1

In many real-world planning domains, the execution of cer
tain actions can only occur during some predefined time win-
dows where one or more necessary conditions hold. For i
stance, we can refuel a car at a gas station only during specif
period(s) of the day (when the gas station is open). The truth
of these conditions is determined by some exogenous eve
that happen at known times, and that cannot be influenced
the actions available to the planning agent (e.g., the closin

Integrating Planning and Temporal Reasoning for Domains with
Durations and Time Windows

Alfonso Gerevini™

Alessandro Saetti

Ivan Serina*

* Dip. Elettronica per ’Automazione, Univeraitli Brescia, via Branze 38, 25123 Brescia, Italy
* Dept. of Computer and Information Systems, University of Strathclyde, Glasgow, UK
E-mail: {gerevini,saetli@ing.unibs.it ivan.serina@cis.strath.ac.uk

Abstract

The treatment of exogenous events in planning is prac-
tically important in many domains. In this paper we

focus on planning with exogenous events that happen
at known times, and affect the plan actions by impos-
ing that the execution of certain plan actions must be
during some time windows. When actions have du-
rations, handling such constraints adds an extra dif-
ficulty to planning, which we address by integrating

temporal reasoning into planning. We propose a new
approach to planning in domains with durations and
time windows, combining graph-based planning and
disjunctive constraint-based temporal reasoning. Our
techniques are implemented in a planner that took part
in the 4th International Planning Competition showing

very good performance in many benchmark problems.

Introduction

of the fuel station).

Several frameworks supporting durations and time win

dows have been proposed (e.fvere, 1983; Muscettola,
1994, Laborie & Ghallab, 1995; Schwartz & Pollack, 2004

However, most of them are domain-dependent systems d
are not fast enough on large-scale problems. In this pap
we propose a new approach to planning with these tempor.
features, that combines graph-based planning and constrai

based temporal reasoning.

The last two versions of the language of the Interna-

tional planning competitionrPDDL2.1 andPDDL2.2, support
planning with action durations and deterministic exogenousvith timed initial literals through an extension of the linear
events[Fox & Long, 2003; 2004; Edelkamp & Hoffmann, action graph representatifGerevini, et al., 2008 which we

2004.

events can be representedtbyed initial literals, one of the i i
new PDDL features on which the 2004 competition focused2-1 Background: Linear Action Graph

Timed initial literals are stated in the description of the ini- A linear action graph (LA-graph) for a planning problem
tial state of the planning problem through assertions of thdl is a directed acyclic leveled graph alternatintaet leve|

form“(att L)

" wheret is areal number, andis a ground

n_

domain action. The obvious meaning(@ftL) is thatL

is true from timet . A set of these assertions involving the
same ground predicate defines a sequence of disjoint time
windows over which the timed predicate holds. An example
in the known benchmark domain “ Zenotravel” is

(at 8 (open-fuelstation city1))

(at 12 (not (open-fuelstation city1)))
(at 15 (open-fuelstation city1))

(at 20 (not (open-fuelstation city1)))

These assertions define two time windows over which
(open-fuelstation city1) is true. Atimed initial literal
is relevant to the planning process when it is a precondition
of a domain action, which we calltaned preconditiorof the
action. Each timed precondition of an action can be seen as
a temporal scheduling constraint for the action, defining the
feasible time window(s) when the action can be executed.

When actions in a plan have durations and timed precondi-
tions, finding a valid plan is a complex task that requires inte-
_grating planning and reasoning about time, to check whether
the execution of the planned actions can satisfy their schedul-
ing constraints. If an action in the plan cannot be scheduled,
}ge plan is not valid, and it must be revised.
The main contributions and organization of this work

ale: () a new representation of temporal plans with ac-
tEpn durations and timed preconditions, integrating disjunc-

ve constraint-based temporal reasoning into a recent graph-
ased approach to planning (Section 2); (ii) a polynomial
“method for solving the disjunctive temporal reasoning prob-
lems that arise in our context (Section 2); (iii) some new local
search heuristics to guide the planning process using our rep-
psentation (Section 3); (iv) an experimental analysis evaluat-

chgan implementation of our approach, showing good perfor-

Lpance with respect to other recent domain-independent tem-
r\Rg)ral planners (Section 4).

