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Abstract

We present the first tractablexactsolution for

the problem of identifying actions’ effects in
partially observable STRIPS domains. Our al-
gorithms resemble Version Spaces and Logical
Filtering, and they identify all the models that
are consistent with observations. They apply in
other deterministic domains (e.g., with condi-
tional effects), but are inexact (may return false
positives) or inefficient (we could not bound
the representation size). Our experiments ver-
ify the theoretical guarantees, and show that
we learn STRIPS actions efficiently, with time
that is significantly better than approaches for
HMMs and Reinforcement Learning (which
are inexact). Our results are especially surpris-
ing because of the inherent intractability of the
general deterministic case. These results have
been applied to an autonomous agent in a vir-
tual world, facilitating decision making, diag-
nosis, and exploration.

Introduction

This paper presents an approach caied\F (Simul-
taneous Learning and Filtering) for exact learning of ac-
tion’s effects and preconditions in partially observable
deterministic domains. This approach determines a set of
possible transition relations, given a sequence of actions
and partial observations. It anling and updates a log-
ical formula that models the possible transition relations
and world states with every time step. It finds exactly
those transition relations when actions are STRIPS (i.e.,
no conditional effects) or they map states 1:1.

Our algorithms take polynomial time in the nhumber of
features,n, and the number of time steps, for many
cases. Their exact complexity varies with properties of
the domain. For example, the overall time for learning
STRIPS actions’ effects i©(T" - n). For other cases the
update per time step takes linear time in the representa-
tion size. We can bound this size Byn*) if we approx-
imate the representation withkaCNF formula, yielding
an overall time ofO(T - n*) for the entire algorithm.

Our experiments verify these theoretical results and
show that our algorithms are faster and better qualita-
tively than related approaches. For example, we can
learn STRIPS actions’ effects in domains>efl100 fea-
turesexactly In contrast, work on learning in Dynamic

Autonomous agents have limited prior knowledge of Bayesian Networks (e.glBoyenet al, 1999), rein-
their actions’ preconditions and effects when they ex-forcement learning in POMDPs (e.gLittman, 1996),
plore new domains. They can act intelligently if they ad Inductive Logic Programming (ILP) (e.dWang,
learn how actions affect the world and use this knowl-1993) either approximate the solution with unbounded
edge to respond to their goals. This is important wherf!T0r for deterministic domains, or take tinfg(2"")
their goals change because then they can reason abddfus; are inapplicable in domains larger thin fea-
their actions instead of trying them in the world. tures). Section 7 provides a comparison with these and
Learning actions’ effects and preconditions is difficult Other works.
in partially observable domains. The world state is not Our technical advance for deterministic domains is im-
known completely, actions’ effects mix with each other, portant for many applications such as automatic software
and it is hard to associate change in one feature withnterfaces, internet agents, virtual worlds, and games.
a specific action or situation. Thus, it is not surprising Other applications, such as robotics, human-computer
that work so far has been limited to fully observable do-interfaces, and program and machine diagnosis can use
mains (e.g.[Wang, 1995; Pasulet al, 2004) and to  deterministic models as approximations. Finally, under-
hill-climbing (EM) approaches that have unbounded er-standing the deterministic case better can help us develop
ror in deterministic domains (e.gGhahramani, 2001; better results for stochastic domains.
Boyenet al., 1999). In the following, Section 2 defines SLAF precisely,



Section 3 provides a deduction-based exact SLAF al- West (East West (East
gorithm, Section 4 presents tractable model-update al- Y

gorithms, Section 5 gives sufficient conditions and al- g off m off ?g\\ on m on
gorithms for keeping the model representation compact : = :
(thus, overall polynomial time), and Section 6 presents s2=—"SWA -lit AE  sw-on  s2"=swAlit AE
experimental results. o R——— | sl RLs
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2 SLAF Semantics A I, \E:%

We define our SLAF problem with the following formal
tools, borrowing intuitions from work on Bayesian learn- Figure 1:Top Two rooms and flipping the light switch.
ing of Hidden Markov Models (HMMs]Ghahramani, Bottom SLAF semantics; progressing an action (the ar-
2001 and Logical Filterind Amir and Russell, 2003 rows map state-transition pairs) and then filtering with an
A transition systenis a tuple(P, S, A, R), where observation (crossing out some pairs).
e P is afinite set of propositional fluents;
S C Pow(P) is the set of world states;
o Ais afinite set of actions; Step 1 iprogression with:, and Step Ziltering with o.

