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Abstract

We propose a new algorithm for finding a target

network of acquaintances. Today, it appears naturally in
various contexts. For example, a similar task is performed

1

node in a network whose topology is known only
locally. We formulate this task as a problem of de-
cision making under uncertainty and use the statis-
tical properties of the graph to guide this decision.
This formulation uses the homophily and degree
structure of the network simultaneously, differenti-
ating our algorithm from those previously proposed
in the literature. Because homophily and degree
disparity are characteristics frequently observed in
real-world networks, the algorithm we propose is
applicable to a wide variety of networks, including
two families that have received much recent atten-
tion: small-world and scale-free networks.

Introduction

when people and focused crawldBiligenti et al, 2000;
Chakrabartet al, 1999 search for information in the World
Wide Web by following links. The same is true of search pro-
tocols that form the backbone of decentralized peer-to-peer
file sharing systems such as Gnutella and FreEDleirke et

al., 2004 that lack a central server to answer queries.

If decentralized search is to succeed, it is essential that
the underlying network possess some form of structure that
can guide the search. The acquaintance network has at least
two characteristics that create such structure. The first is ho-
mophily, thetendency of like to associate with like other
words, the tendency of attributes of connected nodes to be
correlated—people tend to be acquainted with other people
who live in the same geographical area or who have the same
occupation. The second characteristic is degree disparity—
some people have more acquaintances than others and may

In a well known study, Travers & Milgrarft969d asked in- act as hubs tha_\t connect different social circles_. Considera-
dividuals in Boston, Massachusetts and Omaha, Nebraska ##n 0f homophily gives rise to a message-passing algorithm
deliver a letter to a target person in Boston, using an unconthat favors the nelghpor that is the most similar to t.he target
ventional method: the letters were to reach the target persofPde (e.9., an acquaintance who lives in Boston, if the tar-
through a chain of acquaintances. The person starting tH@et person lives in BostoriKleinberg, 2000a; 2000b; 2001;
chain and all subsequent recipients of the letter were giveNVattset al, 2004, while consideration of degree structure
some basic information about the target—including name8ives rise to an algo_rlthm that favors the neighbor with the
address, and occupation—and were asked to forward the Igfighest degrepAdamicet al, 2001.
ter to someone they knew on a first name basis, in an effort Building on the insights gained by this recent body of
to deliver the letter to the target person with as few intermefesearch, we propose a new message-passing algorithm—
diaries as possible. Of the 296 letters that were distributecgxpected-value navigatiofEVN)—for decentralized search
22% reached the target, with a median chain length of six. in networks. Our formulation of the problem is fundamen-
These findings revealed two surprising properties of the sotally different from prior approaches in that it considers the
cial network—that short paths exist between seemingly unentiretyof the factors that may influence the effectiveness of
connected individuals and that people are able to find them-the search. We cast the problem faced by each node in the
and raised a number of questions: How do people perforninessage chain as a decision making task under uncertainty, in
this type of search? What properties of the social networkvhich the objective is to minimize the expected length of the
make it searchable? And in their presence, how can wéearch path. This decision is guided by the statistical proper-
search a network efficiently? In this paper we address thi§es of the graph, in which both homophily and degree play a
last question and present an algorithm for efficient decentralole. All prior algorithms have essentially used only part of
ized search in a class of networks that exhibit the propertiethe available information.
of the social network of acquaintances. Because homophily and degree disparity are characteristics
At the time, the task faced by the participants in the Travergrequently observed in real-world networks, EVN is applica-
& Milgram study—searching for a target node in a large net-ble to a wide variety of networks. We emphasize two families
work whose topology is known only locally—was highly ar- that have received much recent attention: small-world and
tificial, designed only to explore the structure of the socialscale-free networks.