2 Temporally Disjunctive Action Graph
In our approach, we represent a (partial) plan for a domain

In particular, inPDDL2.2, deterministic exogenous call Temporally-Disjunctive Action Grap{T DA-graph).

and anaction level Fact levels contaifiact nodes each of

literal whose predicate does not appear in the effects of anwhich is labeled by a ground predicateldf Each fact node

f at a levell is associated with ao-opaction node at level ;
[representing a dummy action having the predicat¢ af i
its only precondition and effect. Each action level contains |

|

one action node labeled by the name of a domain action that
it represents, and the no-op nodes corresponding to that level.

An action node labeledat a level is connected by incom-
ing edges from the fact nodes at levekpresenting the pre-
conditions ofa (precondition nodégs and by outgoing edges
to the fact nodes at levél- 1 representing the effects of(ef-
fect nodel The initial level contains the special action node
astart, @and the last level the special action nadgy. The
effect nodes ofi;,+ represent the positive facts of the initial
state oflI, and the precondition nodes @f,,; the goals of 1.

A pair of action nodes (possibly no-op nodes) can be con-
strained by gpersistent mutex relatiori.e., a mutually ex- Figure 1: An example of LA-graph with nodes labeled k-
clusive relation holding at every level of the graph, imposingvalues. Square nodes are action nodes; circle nodes are fact nodes.
that the involved actions can never occur in parallel in a validbashed edges form chains of no-ops blocked by mutex actions. The
plan. Such relations can be efficiently precomputed using af -values are the numbers inside round brackets. The action dura-
algorithm given i Gerevini, et al., 200B tip_ns are the numbers inside square brackets. Unsupported precon-

An LA-graph A also contains a set ofdering constraints dition nodes are labeled “(-)".
between actions in the (partial) plan represented by the graph.

These constraints are (i) constraints imposed during search ise encoded into 8imple Temporal Problef8TP)[Dechter,
deal with mutually exclusive actions: if an actiorat level et al., 199], i.e., a set of constraints of form — =z < t,

I of A is mutex with an actiorb at a level after/, thena wherey andz are point variables andis a real number. For
is constrained to finish before the startiof(ii) constraints instance, ifa; € = is used to support a precondition node of
between actions implied by the causal structure of the plandj, thena; — a; < 0isinC; if a; anda; are two mutex

if an actiona is used to achieve a precondition of an actipn : . - + _

thena is constrained to finish before the starthof actions inr anda; is ordered before;, thena;” — a; < 0

The effects of an action node can be automatically propalS InC- Moreover, for every action € , the following STP-
gated to the next levels of the graph through the corresponcEOnStraints are ig:
ing no-ops, until there is aimterfering action“blocking” the at —a” < Dur(a), a~ —a™ < —Dur(a).
propagation, or the last level of the graph has been reached. A scheduling constraint imposes that the execution of an
action must occur during the time windows associated with
a timed precondition of the action. Syntactically, it is a dis-

junctive constraint; V - - - V ¢,, whereg; is of the form
Let p be a timed precondition over a séf(p) of time win- 1 1 1 9 9 9
dows. In the followingz~ andz+ indicate the starttime and | | | Q(yi - T S ki) A (_yi - TS k_i)’ _
end time ofz, respectively, where is either a time window Y. .7, ¥;, ; are action start times or action end times, and
or an action. We will describe our techniques focusing on ack; . k; € R. For every action € m with atimed precondition
tion preconditions that must hold during the whole executiorp, the following disjunctive constraint is addeddo
of the action (except at the end of the action, as for PDDL2.1 n _ _ N n n
“over all” conditions), and on operator effects that hold at the \/ ((astm‘t —a < -w) A (a — Qgpary S W))
end of the action executidh. weW (p)

In order to represent plans where actions have durationgefinition 1 Atemporally disjunctive action graph (TDA-
and time windows for their possible scheduling, we augmengraph)is a 4-tuple(A, 7, P, C) where
the ordering constraints of an LA graph with (i) actidara- e Ais a linear action graph:
tion constraintsand (ii) actionscheduling constraintsDu- . .
e 7T is an assignment of real values to the nodeslpf

(70)

2.2 Augmenting the LA-graph with Disjunctive
Temporal Constraints

ration constraints have form™ — a~ = Dur(a), where X)) ‘ i

Dur(a) denotes the duration of an actian? Duration e P is the set of time point variables corresponding to the
constraints are supported by the representation presented in Start times and end times of the actions labeling the ac-
[Gerevini, et al., 200B while the representation and treat- tion nodes of4; . . _ _
ment of scheduling constraints are a major contribution of e C is a set of ordering constraints, duration constraints
this work. and scheduling constraints involving variablesfn

