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Özgür Şimşek and David Jensen
Computer Science Department
University of Massachusetts
Amherst, MA 01003-9264

{ozgur, jensen}@cs.umass.edu

Abstract

We propose a new algorithm for finding a target
node in a network whose topology is known only
locally. We formulate this task as a problem of de-
cision making under uncertainty and use the statis-
tical properties of the graph to guide this decision.
This formulation uses the homophily and degree
structure of the network simultaneously, differenti-
ating our algorithm from those previously proposed
in the literature. Because homophily and degree
disparity are characteristics frequently observed in
real-world networks, the algorithm we propose is
applicable to a wide variety of networks, including
two families that have received much recent atten-
tion: small-world and scale-free networks.

1 Introduction
In a well known study, Travers & Milgram[1969] asked in-
dividuals in Boston, Massachusetts and Omaha, Nebraska to
deliver a letter to a target person in Boston, using an uncon-
ventional method: the letters were to reach the target person
through a chain of acquaintances. The person starting the
chain and all subsequent recipients of the letter were given
some basic information about the target—including name,
address, and occupation—and were asked to forward the let-
ter to someone they knew on a first name basis, in an effort
to deliver the letter to the target person with as few interme-
diaries as possible. Of the 296 letters that were distributed,
22% reached the target, with a median chain length of six.

These findings revealed two surprising properties of the so-
cial network—that short paths exist between seemingly un-
connected individuals and that people are able to find them—
and raised a number of questions: How do people perform
this type of search? What properties of the social network
make it searchable? And in their presence, how can we
search a network efficiently? In this paper we address this
last question and present an algorithm for efficient decentral-
ized search in a class of networks that exhibit the properties
of the social network of acquaintances.

At the time, the task faced by the participants in the Travers
& Milgram study—searching for a target node in a large net-
work whose topology is known only locally—was highly ar-
tificial, designed only to explore the structure of the social

network of acquaintances. Today, it appears naturally in
various contexts. For example, a similar task is performed
when people and focused crawlers[Diligenti et al., 2000;
Chakrabartiet al., 1999] search for information in the World
Wide Web by following links. The same is true of search pro-
tocols that form the backbone of decentralized peer-to-peer
file sharing systems such as Gnutella and Freenet[Clarkeet
al., 2000] that lack a central server to answer queries.

If decentralized search is to succeed, it is essential that
the underlying network possess some form of structure that
can guide the search. The acquaintance network has at least
two characteristics that create such structure. The first is ho-
mophily, thetendency of like to associate with like, in other
words, the tendency of attributes of connected nodes to be
correlated—people tend to be acquainted with other people
who live in the same geographical area or who have the same
occupation. The second characteristic is degree disparity—
some people have more acquaintances than others and may
act as hubs that connect different social circles. Considera-
tion of homophily gives rise to a message-passing algorithm
that favors the neighbor that is the most similar to the target
node (e.g., an acquaintance who lives in Boston, if the tar-
get person lives in Boston)[Kleinberg, 2000a; 2000b; 2001;
Watts et al., 2002], while consideration of degree structure
gives rise to an algorithm that favors the neighbor with the
highest degree[Adamicet al., 2001].

Building on the insights gained by this recent body of
research, we propose a new message-passing algorithm—
expected-value navigation(EVN)—for decentralized search
in networks. Our formulation of the problem is fundamen-
tally different from prior approaches in that it considers the
entiretyof the factors that may influence the effectiveness of
the search. We cast the problem faced by each node in the
message chain as a decision making task under uncertainty, in
which the objective is to minimize the expected length of the
search path. This decision is guided by the statistical proper-
ties of the graph, in which both homophily and degree play a
role. All prior algorithms have essentially used only part of
the available information.

Because homophily and degree disparity are characteristics
frequently observed in real-world networks, EVN is applica-
ble to a wide variety of networks. We emphasize two families
that have received much recent attention: small-world and
scale-free networks.



Small-world networks are loosely defined as a family of
graphs with a combination of three properties that distinguish
them from other graph families (e.g., random graphs, fully
connected graphs, and regular graphs): weak connectivity,
strong clustering, and small diameter. Many real world net-
works show the small-world structure, including the World
Wide Web, the electrical power grid of the western United
States, the collaboration graph of Hollywood actors, and the
neural network of the nematode wormC. elegans[Watts and
Strogatz, 1998]. These networks, by definition, connect most
node pairs by short paths, and EVN may be particularly well
suited for finding them as the small world structure may arise
from homophily[Kleinberg, 2000b].