Small-world networks are loosely defined as a family of2.2 Similarity-Based Navigation

graphs with a combination of three properties that distinguisqn similarity-based navigation, nodes forward the message to

them from other graph families (e.g., random graphs, fully : . o )
connected graphs, and regular graphs): weak connectivity'€ neighbor that is the most similar to the target node, given
number of attributes on nodes and a similarity metric. This

strong clustering, and small diameter. Many real world net- ' .
works show the small-world structure, including the World typed_o_f searr_:h_lrellles on networ_lg homolphlly. fUnqirbsqme
Wide Web, the electrical power grid of the western Unitedcog itions, _Z'm' arity among Bftt_trl ltJte values o Inelgd' O{Thg t
! : odes provides an approximation to a universal gradient tha
ﬁ;itsj’JQ&S?E%?%Z“S&%??Q eOJvoH[%g)éﬁ%%dng\(;\tlg:tss, er:g th%llows short paths to be identified from only local informa-
Strogatz, 199B These networks, by definition, connect mostt'on' ) _— . L .
node pairs by short paths, and EVN may be particularly well The first algorithmic analysis of similarity-based naviga-

sited for finding them as the small world structure may arisd /0N Was performed by Kleinber?000b; 2000kon a sim-
from homophily[Kleinberg, 2000h ple network motivated by the geographical distribution of ac-

Scale-free networks are those networks with a power-la gquaintances. This network had nodes on a two-dimensional

degree distribution, which means that the probability of ;Yattlce; each node was connected to all other nodes within

. . . B . a given lattice distance and also to a number of additional
given degre is proportional tk™", wheref is a parameter ,4es across the grid. The probability of a connection of the

known as the degree exponent. Most nodes in such networktier tyne was proportional to the lattice distance between the
have only a few edges, but a few nodes have much highg{ogesraised to the power, wherea is a model parameter

degree. Many small-world networks are scale-{arabasi 5 the clustering exponent. In this network, similarity be-
and Albert, 1999 _ . _ tween nodes is defined by their lattice position, and the clus-
~ The remainder of this paper is organized as follows: Wetering exponent controls the homophily in the graph: When
first prowde a review of the relevant literature. We thenq =0, |0ng_range contacts are uniform|y distributed on the

present our formulation of the search problem, describe thgrid; asa increases, long-range contacts become more and
algorithm we propose, and evaluate it on a collection of synmore clustered in the node’s vicinity.

thetic and real-world networks. We conclude with a discus- kjeinperg showed that whem = 2, similarity-based nav-
sion of our experimental results and directions for future rejgation achieves an expected path length bounded by a poly-

search. logarithmic function (i.e., a polynomial function of the log-
arithm) of the number of nodes, and tlat= 2 is the only
2 Previous Work clustering exponent at which a polylogarithmic bound on path

length is possible. These results generalizd-tbmensional

A number of message-passing algorithms have been propostadtices ford > 1, with the critical value ofr = d.
for conducting decentralized search in networks, in which Kleinberg[2001 later proved similar results for two other
each node receiving the message forwards it to one of itgetwork models that defined node similarity differently, but
neighbors until the target is found. Based on the decision crias in his first model, the link probabilities were a function of
teria they use in selecting a forwarding node, these algorithmée similarity between the nodes and a parameter that controls
can be categorized as follows: the degree of homophily in the graph. In both of these mod-
els, there was a critical value of the homophily parameter that
e Degree-Based-The decision is based on the degreeallowed similarity-based navigation to achieve a search time
structure of neighboring nodes. polylogarithmic in the number of nodes, and for all other val-
ues of this parameter, a polylogarithmic upper bound was not
d?ossible.
Similarity-based navigation was also explored by Watts
al., [2004, who proposed a hierarchical model of society and
L a homophily structure that measured similarity with distance
2.1 Degree-Based Navigation in this hierarchy. The authors explored the influence of the
Adamic et al. [200] proposed an algorithm that forwards number of hierarchies and the homophily parameter on the
the message to the highest-degree neighbor that has not se¥ifrchability of the network and found that similarity-based
the message. On a scale-free network with degree exponeﬂ?v'gat'on was effective for a large region of the parameter
2.1, in which nodes knew their immediate neighbors thedt pa
neighbors, this algorithm performed fairly well. Most nodes
were easy to find—about 50% of the target nodes were foun@ Proposed Algorithm: Expected-Value
within 12 hops in a 10,000 node network—but a small pro- Navigation
portion of nodes required a much larger hop count. Similar
results were obtained on a 700-node subgraph of the Gnutell&e propose a message passing algorithm that builds on the
peer-to-peer file sharing system, which showed a power-lawtrengths of the algorithms discussed above. We derive this
degree distribution with exponent 2.07. The algorithm, how-algorithm by formulating the problem as a decision making
ever, was not effective on networks with Poisson degree distask under uncertainty, in which the goal is to minimize the
tribution. expected path length to the target.

e Similarity-Based—The decision is based on how similar
the neighboring nodes are to the target node in terms
attribute values.



