.09:-0.08 0.8%:0.06 0.45-0.04
segment. 8.160.75 5.274-0.63 5.3140.64 3.25:0.61 segment.  7.780.72 4.83:-0.54 4.34:0.49
sonar  2.550.47 1.99-0.51 1.8@:0.49-5.01+1.03 sonar 3.02:0.29 2.81#0.21 2.7@:0.2
vehicle 0.35:0.16 0.64-0.14-0.12+0.16 0.78+0.30 vehicle 0.530.09 0.60:0.07 0.49:0.05
vowel 4.18:0.34 3.09:0.29 2.83t0.26 0.78+0.44 vowel 3.83t0.3 2.85:0.26 2.56t0.23
wdbc  3.75:0.24 2.24:0.18 2.15:0.18 2.09:0.22 wdbc 3.75:0.22 2.14:0.14 2.04:0.14
wine 5.35t0.45 3.32-0.30 2.91-0.30-0.06+0.25 wine 5.140.4 3.14:0.26 2.8@:0.24

Table 3:Absolute difference of the AUC between global geometric Table 4: Absolute difference of the AUC between local geometric
ranking with standard metric and smoothing methods at the leaf. Theanking with standard metric and the best smoothing method. (All
last column shows the difference between global geometric rankingnean values and standard deviations:ai€0. Insignificant values
on Red.-error pruning tree with NBTree. (All mean values and stanare italic. There is no bad value.)
dard deviations are 100. Insignificant values are italic. Bad results
are bold)

experiment partially confirms the theoretical viewpoinh€o

] - ) cerning the fact that geometric score gives interestinglies
posterior probability of an example, so the appropriate-meayhen misclassified examples are near the decision bound-
sure of performance in that case is the AUC. Table 3 showgry, This is particularly true for the bupa (liver-disorier
the difference between global geometric ranking and Laplacand ionosphere databases. Table 2 shows that these datasets
or m-estimate correction at leaf. doesn't verify the hypothesis of proximity of errors on a ma-

Apart from a few cases, global geometric ranking givesjority of samples, and actually the global geometric scive g
better values than either Laplace or m-estimate correctioRgd results for these datasets.

atively small (from0.004 to 0.08), but since they are ab- \hen the accuracy of the tree is better, the experiment is not
solute values the improvement can be important. We havgonclusive. If we compute Table 3 and Table 4 for a subset
also shown the difference of the AUC between global geouf the samples, the best quartile for tree accuracy, theatjlob
metric ranking on reduced-error pruned tree and NBTree. gepmetric ranking is not improved (results are not signifi-

~ Table 4 shows the difference between local geometric rankcant). But local geometric ranking gives always betterltesu

ing and smoothing correction at leaf. Local geometric rankthan on the total sample, except on the glass and ionosphere
ing is always better (with 85% confidence coefficent) than database (for which the hypothesis of proximity of errors is

smoothing method alone, except in one case which is not sighot much improved on the subset of the samples).
nificant. But like for global ranking, the improvement can

vary a lot (absolute value fro002 to 0.078). .
As we said in the theoretical viewpoint section, we expect5 Conclusion
geometric ranking to outperform smoothing method at the beWe have presented in this article a geometric method to rank
ginning of the ROC curve. To measure the relative behaviocases that are classified by a decision tree. It applies ty eve
of ROC curves for increasing value of the negative ratio, weaxis-parallel tree that classifies examples with numeatal
have computedlUC(z), 0 < = < 0.5, the integral func- tributes. We were not concerned here with the problem of
tion of the ROC curve, with 8.001 step value, for the global growing the tree (problem with unbalanced datasets or dif-
geometric scoreg) and the smoothing correctios)( Ta-  ferent misclassification costs which lead to pre-processin
ble 5 shows for normal pruned trees theshows the maximurthe data or new pruning methods). The geometric method
absisse value such thatdUCy(y) > AUC,(y) with a con-  doesn’t depend on the type of splitting or pruning critehniatt
fidence coefficient of 0.95 (under the normal assumption) fois used to build the tree. It only depends on the shape of de-
everyy < zx. For all smaller values of the negative ratio, the cision boundary induced by the tree. It consists in ranking
global geometric ranking outperforms the other method (inthe case according to their distance to the decision boyndar
term of AUC). taking into account the class of interest and the class ¢hat i
We can see in Table 5 that for most bases, the globgbredicted by the decision tree. Theoretical argumentsestgg
geometric ranking methods is rather efficient at the beginthat this method is interesting when the misclassified exam-
ning of the ROC curve, even when on the total range it perples lie near the decision boundary, and this was partialty ¢
forms badly (like for the Pima database, see Table 3). Théirmed by the experimentation. The combination of geomet-



MM metric Standard metric [Breimanet al, 1984 L. Breiman, J. H. Friedman, R. A. OI-

Dataset m-estimate Laplace m-estimate Laplace shen, and C. J. Ston€lassification and Regression Trees
bupa 0.001  0.001 0.001  0.001 Wadsworth, Belmont, 1984.

glass 0.1 0.1 0.05 0.05 [Cestnik, 199D B. Cestnik. Estimating probabilities: A cru-
iono 0.02 0.02 0.02 0.02 cial task in machine learning. Iroceedings of the Euro-
iris >05 >05 205 =05 pean Conference on Atrtificial Intelligengeages 147-149,
thyroid >0.5 > 0.5 >0.5 >0.5 1990.

optdigits 0.01 0.01 0.01 0.01 ] .

pendigits >05 >05 >05 >05 [Espositcet al,, 1997 F. Esposito, D. Malerba, and G. Se-
pima 0.02 0.35 0.03 0.37 meraro. A comparative analysis of methods for pruning
sat >05 >05 >05 >05 decision treeslEEE Transactions on Pattern Analysis and
segment. >0.5 >0.5 >0.5 >0.5 Machine Intelligencel9(5):476-491, 1997.

\S/gﬂﬁ:rle Eg:g Eg:g 58:2 58:2 [Kohavi, 1996 Ron Kohavi. Scaling up the accuracy of
vowel >05 >05 >05 >05 naive-bayes classifiers: a decision-tree hybridProceed-
wdbc > 05 > 0.5 > 0.5 > 05 ings of the Second International Conference on Knowl-
wine >05 >05 >05 >05 edge Discovery and Data Miningages 202—207, 1996.

_ _ _ _ [Ling and Yan, 200B C. X. Ling and R. J. Yan. Decision tree

Table 5:Abscissa below which the global geometric ranking AUC with better ranking. IrProceedings of the 20th Interna-

Is always greater. (Bad results are bold). tional Conference on Machine Learningages 480-487,
2003.

ric ranking and smoothing methods almost always improvgpurthy, 199§ S.K. Murthy. A automatic construction of
the global ranking (measured with the AUC). Differentkind = gecision trees from data: A multi-disciplinary survey.

of experiment should be performed in order to compare geo- pata Mining and Knowledge Discovery(4):345-389,
metric ranling (and particularly local geometric rankirg) 1998.

NBTree or other algorithm: since the structure of the tree
are different, the choice of pruning method can be importan
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