e RC S x A x Sisthe transition relation. ) )
Thus, aworld state s € S, is a subset oP that contains We assume that observations (and observation model

propositions true in this state, at(s, a, s') means that relating observations to state fluents) are given to us as
states’ is a possible result of actiom in states. Our  logical sentences over fluents after performing an action.
goal in this paper is to find, given knowrP, S, A, and  They are denoted with. When actions can be inexe-

a sequence of actions and partial observations (logicafutable or may fail, itis useful to assume ti#atontains

sentences on any subset. a special boolean fluer® K, whose value is the success
A transition belief statés a set of tupless, R) where  Of the last action attempted. _ _
sis a state andk a transition relation. L&k = Pow(S x Transition belief statep generalizes version spaces

A x S) be the set of all possible transition relations on (€.9-,[Wang, 1999) as follows: If the current state,
S, A. Let& = S x RR. When we hold a transition belief 1S known, th(_an the version space’s lattice contains the
statep C & we consider every tuplés, R) € p possible.  Set of transition relationg® = {R | (s,R) € p}. It

For example, consider the situation presented in Figalso generalizes belief states: If the transition relation
ure 1. There, we have two rooms, a light bulb, a switch, 2 iS known, then the belief state (set of possible states)
an action of flipping the switch, and an observatiégh, 1S #" = {s | (s,R) € p} (readp restricted toR), and
(we are in the east room). The real states of the worldLogical Filtering[Amir and Russell, 2003f belief state
52, 52 (shown in the top part), are unknown to us. o and actioru is equal to (thus, we define it as)

The bottom part of Figure 1 demonstrates how our . _ R
knowledge evolves after performing the action sw-on. Filterla](o) = (SLAF[a]({{s, B) | s € o}))".
p1, p2 are our respective transition belief states. pin . .
we know that the possible world states ate s1, or 3 SLAF via Logical Inference

SR§3(St1h, s?; aée aer(t:)ti'trgr)t/r;fr'ltqosntarteelgijovr\:itRQ! R:c#eaned Learning transition models using Definition 2.1 directly
: Il respectiv st lonz 1S ' is intractable because it takes spd@@Q‘m) in many

sulting transition belief state after action sw-on. Action O ; -

sw-on takes state2 to s2’ according to transition rela- C2S€S- Instead, in this section we represent transition be-

tion R2, so (s2/, R2) is a pairp.. Similarly, it takes lief states more cqmpactly (sometimes) u§|ng_log|c, and
' ’ ' compute SLAF using general purpose logical inference.

statesl to one ofsl’, s1” according to transition rela- Wi h terministict " lati
tion R1, and it takess3 to s3’ according toR3. Thus, e represent evergieterministictransition relation,

(s1', R1), (s1”, R1), (s3', R3) are in pairps. Finally, R, Wlth a languagel, of prqposmonsag whose'me?n-
observing eliminates the paifs3’, R3) from p,, if £ NG S “If G holds, thens” will hold after executing:”.
is false ins3’. We havea, € L for every actiona € A, F' a literal
(possibly negated proposition) frgf, andG a complete
Definition 2.1 (SLAF Semantics)Letp C G be atran-  term overP (a conjunction of literals fromP such that
sition belief state. Th&LAF of p with actions and ob- every fluent appears exactly once). We ¢aJig the sets

servations(a;, 0;), < ;, is defined by of effects, F, and preconditions7, respectively. Thus,
1. SLAF[a](p) = we have2!”! . 2P| - | A| new propositional variables (in
{(s,R) | (s,a,s") € R, (s,R) € p}; Section 5 we decrease this number).
2. SLAF[o](p) = {(s,R) € p| oistrueins}; Define pg, the logical theory that represenig by
3. SLAF((a,05),2,4) (p) = o ={al € L|Ws,0,5) € R, s|= G = o |= F}
[

SLAF((aj,05);j< J(SLAF[o;](SLAFai)(p))).  andyr =% U{~ag | ag; € L\ ¢}



Some intuitive properties hold for this representation.4  Efficient Model Update

pr is a complete theory for everig (a sentence or its
negation is always implied fronpg). Also, pr E
—al, & alf, foreveryF € F,G €g.