The expected value of the path lendghfrom neighbors  degree—the underlying assumption of independent links is

to targett is a weighted sum of all possible path lengths: violated in the networks we consider—but our results show
that it performs remarkably well.
El) = ;' Plla=1) W' 4 Experimental Evaluation

We assume that in computing this expected value the folYVe evaluated EVN on a collection of synthetic and real-
lowing information is available: a list of nodes that have al-world networks, comparing its performance to three other
ready seen the message, the properties (i.e., degree and EeSsage passing allgonthms: S|m|la_r|ty—based, d_egree—based,
tribute values) of neighboring nodes and of the target node2nd random navigation. These algorithms treat visited neigh-
and the known (or estimated) homophily structure of thebors similarly—ignoring them in the presence of unvisited
graph—in other words, a statistical relationship between nodg€ighbors, and selecting randomly among them otherwise—
similarity and probability of a link. This last piece of in- but differ in how they select among unvisited neighbors.
formation allows us to compute the probability that a givenSimilarity-based navigation selects the one most similar to
neighbor links to the target node. the target node.m attnbyte value, degree-based nawga'glon_se—

We approximate the entire series in Equation 1 using only€cts the one with the highest degree, and random navigation
the first two terms, which are easy to compute given the inselects randomly. If more than one neighbor satisfies the cri-
formation available. This estimate captures much of the ned€ria, all algorithms select randomly among them.
essary information because there is no need to know the exact !t is possible to construct other variations of similarity-
value of the expectation, only whether it is lower than the ex@sed, degree-based, and random navigation that differ in
pectation computed for another neighbor. how they treat visited neighbors. For instance, the algo-

If one of the neighbors is the target, this neighbor has_rithm may ignore pri_orvisitatio_ns, or only avoid_ the last vis-
E(lst) = 0, the lowest possible value. Otherwise, the noddted node. The versions described above consistently outper-

for which the second term in the series is the highest miniformed these variations in our simulations; we therefore do

mizes our estimate of (&)—the larger the probability of a not discuss them any further.

path length of one, the smaller the probability of larger path In addition to these four algorithms, we also present the

lengths, and in general, the smaller the expected path lengtRerformance of an optimal global algorithm, which returns

Note here that for a neighbor that has already seen the methe shortest path length from source to target if it is less Fhan

sage, the second term in the series is zero—we know witfh€ number of hops allowed. The performance of the optimal

certainty that it does not link to the target, otherwise it would@lgorithm is a ceiling for the other algorithms—if there is no

have forwarded the message to the target and completed t&€0rt path, no algorithm can find it.

search. We present four performance measures: proportion of suc-
This gives rise to the following algorithm: If one of the cessful searchesiop), mean path length when successful

neighbors is the target node, forward the message to this nod@ath), median path length when successfulegian-path

Otherwise, forward the message to the unvisited neighboRnd mean optimal path length when successfpt-patt).

with the highest probability of having a direct link to the tar- The last measure indicates the difficulty of the search tasks

get. If all neighbors have been visited, forward the messag@n algorithm succeeds at, and is useful when comparing mean
to a randomly selected neighbor. path lengths of different algorithms—if one algorithm is able

We call this algorithm expected-value navigation (EVN), to succeed at more difficult search tasks than another one, the

based on its method of node selection. If the network show&ean path lengths are not directly comparable.
no homophily (i.e., if links are formed independently of node .

similarity) or if attributes are not available, EVN reduces to4-1 Synthetic Networks

the degree-based navigation of Adaratcal. [2001]. Onthe We considered directed networks with two types of out-
other hand, if degree information is unavailable or if all nodesdegree distribution: power-law and Poisson. We defined
have equal degree, EVN reduces to similarity-based navigaa single attribute on each node, which was distributed uni-
tion that avoids visited nodes when possible. formly in the interval]0,1]. Each network had 1000 nodes;