Scale-free networks are those networks with a power-law
degree distribution, which means that the probability of a
given degreek is proportional tok−β, whereβ is a parameter
known as the degree exponent. Most nodes in such networks
have only a few edges, but a few nodes have much higher
degree. Many small-world networks are scale-free[Barabasi
and Albert, 1999].

The remainder of this paper is organized as follows: We
first provide a review of the relevant literature. We then
present our formulation of the search problem, describe the
algorithm we propose, and evaluate it on a collection of syn-
thetic and real-world networks. We conclude with a discus-
sion of our experimental results and directions for future re-
search.

2 Previous Work

A number of message-passing algorithms have been proposed
for conducting decentralized search in networks, in which
each node receiving the message forwards it to one of its
neighbors until the target is found. Based on the decision cri-
teria they use in selecting a forwarding node, these algorithms
can be categorized as follows:

• Degree-Based—The decision is based on the degree
structure of neighboring nodes.

• Similarity-Based—The decision is based on how similar
the neighboring nodes are to the target node in terms of
attribute values.

2.1 Degree-Based Navigation

Adamic et al. [2001] proposed an algorithm that forwards
the message to the highest-degree neighbor that has not seen
the message. On a scale-free network with degree exponent
2.1, in which nodes knew their immediate neighbors andtheir
neighbors, this algorithm performed fairly well. Most nodes
were easy to find—about 50% of the target nodes were found
within 12 hops in a 10,000 node network—but a small pro-
portion of nodes required a much larger hop count. Similar
results were obtained on a 700-node subgraph of the Gnutella
peer-to-peer file sharing system, which showed a power-law
degree distribution with exponent 2.07. The algorithm, how-
ever, was not effective on networks with Poisson degree dis-
tribution.

2.2 Similarity-Based Navigation

In similarity-based navigation, nodes forward the message to
the neighbor that is the most similar to the target node, given
a number of attributes on nodes and a similarity metric. This
type of search relies on network homophily. Under some
conditions, similarity among attribute values of neighboring
nodes provides an approximation to a universal gradient that
allows short paths to be identified from only local informa-
tion.

The first algorithmic analysis of similarity-based naviga-
tion was performed by Kleinberg[2000b; 2000a] on a sim-
ple network motivated by the geographical distribution of ac-
quaintances. This network had nodes on a two-dimensional
lattice; each node was connected to all other nodes within
a given lattice distance and also to a number of additional
nodes across the grid. The probability of a connection of the
latter type was proportional to the lattice distance between the
nodes raised to the power−α, whereα is a model parameter
called the clustering exponent. In this network, similarity be-
tween nodes is defined by their lattice position, and the clus-
tering exponent controls the homophily in the graph: When
α = 0, long-range contacts are uniformly distributed on the
grid; asα increases, long-range contacts become more and
more clustered in the node’s vicinity.

Kleinberg showed that whenα = 2, similarity-based nav-
igation achieves an expected path length bounded by a poly-
logarithmic function (i.e., a polynomial function of the log-
arithm) of the number of nodes, and thatα = 2 is the only
clustering exponent at which a polylogarithmic bound on path
length is possible. These results generalize tod-dimensional
lattices ford ≥ 1, with the critical value ofα = d.

Kleinberg[2001] later proved similar results for two other
network models that defined node similarity differently, but
as in his first model, the link probabilities were a function of
the similarity between the nodes and a parameter that controls
the degree of homophily in the graph. In both of these mod-
els, there was a critical value of the homophily parameter that
allowed similarity-based navigation to achieve a search time
polylogarithmic in the number of nodes, and for all other val-
ues of this parameter, a polylogarithmic upper bound was not
possible.

Similarity-based navigation was also explored by Wattset
al., [2002], who proposed a hierarchical model of society and
a homophily structure that measured similarity with distance
in this hierarchy. The authors explored the influence of the
number of hierarchies and the homophily parameter on the
searchability of the network and found that similarity-based
navigation was effective for a large region of the parameter
space.

3 Proposed Algorithm: Expected-Value
Navigation

We propose a message passing algorithm that builds on the
strengths of the algorithms discussed above. We derive this
algorithm by formulating the problem as a decision making
task under uncertainty, in which the goal is to minimize the
expected path length to the target.



The expected value of the path lengthlst from neighbors
to targett is a weighted sum of all possible path lengths:

E(lst) = ∑
∀i

i ·P(lst = i) (1)

We assume that in computing this expected value the fol-
lowing information is available: a list of nodes that have al-
ready seen the message, the properties (i.e., degree and at-
tribute values) of neighboring nodes and of the target node,
and the known (or estimated) homophily structure of the
graph—in other words, a statistical relationship between node
similarity and probability of a link. This last piece of in-
formation allows us to compute the probability that a given
neighbor links to the target node.