Thus, for every transition belief stajewe can de-
fine a theory inC(L U P) that corresponds to itp, =
v(s,R)Gp(S A pr). Similarly, for every theoryy in

L(L U P) we define a transition belief state, =
{{(s,R) | s € S, shyr = ¢}, i.e., all the state-transition
pairs that satisfyp. We say that theory is atransition
belief formulaif o, = ¢ (note:p,,, = p always holds).

For a deterministic (possibly conditional) actiom,
define the effect model af for time¢ to be

Teﬁ(G,,t) = /\le}—yceg((at A alG A Gt) = lt+1) A\

Nier(ir Aae = (Vgeglag A Gr))) o

wherea; asserts that actiomoccurred at time, and we
use the convention that, is the result of adding sub-
scriptt to every fluent symbol op. The first part of (1)
says that ifa executes at time, and it cause$ whenG
holds, and& holds at timet, then! holds at timet + 1.
The second part says thatliholds aftera’s execution,
then it must be that., holds, withG corresponding to
the current state. These two parts correspondffiect
axiomsandexplanation closure axiomssed in Situation
Calculus.

Learning world models is easier when SLAF distributes
over logical connectives. The computation becomes
tractable, with the bottleneck being the time to compute
SLAF for each part separately. In this section we ex-
amine when such distribution is possible, and present a
linear-time algorithm that gives an exact solution in those
cases (and a weaker transition belief formula otherwise).
Distribution properties that always hold for SLAF fol-
low from set theoretical considerations and Theorem 3.1:

Corollary 4.1 For ¢, transition belief formulaeg ac-
tion,

SLAF[a](p V) =SLAF[a](¢) V SLAF[a)(¥)

E SLAFa](p AN) = SLAF[a](¢) AN SLAF[a](¥)

Stronger distribution properties hold for SLAF when-
ever they hold for Logical Filtering.

Theorem 4.2 Let py,p, be transition belief states.
SLAFIal(py Nps) = SLAF]a](p1 N ps) iff for everyR
Filter[a](pF N pL) = Filter[a](pf) N Filter[a)(pk).
We conclude the following corollary from Theorems
3.1, 4.2 and theorems [Amir and Russell, 2003
Corollary 4.3 For ¢, 1 transition belief formulaeg ac-
tion, SLAF[a)(oA¢) = SLAF[a](¢) NSLAF[a](¢) if
for every relationR? in p,p,, one of the following holds:
1. a in R maps states 1:1

Now, we are ready to describe our zeroth-level algo- 2. ¢ has no conditional effects (and we know if it fails),

rithm (SLAF;) for SLAF of a transition belief formula.
Denote byCn" (¢) the set of consequencesywthat are
in vocabularyV, and letL;,; = Py;1 U L the vocab-
ulary that includes only fluents of time+ 1 and effect
propositions fromL. At time ¢ we apply progression for

andy A 1 includes all its prime implicates.
3. The state is known fdk: for at mostones, (s, R) €
Pp U Py
Figure 2 presents Procedure Factored-SLAF, which
computes SLAF exactly when the conditions of Corol-

the given actioru and current transition belief formula, lary 4.3 hold. Consequently, Factored-SLAF returns an
¢+, and then apply filtering with the current observations: gy 3¢t solution whenever our actions are known to be 1:1.

1. SLAFQ[G](@t) = CTLLt‘H (gOt A Q¢ A Teff(a, t))
2. SLAFy[0](pr) = ¢t N oy

If our actions have no conditional effects and their suc-
cess/failure is observed, then a modified Factored-SLAF

( v . . i :
We can implemenn” () using consequence find- 4n solve this problem exactly too (see Section 5).