Let = be the plan represented by an LA-gragh It is A TDA-graph (A, 7,P,C) represents the (partial) plan
easy to see that the s€tof the ordering constraints inl, formed by the actions labeling the action nodes/fvith
extended with the duration constraints of the actions,ican start times assigned . Figure 1 gives the LA-graph and
I . T-values of a simple TDA-gragh. The ordering constraints

1 - . . .
Our methods and planner support all the types of operator CONz 14 duration constraints i are:

dition and effect that can be specified in PDDL 2.1 and 2.2.
>The duration Ofaster: and acna is 0, ag,,,; = at,.. and 3For brevity, in our examples we omit the constraiafs,,, —
al a; <0anda; —a_,, <0, for each actiom;.

Aend = Aend-

af —az <0, af —az <0, Solve-DTP(X, S)
at —ay =50, a —a; =70, a;’—ag_ =15.

Assuming thap is a timed precondition afz with windows . while D(z) # 0 do
[25,50) and[75,100), the only scheduling constraint ¢his: d — SelectValue(D(z)); D(z) — D(z) — {d};

1. if X = 0 then stopandreturn S;

2

3

4,

! .

(e — a3 < =25 ANad —al,,, <50)V g S — SU{z —d};
7

8

9

1

.z « SelectVariable(X); X'« X — {z};

3 start D'(z) «— D(z); I* Saving the domain values */
(adart — a3 < =75 Aag — afy,, < 100). if F(or)wardC(he)cking-DTP(gX/,S’) then
Solve-DTP(X’, S);
. D(z) « D'(z); /*Restoring the domain values */
0. return fail; /* backtracking */

The pair(P, C) defines aisjunctive Temporal Probler®
(DTP) [Stergiou & Koubarakis, 2000; Tsamardinos & Pol-
lack, 2003.* Let D, be the set of scheduling constraints in
D. We have thaD represents a s€é of STPs, each of which
consists of the constraints I — D, and one disjunct (pair of ForwardChecking-DTP(X, S)

STP-constraints) for each disjunction irsabsetof D,. We 1. forall z € X do

call a consistent STP i aninduced STRf D. Ifaninduced 5’ foraxll d € D(z) do

STP contains a disjunct for every disjunctionZi, we say g3 if not Consistency-STP(S U {z < d}) then
that such a (consistent) STP is@mplete induced STéf D. 4. D(z) — D(z) — {d};

An STP isconsistentff it has a solution. Asolutionof 5. if D(z) = () then return false /* dead-end */

an STP is an assignment of real values to the variables of th& return true.

STP that is consistent with every constraint in the STP. Given

an induced STP, we can compute(iin - c) time a solution ~ Figure 2: Basic algorithm for solving a DTP. The input is the set
where each variable has the shortest possible distance frosh of the meta-variables in the meta CSP of the DTP, and a (partial)

ot [Dechter, etal., 1991: Gerevini & Cristani, 199fr n solution S of the meta CSPD(z) is a global variable storing the

start ; . . rrent domain of the meta vari
variables and constraints. We call such a solutiongptimal current domain of the meta variabie

solutionfor the induced STP under consideration.

The values assigned & to the action nodes ofl are the time with a backtrack-free algorithm. Moreover, the algo-
action start times corresponding to an optimal solution of anithm computes an optimal induced STP &gy, ,.
induced STP. We call these start timescheduleof the ac- Without loss of generality, we can assume that each action
tions in A. The7 value labeling a fact nodg¢ of A is the has at most one timed precondition. It is easy to see that we
earliest timet = 7, + Dur(a) such that supportsf in A, can replace a set of timed preconditions of an actionth
anda starts at7,,. a single equivalent timed precondition, whose time windows

If the induced STP from which we derive a schedule isare obtained by intersecting the windows forming the differ-
incomplete,7 may violate the scheduling constraint of some ent original timed preconditions af
action nodes, that we say araschedulech 7. As observed i Stergiou & Koubarakis, 2000; Tsamardi-

The following definition gives a notion of optimality over nos & Pollack, 200RB a DTP can be seen as a “meta CSP”,
the complete induced STPs of a DTP that will be used in thavhere the variables are the constraints, and the values of the
next section. meta-variables are the disjuncts forming the constraints. The
constraints of the meta CSP are not explicitly stated. Instead,
they are implicitly defined as follows: an assignménof
values to the meta-variables satisfies the constraints of the
meta CSP iffg forms a consistent STP (an induced STP of
the DTP). A solution of the meta CSP is a complete induced
STP of the DTP.