We approximate the entire series in Equation 1 using only
the first two terms, which are easy to compute given the in-
formation available. This estimate captures much of the nec-
essary information because there is no need to know the exact
value of the expectation, only whether it is lower than the ex-
pectation computed for another neighbor.

If one of the neighbors is the target, this neighbor has
E(lst) = 0, the lowest possible value. Otherwise, the node
for which the second term in the series is the highest mini-
mizes our estimate of E(lst)—the larger the probability of a
path length of one, the smaller the probability of larger path
lengths, and in general, the smaller the expected path length.
Note here that for a neighbor that has already seen the mes-
sage, the second term in the series is zero—we know with
certainty that it does not link to the target, otherwise it would
have forwarded the message to the target and completed the
search.

This gives rise to the following algorithm: If one of the
neighbors is the target node, forward the message to this node.
Otherwise, forward the message to the unvisited neighbor
with the highest probability of having a direct link to the tar-
get. If all neighbors have been visited, forward the message
to a randomly selected neighbor.

We call this algorithm expected-value navigation (EVN),
based on its method of node selection. If the network shows
no homophily (i.e., if links are formed independently of node
similarity) or if attributes are not available, EVN reduces to
the degree-based navigation of Adamicet al. [2001]. On the
other hand, if degree information is unavailable or if all nodes
have equal degree, EVN reduces to similarity-based naviga-
tion that avoids visited nodes when possible.

In order to apply EVN in a given network, one needs to
compute or estimate the probability that a link exists from one
node to another, given the attribute value and degree of both
nodes. We estimate this probability assuming that each link
is placed independently of the others. For a link from node
s to nodet, the desired probabilitypst can then be computed
by subtracting from 1.0 the probability that none of the links
that originate ats ends att:

pst = 1− (1−qst)k (2)

whereqst is the probability that the first link froms ends at
t, andk is the out-degree of nodes. This is one of the sim-
plest estimators that uses information on both homophily and

degree—the underlying assumption of independent links is
violated in the networks we consider—but our results show
that it performs remarkably well.

4 Experimental Evaluation
We evaluated EVN on a collection of synthetic and real-
world networks, comparing its performance to three other
message passing algorithms: similarity-based, degree-based,
and random navigation. These algorithms treat visited neigh-
bors similarly—ignoring them in the presence of unvisited
neighbors, and selecting randomly among them otherwise—
but differ in how they select among unvisited neighbors.
Similarity-based navigation selects the one most similar to
the target node in attribute value, degree-based navigation se-
lects the one with the highest degree, and random navigation
selects randomly. If more than one neighbor satisfies the cri-
teria, all algorithms select randomly among them.

It is possible to construct other variations of similarity-
based, degree-based, and random navigation that differ in
how they treat visited neighbors. For instance, the algo-
rithm may ignore prior visitations, or only avoid the last vis-
ited node. The versions described above consistently outper-
formed these variations in our simulations; we therefore do
not discuss them any further.

In addition to these four algorithms, we also present the
performance of an optimal global algorithm, which returns
the shortest path length from source to target if it is less than
the number of hops allowed. The performance of the optimal
algorithm is a ceiling for the other algorithms—if there is no
short path, no algorithm can find it.

We present four performance measures: proportion of suc-
cessful searches (prop), mean path length when successful
(path), median path length when successful (median-path),
and mean optimal path length when successful (opt-path).
The last measure indicates the difficulty of the search tasks
an algorithm succeeds at, and is useful when comparing mean
path lengths of different algorithms—if one algorithm is able
to succeed at more difficult search tasks than another one, the
mean path lengths are not directly comparable.

4.1 Synthetic Networks
We considered directed networks with two types of out-
degree distribution: power-law and Poisson. We defined
a single attribute on each node, which was distributed uni-
formly in the interval[0,1]. Each network had 1000 nodes;
nodes with out-degree higher than 100 were not allowed.
Search was terminated after 100 hops if the target was not
reached.

The number of outgoing links from each node was deter-
mined based on the out-degree distribution of the graph. For a
link originating at nodes, the probability of linking to nodet
was proportional tofst, the preference between the two nodes,
which we defined as follows:

fst = (max{|as−at |, 0.01})−r (3)

whereas, at are attribute values on nodess andt, andr is a
homophily parameter. Themaxterm puts a bound on the pref-
erence values—in its absence, the preference between two
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Figure 1: Performance on scale-free networks with degree parameter 1.5.

nodes may be arbitrarily large, as two attribute values may
be arbitrarily close.