ing algorithms, such as resolution and some of its vari-

ants (e.g.[Simon and del Val, 20Q). The following

If we pre-compute (and cache) ta possible re-
sponses of Literal-SLAF, then every time stem this

theorem shows that this formula-SLAF algorithm is cor- procedure requires linear time in the representation size

rect and exact.
Theorem 3.1 For ¢ transition belief formulag action,

SLAF[a]({(s,R) € & (s, R) satisfiesp}) =
{(s,R) € & (s, R) satisfiesSLAFy[a](¢)}

Our zeroth-level algorithm may enable more compact

of ¢4, our transition belief formula. This is a significant

improvement over the (super exponential) time taken by
a straightforward algorithm, and over the (potentially ex-
ponential) time taken by general-purpose consequence
finding used in our zeroth-level SLAF procedure above.

representation, but it does not guarantee it, nor does ifheorem 4.4 Step-SLAF; o, 8,0) returns a formulay’
guarantee tractable computation. In fact, no algorithmsuch thatSLAF[a, o](¢) |= ¢'. If every run of Literal-
can maintain compact representation or tractable comSLAF takes time, then Step-SLAF takes tini&|o|c).

cal Filtering is NP-hardEiter and Gottlob, 1992even

4.3, theny’ = SLAF]a,o](p).

for deterministic actions. Also, any representation of We can give a closed-form solution for the SLAF of

transition belief states that uspsly(|P|) propositions

a belief-state formula (a transition belief formulae that

grows exponentially (in the number of time steps andhas no effect propositions;). This makes procedure
|P|) for some starting transition belief states and actionLiteral-SLAF tractable, and also allows us to examine

sequences.

the structure of belief state formulae in more detail.



PROCEDURE Factored-SLAKd;, 0:) ;<)
Vi, a; action,o; observationy transition belief formula.
1. For:from1totdo,
(a) Setp «— Step-SLAF(;,a;,p).
(b) Eliminate subsumed clausessn
2. Returne.

PROCEDURE Step-SLAk(a,y)
o an observation formula if(P), a an actiongp a transition
belief formula.

1. If pis aliteral, then retureALiteral-SLAF(a,p).

2. If ¢ w1 A @2, return Step-SLAR{a,p1)AStep-
SLAF(0,a,p2).
If ¢ = ©1 V @2, return Step-SLAR,a,p1)VStep-
SLAF(0,a,p2).

PROCEDURE Literal-SLAR{,¢)
a an actiong a proposition inL; or its negation.
1. ReturnCn®t+1 (o A as A Tert(a, t)).

3.

Figure 2: SLAF using distribution ovex, v

Theorem 4.5 For belief-state formulg € £(P), timet,
actiona, Co = Ageger(ag Vad), andGy, .., Gy, €
G all the terms ing such thatG; E ¢,

SLAF[a)(er)= N\ vag)nc,
Iy, lm€Fi=1
ProoF skeTcH We follow the characterization

offered by Theorem 3.1 and Formula (1). We take
o1 A ar A Tegt(a, t) and resolve out the literals of tinte

resulting clauses for a chosen set®f, ...,G,, and a
chosen set of literalg, ..., I,,,. The reason for including
(ag/i A—ag,,) is that we can always choose a clause with
G, ; of a specific type (either one that includeslc or
one that produces’.

Finally, we get the formula in our theorem because
al, = —aZf (G characterizes exactly one statedi,
and the fact that there is one set@if, ..., G,, that is
stronger than all the rest (it entails all the rest) because
Gy, ..., G, are complete terms. This set is the complete
fluent assignment§’; that satisfyp. B

A consequence of Theorem 4.5 is that we can imple-
ment Procedure Literal-SLAF using the equivalence

_ [ Theorem 4.5 L(l)CcP
SLAF(al(l) = { I A SLAF[a](TRUB otherwise}

Notice that the computation in Theorem 4.5 for= [ a

literal is simple becausé, ..., G,, are all the complete
terms in£(P) that include!.

5 Compact Model Representation

In Theorem 4.5;n could be as high a8!”!, the num-
ber of complete terms ig. Consequently, clauses may
have exponential length (im = |P|) and there may be a
super-exponential number of clauses in this result.