An optimal schedulés an optimal solution of an optimal Figure 2 shows an algorithm for solving the meta CSP of a
induced STP fow_ ,. Note that an optimal solution mini- DTP[Tsamardinos & Pollack, 2003which is a variant of the

mizes the makespan of the represented (possibly partial) plaferward-checking backtracking algorithm for solving gen-
eral CSPs. By appropriately choosing the next meta-variable

2.3 Solving the DTP of a TDA-graph to handle (functiorselectVariable) and its value (functiose-

In general, computing a complete induced STP of a DT|5¢Ctva|”e)’. we can show that the algorithm finds a solution
(if ﬁ] exists) is ar? Np9hard prcF))bIem that can be solved by(|f one exists) withno backtracking Moreover, by a simple

; ; : : . dification of the basic algorithm, we can derive an algo-
a backtracking algorithn{Stergiou & Koubarakis, 2000; mo . y
Tsamardinos & Pollack, 2003However, given the particular rithm that is backtrack free even when the meta CSP has no

: ;) solution. This can be achieved by exploiting the information
structure of the temporal constraints forming a TDA-graph,; the LA-graph.A of the TDA-graph for decomposing its

we show that this task can be accomplished in polynomiaBTPD into a sequence of “growing DTPS”. |.e

Definition 2 Given a DTPD with a point variablep, a com-
plete induced STP d@P is anoptimal induced STP of D for
p, iff it has a solution assigning tp a value that is less than
or equal to the value assigned pdoy every solution of every
other complete induced STPDf

“The disjunctive constraints ifi are not exactly in DTP-form, D =Diust O Digst—1 D ... D Dy,
i.e., adisjunctiorey V - - - V ¢, Whereg; is of formy; — z; < ki, x;
andy; are time points, and; is a real number. However, it is easy Where (i)lastis the number of the levels iA, (ii) the vari-
to see that every disjunctive constraintdncan be translated into ablesV; of D; (i = 1..last) are all the variables ab corre-
an equivalent conjunction of constraints in exact DTP-form. We usesponding to the action nodes i up to leveli, and (iii) the
our more compact notation for clarity and efficiency reasons. constraints ofD; are all the constraints dP involving only

variables inV;. From the decomposed DTP, we can derive an e forward checking is performed only once for each meta-

ordered partition of the set of meta-variablEsin the meta variable: if the first value chosen t8electvalue is not
CSP of the original DTP feasible (i.e.ForwardChecking-DTP returnsfalse), then

X =X UXoU...U Xjust, X has no solution, and thus we can stop the algorithm;
whereX; is the set of the meta-variables corresponding to the e finally, the improved algorithm is incremental since, as
constraints irD; — D;_4, if i > 1, and inD; otherwise. we will see in the next section, at each search step the

This ordered partition is used to define the order in which DTP of the TDA-graph is updated as a consequence of
SelectVariable chooses the next variable to handle, which is adding a new action node to the graph, or removing an
crucial to avoid backtrack: every variable with a single do- existing one.
main value (i.e., an ordering constraint or duration constraint) \oreover. in order to use the local search techniques de-
is selected before every variable with more than one possiblgqipeq in the next section, we need another change to the ba-
value (i.e., a scheduling constraint with more than one timg;ic 5igorithm: when the algorithm detects thahas no solu-
window); if z; € X, z; € X andi < j, thenz; is selected jon instead of returning failure, (i) it processes the next meta

beforex;. ; - ; ; ; i
. . variables, and (ii) when it terminates, it returns the (partial
Also the order in whiclselectValue chooses the value for a (i (P)

In the next sectionSg denotes the induced STP for the

meta-variable is DTP of a TDA-graphg computed by our method.

U {(ajtart —a S _kz_) A (CL+ - a;art S k‘lj)}7

i=1..m H _
thenSelectvalue chooses thg-th value (time window) such 3 Local Search Techniques fqr TDA-Graphs
that|k; | < |k |, for everyh € {1,...,m}, h # j. A TDA-graph (A, 7,P,C) may contain two types dflaw:

By using these techniques for selecting the next variable t&nsupported precondition nodes.i (propositional flave),
handle and its domain value in the algorithm of Figure 2, weaction nodes itd that are unscheduled ih (temporal flaw}
can derive the following resut. If a level of A contains a flaw, we say that this level is flawed.
Theorem 1 Given a DTPD for a TDA-graph, if the meta A TDA-graph with no flawed level represents a valid plan,