When r is zero, the graph shows no homophily—a link
originating from a given node is equally likely to end at any
other node. Asr grows, links become more likely to connect
nodes with similar attribute values. The findings in Klein-
berg[2000b] suggest that small values ofr give rise to a ho-
mophily structure too weak to guide the search effectively,
while large values ofr give rise to a graph structure that does
not contain short paths.

In applying EVN in these networks, we usedpst = 1−(1−
fst/(∑∀ j fs j))k, which was obtained from Equation 2 by sub-
stituting qst with fst/∑∀ j fs j, the ratio of the preference be-
tween nodess and t to the sum of preferences froms to all
nodes in the network. In applying similarity-based naviga-
tion, we considered all neighbors within 0.01 of the target to
be equally close, to account for the presence of themaxterm
in Equation 3.

Networks with Power-Law Degree Distribution

We considered power-law distributions with degree parame-
ters ranging from 1 to 3. This range includes the distributions
most frequently observed in real-world networks. The ho-

mophily parameter ranged from 0 to 3. Each possible com-
bination of degree parameter and homophily parameter was
evaluated on 10 randomly generated networks (unless noted
otherwise), with 5000 randomly selected search tasks in each
network.

Figure 1 shows performance on scale-free networks with
degree parameter 1.5. In addition toprop, path, and opt-
path, this figure also presents the frequency of path lengths
when the homophily parameter was 0.5, 1.5, and 2.5. While
similarity-based navigation was effective for large values of
the homophily parameter and degree-based navigation was
effective for lower values, EVN was effective with over 95%
success rate for all values of the homophily parameter and
returned shorter path lengths than the other algorithms.

Figure 2 shows performance on scale-free networks with
varying degree parameters. The data points in this figure
show mean values in 30 randomly generated networks. EVN
was effective under a wide range of parameter settings and
consistently outperformed both degree-based and similarity-
based navigation. EVN succeeded at more difficult search
tasks than degree-based navigation, as measured byopt-path,
while returning considerably shorter path lengths. EVN and
similarity-based navigation performed similarly inopt-path,
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Figure 2: Performance of EVN on scale-free networks. The first row shows the proportion of successful searches by EVN
divided by that of (a) optimal, (b) degree-based, and (c) similarity-based navigation; the second row shows mean path length
(when successful) for EVN divided by that of (d) optimal, (e) degree-based, and (f) similarity-based navigation; the third row
shows mean opt-path of EVN divided by that of (g) degree-based and (h) similarity-based navigation.

but EVN returned shorter path lengths. The proportion of
successful searches was higher for EVN than for both degree-
based and similarity-based navigation.

Networks with Poisson Degree Distribution
Similar experiments were conducted on networks with a Pois-
son degree distribution with a mean out-degree of 3.5, which
approximately equals the mean degree in the scale-free net-
works that were tested.

Figure 3 shows performance results. The figure reveals
that similarity-based and degree-based navigation were not
effective in these networks, succeeding in less than half of the
search tasks for all values of the homophily parameter. EVN
returned a higher proportion of successful searches than both
degree-based and similarity-based navigation; the difference
was substantial for a large range of values of the homophily
parameter. EVN was most effective with homophily parame-

ter values close to 2.
The path results shown in Figure 3 may seem counter-

intuitive, with random navigation returning the lowest val-
ues for most values of the homophily parameter. Recall,
however, thatpath refers to the mean path length insuc-
cessfulsearches, so the mean path lengths are not directly
comparable—random navigation returned the lowestpath
values, but it succeed in only the easiest search tasks as mea-
sured byopt-path. Theopt-pathresults show that EVN suc-
ceeded at more difficult search tasks than both degree-based
and similarity-based navigation. Furthermore, EVN returned
considerably shorter path lengths than degree-based naviga-
tion, despite succeeding in more difficult search tasks.

Robustness of EVN
In estimating link probabilities, we used the sum of prefer-
ences from a given node to all other nodes in the network.



0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Homophily Parameter

P
ro

po
rt

io
n 

of
 S

uc
ce

ss
fu

l S
ea

rc
he

s
Optimal

EVN

Similarity−
Based

Degree−
Based

Random

0 0.5 1 1.5 2 2.5 3
5

10

15

20

25

30

35

40

45

50

Homophily Parameter

M
ea

n 
P

at
h 

Le
ng

th
 W

he
n 

S
uc

ce
ss

fu
l

Degree−
Based

EVN

Similarity−
Based

Random

Corresponding
Optimal}

Figure 3: Performance on networks with Poisson degree distribution.