In order to apply EVN in a given network, one needs tonodes with out-degree higher than 100 were not allowed.
compute or estimate the probability that a link exists from oneSearch was terminated after 100 hops if the target was not
node to another, given the attribute value and degree of botteached.
nodes. We estimate this probability assuming that each link The number of outgoing links from each node was deter-
is placed independently of the others. For a link from nodemined based on the out-degree distribution of the graph. For a
sto nodet, the desired probabilitps; can then be computed link originating at nodes, the probability of linking to node
by subtracting from D the probability that none of the links was proportional tdst, the preference between the two nodes,
that originate at ends at: which we defined as follows:

Pst=1— (1-gg)" (2) fse = (max{|as—a|, 0.01}) ™" )

whereqg; is the probability that the first link frors ends at  whereas, a are attribute values on nodesndt, andr is a
t, andk is the out-degree of node This is one of the sim- homophily parameter. Theaxterm puts a bound on the pref-
plest estimators that uses information on both homophily an@rence values—in its absence, the preference between two
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Figure 1: Performance on scale-free networks with degree parameter 1.5.

nodes may be arbitrarily large, as two attribute values maynophily parameter ranged from 0 to 3. Each possible com-
be arbitrarily close. bination of degree parameter and homophily parameter was
Whenr is zero, the graph shows no homophily—a link evaluated on 10 randomly generated networks (unless noted
originating from a given node is equally likely to end at any otherwise), with 5000 randomly selected search tasks in each
other node. As grows, links become more likely to connect network.
nodes with similar attribute values. The findings in Klein- Figure 1 shows performance on scale-free networks with
berg[2000H suggest that small values pfjive rise to a ho-  degree parameter 1.5. In addition gieop, path and opt-
mophily structure too weak to guide the search effectivelypath this figure also presents the frequency of path lengths
while large values of give rise to a graph structure that does yhen the homophily parameter was 0.5, 1.5, and 2.5. While
not contain short paths. similarity-based navigation was effective for large values of
Inapplying EVN in these networks, we uspd=1—(1—  the homophily parameter and degree-based navigation was
fst/ (T fsj))¥, which was obtained from Equation 2 by sub- effective for lower values, EVN was effective with over 95%
stituting gst With fst/ S; fsj, the ratio of the preference be- success rate for all values of the homophily parameter and
tween nodes andt to tlwe sum of preferences frosto all ~ returned shorter path lengths than the other algorithms.
nodes in the network. In applying similarity-based naviga- Figure 2 shows performance on scale-free networks with
tion, we considered all neighbors within 0.01 of the target toyarying degree parameters. The data points in this figure
be equally close, to account for the presence oftla@term  show mean values in 30 randomly generated networks. EVN

in Equation 3. was effective under a wide range of parameter settings and
, o consistently outperformed both degree-based and similarity-
Networks with Power-Law Degree Distribution based navigation. EVN succeeded at more difficult search

We considered power-law distributions with degree parametasks than degree-based navigation, as measuregtipath
ters ranging from 1 to 3. This range includes the distributionsvhile returning considerably shorter path lengths. EVN and
most frequently observed in real-world networks. The ho-similarity-based navigation performed similarly apt-path
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Figure 2: Performance of EVN on scale-free networks. The first row shows the proportion of successful searches by EVN
divided by that of (a) optimal, (b) degree-based, and (c) similarity-based navigation; the second row shows mean path length
(when successful) for EVN divided by that of (d) optimal, (e) degree-based, and (f) similarity-based navigation; the third row
shows mean opt-path of EVN divided by that of (g) degree-based and (h) similarity-based navigation.

but EVN returned shorter path lengths. The proportion ofter values close to 2.

successful searches was higher for EVN than for both degree- The path results shown in Figure 3 may seem counter-

based and similarity-based navigation. intuitive, with random navigation returning the lowest val-

) ) R ues for most values of the homophily parameter. Recall,

Networks with Poisson Degree Distribution however, thatpath refers to the mean path length suc-