CSPX of D is solvable, thersolve-DTP finds a solution of and itis called aolution graph

. : : > 3 . In this section, we present new heuristics for searching a
:)('Wlth no backtracklng. Moreover, this solution is an optimal solution graph in the space of TDA-graphs. These heuristics
induced STP oD for a

end’ are used to guide a local search procedure, callelitplan,
As a consequence of the previous theorem, we have thahat was originally proposed ifGerevini, et al., 2008 and

if Solve-DTP performs backtracking (step 10), then the DTPthat is the heart of search engine of our planner.

under consideration has no solution. Thus, we can obtain a The initial TDA-graph contains onlys;q,: anda.,q. Each

backtrack free algorithm by replacing step 10 with search step identifies the neighborhodt{G) (successor
10. stop andreturn fail. states) of the current TDA-graph (search state), which is

a set of TDA-graphs obtained froéhby adding ahelpful ac-

Itis easy to see that in the modified algorithm, cabietie- i d ing aharmful acti dén the att i
DTP*, every variable is instantiated at most once with thelO" NOGEOr removing aharmiul action noden the attemp

same value. It follows that, under the assumptions that w° "epair theearliestflawed level ofG° In the following, a;
have a constant maximum number of action precondition§jenotes an action nodeat leveli of A, andi, the level ofa.

and, for every scheduling constraint, a constant maximum , CVen a flawed level of G, an action node; is helpfulfor
nurﬁber of windows. the total runtimé complexity Sblve- Mif its insertion intoG at a leveli < [removes a propositional
DTP™ is polynomial ’ flaw ati; a; is harmfulfor [if its removalfrom a leveli < [

,) of G (i) would remove a propositional flaw &tor (ii) would
Theorem 2 Given a TDA-grapl with DTPD, Solve-DTP™ gecrease th@-value ofay, if a; is unscheduled (intuitively,
processes the meta CSP correspondingtan polynomial is unscheduled i€ forces it to start “too late”).
time with respect to the number of action nodeg'in The addition/removal of an action noderequires us to
The actual algorithm that we developed for our planner toupdate the DTP of by adding/removing some ordering con-
find an induced STP for the DTP of a TDA-graph containsstraints between and other actions in the LA-graph 6f the
some improvements making it more efficient. For lack ofduration constraints af, and the scheduling constraint of
space and simplicity of presentation, we omit a detailed de(if any). From the updated DTP, we can use the method
scription of the improved algorithm, and we indicate only thedescribed in the previous section to reviseand to compute

main differences, which are the following ones: a possibly new schedule of the actiongir(i.e., an optimal
« the consistency of the STP formed by the values of alisolution ofSg). _ o
the variables of the meta CSPwith single-valued do- ~ The elements itV (G) are evaluated usingreeuristic eval-

mains can be checked at the beginningSofve-DTP, uation functionE' consisting of two weighted terms, estimat-
using a single-source shortest-path algorithm: if such aing the additionalsearch costand temporal costof the el-

STP is inconsistent, thel has no solution; 5))
- When we add an action node, the graph is extended by one level,
SFor lack of space, the proofs are omitted; they are available irand when we remove an action node, it is “shrunk” by one level.
an extended version of this pag&erevini, et al., 2006 More details inGerevini, et al., 20083

ements (i.e., the number of search steps required to find a straints of its actions, and thE-values of the facts in

solution graph and the plan makespan, respectively). An ele- the initial statel).

ment with the lowest cost is then selected frdfG) using a In order to computélimeThreat&), we use a notion of

“noise parameter” randomizing the search to escape from laime slackbetween action nodes.

cal minima[Gerevini, et al., 2008 For lack of space, in the - pefinition 3 Given two action nodes! and a2 of a TDA-

rest of this section we focus.only onthe search.cost term of graph(A, 7, P,C) suchthat = al* < a2~ slack(al, a2)
The search cost of adding an helpful action nadé s the maximum time by which tdevalue ofa1~ can be con-

g is estimated by constructing emporal relaxed plant sistently increased ig without violating the time window
achieving (1) the unsupported precondition node#,062) chosen for scheduling.

the propositional flaws remaining aafter addingz, and (3)
the supported precondition nodes of other action nodés in
that would becomensupported by adding. Moreover, we
count the number of: (4) action nodes that would becom
unscheduled by adding to G, (5) unsatisfied timed precon-
ditions ofa, (6) actions ofr with a scheduling constraint that
we estimate cannot be satisfied in the context.ofhe search .
cost of adding: to G is the number of actions in plus (4), 4 Experimental Results
(5) and (6). We have implemented our approach in a planner calkes