In this section we restrict our attention to STRIPS ac-
tions[Fikeset al, 1974, and provide an overall polyno-
mial bound on the growth of our representation, its size
after many steps, and the time taken to compute the re-

This resolution is guaranteed to generate a set of conséHlting model. STRIPS is a class of actions that has been

quences that is equivalent@ X1 (o, Aa; ATes(a, t)).
Assumingp: A at, Tes(a, t) is logically equivalent to
Tert(a,t)]p = /\le]—‘,Geg,G\:@((alG ANGy) = lip1) A
Nier.ceg.arollivn = (Gr = ag)). This follows
from two observations. First, notice that implies that
for any G € G such thatG [~ ¢ we getG, = al,
and(a,, A Gt) = l;41 (the antecedent does not hold, so

at the focus of interest for the area of Al planning and
execution for many years. It includes deterministic, un-
conditional (but sometimes not executable) actions.

5.1 Actions of Limited Effect

In many domains we can assume that every aciiaift
fects at mostt fluents, for some smalk > 0. Itis
also common to assume that our actions are STRIPS,

the formula is true). Second, notice that, in the secondnd that they may fail without us knowing, leaving the

part of the originalle (a, t), (V geg .oy (@G A Gr)) is
equivalent (assuming) to (Ageg g, (Gt = al)).

Now, resolving out the literals of timefrom ¢, A ag A
Tett(a, t)|, should consider all the resolutions of clauses
(G, is a term) of the formzlG A Gy = lyy1 and all the
clauses of the formy; = (G; = al,) with each other.
This yields the equivalent to

A VEY

m
\/(aGi A =ag, )]
=1

Gi,....,Gm €G =1
¥ ‘:\/igmGi
liy.o0,lm € F

because to eliminate all the literals of tim&ve have to
resolve together sets of clauses with matchih® such
thaty = V,., Gi. The formula above encodes all the
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world unchanged. Those assumptions together allow
us to progress SLAF with a limited (polynomial factor)
growth in the formula size.

We use a language that is similar to the one in Section
3, but which uses only action propositiogfs with G be-
ing a fluent term of sizé (instead of a fluent term of size
ning). Semantica”ya%lm.Alk = /\lkﬂ,...,ln aflA...Aln-

Theorem 5.1 Lety € L(P) be a belief-state formula,
time, anda a STRIPS action witk % fluents affected or
in the precondition term. Leg* be the set of all terms of
k fluents inL(P) that are consistent witly. Then,
k
A

V(@ vagyne,
Gl, ,Gk S gk

=1
Gi A ...NGg ‘:Lp
li, .., lx € F

SLAF[d](p:) =



The proof (omitted) uses two insights. Firstaifhas PROCEDURE AE-STRIPS-SLAK(;, 0i) ;< 1+%)
only one case in which change occurs, then every clauses; actions,o; observationsy = A ., ¢ fluent-factored
in Theorem 4.5 is subsumed by a clause that is entaileflyith ; = (-f v expl,) A (f Vexpl ;) A Ay.
by SLAF[a)(¢:), has at most onel, per literall; (i.e., 1. For everyf € P do: Fori from 1 to 7" do,

I; # 1; fori # j) andG, is a fluent term (has no disjunc- (@) Setp; — (=f v (a’ v (a Aexpl))) A (fV
tions). Second, every., with G term is equivalent to a (a™ v (" nexply))) A Ay

formula onal, with G; terms of lengthk, if a affects (b) If 0; |= f (we observed), then setpy «— (=f Vv
only k fluents. TRUE)N(fV FALSE) A A Aexpl;.

Thus, we can encode all of the clauses in the cont () If oi = —f (we observed-f), then setp; «—
junction using a subset of the (extended) action effect - (AfVFALSE)A(fVTRUE) A Ag Aexply.
propositionsat,, with G' being a term of sizé. There 2. Eliminate subsumed clausesjn= A\ ;e ¢r-
areO(n*) such terms, an@(n*+!) such propositions. 3. Returnor = ¢
Every clause is of lengtk, with the identity of the
clause determined by the first half (the set of action ef-
fect propositions). Consequentl$LAF[a](y:) takes
O(n¥*+*.2) space to represent usilfn*” ++) clauses
of length< 2k.

Figure 3: SLAF with always-executable STRIPS.