This sum is a normalizing constant that may be thought of as
an indicator of network size—it is the sum of similar contri-
butions from all nodes. In experiments we presented so far,
we used the exact value of this global constant. Dependence
on such global information is clearly not desirable for a de-
centralized algorithm.

A number of methods for decentralized estimation of
global network parameters exist, but all produce local vari-
ance in the estimates. Such variance poses little problem for
decentralized search algorithms such as EVN, however, be-
cause each decision is made locally, and thus estimates of the
constant on different nodes need not be consistent. However,
serious problems could arise if bias in estimates of the con-
stant degraded the searchability of the network.

We repeated the experiments reported on scale-free net-
works with degree parameter 1.5 by distorting the normal-
izing constant with a multiplier of 0.001, 0.01, 0.1, 10, 100,
and 1000 for all nodes in the network. Because each node
makes its decisions independently of the other nodes, that the
constant was distorted in the same way for all nodes is irrel-
evant. No performance decrements were observed in either
performance measure, except when the multiplier was 0.001
or 0.01. Performance decrements for such low values of the
multiplier are not unexpected—in these cases, the nodes oper-
ated in a 1000 node network, but made decisions as if the net-
work had only a single node or ten nodes. We expect that such
poor estimates of the normalizing constant would be avoided
easily in practice.

4.2 Scientific Citation Network

We next present results on a real-world network: a citation
graph of scientific papers. The nodes in our network were
papers from the theoretical high-energy physics (hep-th) area
of arXiv.org , an on-line archive of research papers. We
included in our network papers that were published in 1995-
2000 and had more than 50 non-self citations. The network
included 833 nodes and 13,267 links.

Decentralized search in this citation graph is an artificial
task—though it does resemble searching for a particular piece
of information before the advent of search engines—but the
results are useful in evaluating the applicability of EVN to
a network that evolves naturally over time, with no known
patterns of link formation.

We treated the citation graph as an undirected network,
defining node similarity using paper titles and abstracts. The
title and abstract of each paper were represented as weighted-
term vectors using TFIDF (term frequency× inverse docu-
ment frequency) weighting. Paper similarity was computed
using a standard cosine correlation measure. We discretized
this continuous similarity measure and for each discrete value
it took, estimatedqst in Equation 2 in a straightforward man-
ner from the network.

We conducted 10,000 randomly selected search tasks, ter-
minating them after 100 hops if the target was not found.
Table 1 shows our performance measures; Figure 4 shows
the distribution of path lengths returned by each algorithm.
Similarity-based navigation was not effective in this task,
while degree-based navigation was competitive. EVN per-
formed better than both in all performance measures. Further
comparison of EVN and degree-based navigation revealed
that EVN succeeded at all search tasks for which degree-
based navigation failed and that there were no search tasks in
which degree-based navigation succeeded but EVN did not.
In those search tasks for which both algorithms succeeded,
47% of the time EVN returned a shorter path than degree-

Algorithm prop path median-path opt-path
Random 0.89 25.12 20 2.50
Similarity-Based 0.90 23.84 18 2.50
Degree-Based 0.93 9.86 5 2.51
EVN 0.99 6.07 4 2.55
Optimal 1.0 2.55 3 2.55

Table 1: Performance on hep-th citation graph.
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based search (mean difference in path length = 11.02); 22%
of the time degree-based search yielded a shorter path than
EVN (mean difference in path length = 3.75); 31% of the
time EVN and degree-based search returned paths of same
length.

We next analyzed the sensitivity of the algorithm to theqst
values, which were estimated using the entire graph. We dis-
tortedqst values (for each discrete value of node similarity)
by multiplying them by 0.01, 0.1, 10, and 100. The perfor-
mance measures were essentially unaffected—they were all
within 0.2% of their values reported above.

5 Discussion
We presented a simple and principled algorithm for decen-
tralized search in networks that show homophily and degree
disparity. Our formulation of the problem allows one to
consider all factors that may influence search performance.
In that, it differs fundamentally from previous work in this
area, while providing a unifying framework for existing algo-
rithms, which are special cases of the algorithm we present
here. Experimental results on a collection of synthetic and
real-world networks indicate that our algorithm performs re-
markably well, though it may be possible to achieve even bet-
ter performance by using more sophisticated estimates of the
statistical quantities involved.

The utility of our approach depends on the availability
of statistical information regarding the relationship between
node similarity and link formation. This information is typi-
cally available when a network isdesignedby an analyst who
establishes the rules on how the network evolves over time
(e.g., Zhang et al.[2002]). But we expect that this type of
information would also be easy to obtain in other types of
networks.
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