Similar experiments were conducted on networks with a Poiseessfulsearches, so the mean path lengths are not directly

son degree distribution with a mean out-degree of 3.5, whicltomparable—random navigation returned the lowgsth

approximately equals the mean degree in the scale-free netalues, but it succeed in only the easiest search tasks as mea-

works that were tested. sured byopt-path The opt-pathresults show that EVN suc-
Figure 3 shows performance results. The figure revealseeded at more difficult search tasks than both degree-based

that similarity-based and degree-based navigation were n@nd similarity-based navigation. Furthermore, EVN returned

effective in these networks, succeeding in less than half of theonsiderably shorter path lengths than degree-based naviga-

search tasks for all values of the homophily parameter. EVNion, despite succeeding in more difficult search tasks.

returned a higher proportion of successful searches than both

degree-based and similarity-based navigation; the differencgobustness of EVN

was substantial for a large range of values of the homophilyn estimating link probabilities, we used the sum of prefer-

parameter. EVN was most effective with homophily parame-ences from a given node to all other nodes in the network.
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Figure 3: Performance on networks with Poisson degree distribution.

This sum is a normalizing constant that may be thought of as Decentralized search in this citation graph is an artificial
an indicator of network size—it is the sum of similar contri- task—though it does resemble searching for a particular piece
butions from all nodes. In experiments we presented so fagf information before the advent of search engines—but the
we used the exact value of this global constant. Dependenaesults are useful in evaluating the applicability of EVN to
on such global information is clearly not desirable for a de-a network that evolves naturally over time, with no known
centralized algorithm. patterns of link formation.

A number of methods for decentralized estimation of We treated the citation graph as an undirected network,
global network parameters exist, but all produce local vari-defining node similarity using paper titles and abstracts. The
ance in the estimates. Such variance poses little problem fditle and abstract of each paper were represented as weighted-
decentralized search algorithms such as EVN, however, béerm vectors using TFIDF (term frequengyinverse docu-
cause each decision is made locally, and thus estimates of timent frequency) weighting. Paper similarity was computed
constant on different nodes need not be consistent. Howevausing a standard cosine correlation measure. We discretized
serious problems could arise if bias in estimates of the conthis continuous similarity measure and for each discrete value
stant degraded the searchability of the network. it took, estimateds; in Equation 2 in a straightforward man-

We repeated the experiments reported on scale-free neter from the network.
works with degree parameter 1.5 by distorting the normal- We conducted 10,000 randomly selected search tasks, ter-
izing constant with a multiplier of 0.001, 0.01, 0.1, 10, 100, minating them after 100 hops if the target was not found.
and 1000 for all nodes in the network. Because each nod&able 1 shows our performance measures; Figure 4 shows
makes its decisions independently of the other nodes, that thee distribution of path lengths returned by each algorithm.
constant was distorted in the same way for all nodes is irrelSimilarity-based navigation was not effective in this task,
evant. No performance decrements were observed in eithevhile degree-based navigation was competitive. EVN per-
performance measure, except when the multiplier was 0.00formed better than both in all performance measures. Further
or 0.01. Performance decrements for such low values of theomparison of EVN and degree-based navigation revealed
multiplier are not unexpected—in these cases, the nodes opdhat EVN succeeded at all search tasks for which degree-
ated in a 1000 node network, but made decisions as if the nebased navigation failed and that there were no search tasks in
work had only a single node or ten nodes. We expect that suclvhich degree-based navigation succeeded but EVN did not.
poor estimates of the normalizing constant would be avoidedh those search tasks for which both algorithms succeeded,

easily in practice. 47% of the time EVN returned a shorter path than degree-
4.2 Scientific Citation Network Algorithm prop path —median-path —opt-path

We next present results on a real-world network: a citation Random 089 2512 20 2.50

graph of scientific papers. The nodes in our network were Similarity-Based 0.90  23.84 18 2.50
papers from the theoretical high-energy physics (hep-th) area E\e/gNree-Based 0 8'53 5 %786 A > ) ?,__)551

of arXiv.org , an on-line archive of research papers. We Optimal 10 255 3 55

included in our network papers that were published in 1995-
2000 and had more than 50 non-self citations. The network

Table 1: Perf hep-th citati h.
included 833 nodes and 13,267 links. able erformance on hep-th citation grap
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