Then, Procedure AE-STRIPS-SLA®(0i)(_;<;.¢) re-
turns ¢* = SLAF[{ai,0:).;<,|(¢0) in time O(T -

5.2 Always-Executable Actions [Pl), and|™| < O(T - [ P]).

Many times we can assume that our actions are always The reason for the space bound on the end formula
executable. For example, our sequence of actions dodg” | is that at every time step we increase the size of the
not include action failures when this sequence is chosefprmula by adding to it at mogtnew elements per fluent.
by a knowledgeable agent (e.g., a human) that has better We can further improve the implementation to take

observations than we do.

time O(T - |o|), for |o| the largest number of fluents ob-

We use a language that is similar to the one in Secserved at once. Also, the bound on the space takemby

tion 3, but which uses only action proposition$ (I
always holds after executing) and a'o (I is not af-
fected bya). Semanticallya! = Y aﬁm___Mn, and

,,,,,

lijo — l;
at = /\lls"-ali717li+17~~aln .a/?/\ll/\»--/\_ln. .
We assume that transition-belief formujais fluent-

can be improved in two ways. Firg,(|P| - 2|4/ 1ee Al
for A our set of actions, is a bound on the CNF repre-
sentation ofo” because every pa; of it is similar
to (f = (af v (a!° A (a Vv (a® A ..))))). Thus, if
|A| is small, then this bound is manageable. Second, if

every fluentf is observed at least once evernactions

(or an action which affectg occurs, and we know its
effect), then the CNF representationof takes space
O(|P| - |A|¥). Again, if k is small, this bound is useful.

factored i.e., it is the conjunction of; such that each
@ concerns only one fluenf, and actions’ effects on it.
Also, for everyf, o5 = (= fVvexpl)A(fvexpl,)AAy,
with expl;, expL, ¢, Ay formulae over action propositions
af, a7, anda’° (possibly multiple different actions). - "
We call this formatfluent-factored The intuition here 5.3 Action Pre(.:ondltlons
is thatexpl, andexpl, , are all the possible explanations Unfortunately, a simple procedure such as AE-STRIPS-
for f being true and false, respectively. Alsé; holds ~ SLAF (Figure 3) does not provide an exact solution in
knowledge about actions’ effects gh knowledge that general. The reason is that action failure makes qu—_
does not depend ofis current value. For example, ifwe €nts co-dependent (each of them could have caused this
know nothing about actions that affett(e.g., when we failure). For instance, con3|de_r Figure 1, and assume
start our exploration), thep; = (~f VTRUE) A (f V that we add the fluenOK which indicates tha} the
TRUE) ANTRUE. last action succeeds. If we know ontyn (the light

With this representatior§ LAF[a](¢;) is is off), then SLARsw-orj(—on) A ~OK (i.e., sw-on
failed, e.g., because we are in the West room) implies
SwO\/KE v a:%bf\(ﬁ_f_ﬁ/\ﬁlit v (Z’:Sgul}\sw/\ﬁlit v agfj\‘ﬁsw/\ﬁlit v
o . e A_1ie: DY Theorem 4.5.
A similar formula holds for observations. EI?]stéaéjf we compute the effect for every literal using

This contributes to a much simpler algorithm, AE- .
> Theorem 5.1, (assuming exackyluents are changed by
STRIPS-SLAF, that we present in Figure 3. It computes_ . ;
SLAF of a fluent-factored transition belief state in this actiona) and then approximate by dropping all clauses

form with a sequence of actions and observations with more than one fluent (other tha¥). Thus, we can

' augment step 1(a) in AE-STRIPS-SLAF with a condition
Theorem 5.2 Letp be a fluent-factored transition belief thata succeededy, = OK), and add that if; fails, then
formula, and assume,, ...,ar are always-executable we use the following formula instead: Sef — (—f Vv
STRIPS actions, and, ...,or are observation terms. (expl; AexpLox ;) A(fV(eXpLAeXplog - f))AAf,

(=fV(a V(arexpl))ACfV(a™ v(anexpl ) A Ay

5



_ ! ~OK
for eXpLOK,l =A G1,Gs € GF (ael Vag, ) Time per Step
G1 NGo IZ l

The size of the resulting formula is larger by an ad-| 10
ditive O(lexpLox ) = O(n?*) per fluent. Thus, the jg g: ~31 features
result afterT steps is a formular with || < O(T - s 7| =43 tealures

ok . . K . g 57 features
|P|?*), which is polynomial and feasible for smafk. = 6

g 5| 73 features
5.4 Using the Model and Adding Bias 2 4 *?Hef:;ﬁzs
. . . 31 -

Our algorithms compute a solution to SLAF as a_Iog|caI o > | 133 features
formula. We can use a SAT solver to answer queries over£ 1 | — 157 features
this formula, such as checking if it entaité, for action 0 T T T
a and fIl_Jentf. The number of variabl_es_ in the result RESPIROPSIRSINPR RN
formula isalways independent @, and is linear inP| NN Y Y 5 S
for some of our algorithms, so we can use current SAT number of steps

solvers to treat domains @f)00 features and more.
Many times it is also desirable to prefer some models Figure 4: AE-STRIPS-SLAF in the blocks world.
over others. We can represent such bias using a prefer-
ence model (e.g[McCarthy, 198§) or a probabilistic
prior over transition relations. We add this bias on top Also, [Hlubocky and Amir, 200bhas included a mod-
of our SLAF result,or, and get an exact solution if we ified version of this algorithm in their architecture and
can run inference on the combined model. Preferentiatested it on a suite of adventure-game-like virtual envi-
bias is well studied and fits easily with logical formula ronments that are generated at random. These include ar-
or (e.g., we can use implementations of Circumscrip-bitrary numbers of places, objects of various kinds, and
tion for inference with such bias). configurations and settings of those. There, an agent's
Also, algorithms for inference with probabilistic bias task is to exit a house, starting with no knowledge about
and logical sentences are now emerging and can be usdhle state space, available actions and their effects, or
here too[Hajishirzi and Amir, 200k We can use these characteristics of objects. Their experiments show that
algorithms to apply probabilistic bias to the resulting-log the agent learns the effects of its actions very efficiently.
ical formula. For example, given a probabilistic graphi- This agent makes decisions using the learned knowledge,
cal model (e.g., Bayesian Networks) and a set of propoand inference with the resulting representation is fast (a
sitional logical sentences, we can consider the logicafraction of a second per SAT problem in domains includ-
sentences as observations. With this approach, a loghg more than 30 object, modes, and locations).
ical sentencep gives rise to a characteristic function
5,(@) which is 1 whenz’ satisfiesp and 0 otherwise. 7 Comparison with Related Work
For 2 conjunction of lases e get & et of Such ki [oyen and Koler, 1999; Boye al, 1999
probabilistic-logical syétem i’s a probabilistic inferenc (i(_/lurphy, 2002; Ghahram_a_nl, 20ptan be used to es-
(such as variable elimination (e.§Dechter, 199B) in timate a stochastic transition model _frpm observahqns.
which there are additional poten.tial functions Unfortunately, HMMs require an explicit representation
: of the state space, and our smallest domainf¢atures)
. , requires a transition matrix d23!)2 entries. This pre-
6 Experimental Evaluation vents initializing HMMs procedures on any current com-
We tested our AE-STRIPS-SLAF algorithm in partially puter.
observable blocks-world domains. We generated random Structure learningpproaches in Dynamic Bayes Nets
action-observation sequences of 4000 steps from a d¢DBNs and also fHMMs) use EM and additional ap-
scription of the domain in PDDL. Our SLAF algorithm proximations (e.g., using factoring, variation, or sam-
receives no domain information besides the sequence gfling), and are more tractable. However, they are still
actions and observations that is given by the generator. limited to small domains (e.g10 featured Ghahramani
We ran the algorithm with blocks-world domains of and Jordan, 1997; Boyest al,, 1999), and also have un-
increasing sizes (31 to 157 features). We collected théounded errors in discrete deterministic domains, so are
time and space taken for each time step in the executiomot usable in our settings.
starting with zero knowledge. The results are shown in Reinforcement Learning (RL) approaches compute a
Figure 4. Each of the graphs belongs to a different do-mapping between world states and preferred actions.
main size. They show that the time per step approachesBhey are highly intractable in partially observable do-
(very small, order ok 9 milliseconds) limit as the exe- mains[Kaelblinget al, 1994, and approximation (e.g.,
cution proceeds. The time that is taken to perform SLAF[Kearnset al, 2004 is practical only for small domains
of different domains grows linearly with domain size.  (e.g.,10-20 features) with small horizon time.



In contrast to HMMs, DBNs, and RL, our algorithms [Dechter, 199P Rina Dechter. Bucket elimination: A unify-
are exact and tractable in large domains300 features). ing framework for reasonindAtrtificial Intelligence 113(1—
We take advantages of properties common to discrete do- 2):41-85, 1999.
mains, such as determinism, limited effects of actions|Eiter and Gottlob, 1992 T. Eiter and G. Gottlob. On the com-
and observed failure. plexity of propositional knowledge base revision, updates,

Previous work on learning action models assumes and counterfactualsild, 57(2-3):227-270, 1992.
fully ObS?rVab|ed9term|n|_5t|C do_mams- Thes_e learn [Fikeset al, 1974 R. Fikes, P. Hart, and N. Nilsson. Learning
parametrized STRIPS actions using, e.g., version spaces and executing generalized robot plasJ, 3, 1972.

[Gil, 1994; Wang,. 199}5 general classifierfOates and [Ghahramani and Jordan, 199Z. Ghahramani and M. I. Jor-
Cohen, 1995 or hill-climbing ILP [Benson, 1995 Re- dan. Factorial Hidden Markov Model#4achine Learning
cently,[Pasuleet al,, 2004 gave an algorithm that learns  29:245-275 1997.

s':ocggos(tjlc actlon§ W':h no cot!’l(?ltlgnal eﬁgﬁ?c{)}mnlet [Ghahramani, 2041 Zoubin Ghahramani. An introduction to
al, approximates partial observabllity by assum- = yiqqen Markov Models and Bayesian networksitl J. of
ing that the world is fully observable. We can apply these  pattern Recog. and AL5(1):9-42, 2001.

to partially observable learning problems (sometimes) by . n . ' . .

: . : il, 1994 Yolanda Gil. Learning by experimentation: Incre-
;Jhs_ln_g the SpaC$hof bel;ﬁf statgas ItnStead of Wtqul? Stat?rs].’ bﬁ? mental refinement of incomplete planning domainsioc.

Is increases the problem size to exponentially, S0 this IS o\ 94 pages 10-13, 1994.

not practical for our problem. _ . L
[Hajishirzi and Amir, 2005 Hannaneh Hajishirzi and Eyal

. Amir. Tractable exact inference in some dynamic Bayesian
8 Conclusions networks. Insubmitted for publication2005.

We presented a framework for learning the effects angnjupocky and Amir, 2005 Brian Hlubocky and Eyal Amir.
preconditions of deterministic actions, and showed that [ogic-based approach to decision making in expanding
in several common situations this can be done exactly in worlds. Insubmitted for publication2005.

time that is polynomial (sometime linear) m_the number[Kae”minget al, 1999 L. P. Kaelbling, M. L. Littman, and
of time steps and features. We can add bias and com- A R. Cassandra. Planning and acting in partially observ-
pute an exact solution for large domains (hundreds of aple stochastic domainglJ, 101:99-134, 1998.

features), in many cases. .. [Kearnset al, 2000 M. Kearns, Y. Mansour, and A. Y. Ng.
The results that we presented are promising for many  spnroximate planning in large pomdps via reusable trajec-

applications, including reinforcement learning, agents i ories. InProc. NIPS'99 pages 10011007, 2000.

wrtugl domains, and HMMs. Alrgady, this work is being r{(Ljittman, 1996 M. L. Littman. Algorithms for sequential de-
applied to autonomous agents in adventure games, a cision making PhD thesis, Brown U., 1996

exploration is guided by the transition belief state that o )
we compute and information gain criteria. In the future IMcCarthy, 19?}5 JOhlr.‘ .Mc%a”hy' Agp"cat'gns Olf g'rm.‘m'
we plan to extend these results to stochastic domains, and ﬁglr;‘ftl'ﬁtr; |t|? eggmggg‘gg_l fg’T;& ense Knowleddeti-
domains with continuous features. gence <e. ' '

[Murphy, 2002 K. Murphy.  Dynamic Bayesian Networks:
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