The evaluation of a TDA-graph derived igmovingan td, which obtained the 2nd prize in the suboptimal metric-
harmful action node is similar, withr achieving the precon- temporal track of the 4th International Planning Competition
dition nodes supported hythat would becomensupported ~ (IPC-4). LPG-td performed especially well in the domain
by removinga and, wherl,, precedes the flawed levielinder ~ Vvariants with timed initial literals, in terms of both CPU-time
reparation, the unsupported precondition nodes at letgit ~ to find a plan and quality of the best plan computed with
would not become supported by removing a CPU-time limit of 30 minutesLpG-td is an incremental

7 is constructed using a polymomial backward procesgplanner finding a succession of valid plans). In this section,
similar to the algorithm proposed [Gerevini, et al., 2008 We present some experimental results using the test problems
giving in output two values: a set of actions forming a of IPC-4/ The problems in thenrport domain specify at
(sub)relaxed plan, and its estimated earliest finishing timemost 6 time windows for each timed precondition, the prob-
The initial statel is the state obtained by applying the actions!ems in theSatellite ~ domain at most 3 windows, while
of G up to levell, — 1, ordered according to their levels. those in the othger domains only one time window. Additional

The main difference in the extended algorithm concernd€sults are available from the web sites of our planner and
the choice of the actions forming the relaxed plan. The acOf IPC-4, and in a technical report including an experimental
tion b chosen to achieve a (sub)gagis an action minimiz- analysis on solving problems with many windows associated
ing the sum of (i) the estimated minimum number of addi-With the timed preconditiongGerevini, et al., 2006
tional actions required to support its propositional precondi- Figure 3 shows the CPU-time ofG-td in three IPC-4 do-
tions, (ii) the number of supported precondition nodes in thenains with respect to the best among the other three planners
LA_graph that would become unsupported by add]ng g, of IPC-4 thatgsupport timed |n-|t|a| IIteraI_SGPLAN, P-MEP,
(iii) the number of timed preconditions dfthat we estimate andTILSAPA.® In these domains,pG-td is generally faster
would be unsatisfied i extended withr (TimedPre(b)); than the other planners and solves more problems.
and (iv) the number of action nodes scheduledZinthat Table 1 gives a summary of the results for all the IPC-4
we estimated would become unscheduled by addirtg ~ domain variants with timed initial literals (252 test problems
G (TimeThreats(b)). (i)-(ii) are computed as described in N total). We comparepPG-td’s results with the best results
[Gerevini, et al., 2008 (iii)-(iv) are new components of the OVver the corresponding resultsalf the other IPC-4 planners
action selection method, and they are computed as follows. (‘AllOthers”). In general LPG-td solves more problems than

In order to computel’imedPre(b), we estimate the earliest AllOthers; the percentage of problems in which it is faster is
start time ofb (Est(b)) and the earliest finishing time @f ~ higher than the one in which it is slower; and the percentage
(Eft(b)). Using these values, we count the number of theln Which it produces better quality plans is much higher.
timed preconditions ob that cannot be satisfiedz f¢(b) is Finally, it is worth noting that, if in the CPU-time compar-

Est(b) + Dur(b), while Est(b) is the maximum over ison we consider only problems wherec-td is at least one
. . order of magnitude faster (slower) than AllOthers, then the
e the lowest earliest start time éf computed by an ex-

) o_results in the 3rd column of Table 1 are even more favorable
tension of the reachability analysis algorithm given iy, oo tq | patd is faster in 31% of the problems, and it is
[Gerevini, et al., 2008 which derives a lower bound on ’

I 0,
the start time of each domain action; slower in 13% of the problems.

e the 7-values of the action nodes, with i < [,, that "All tests were conducted on an Intel Xeon(tm) 3 GHz, 1 Gbytes

are mutex withh (because the addition éfto G would of R@M. Elor a desdcr(ijption_ and Lorm/z/alliZSation of the IPC-4 bench-
; e - . mark problems and domains, sketp://Is5-www.cs.uni-
determlr.le the addition @ﬁ b= <0tog); . dortmund.de/ ~edelkamp/ipc-4/index.html
» the maximum over an estimated lower bound on the time 8o apstract of every IPC-4 planner is availabléEelkamp, et
when all the preconditions df are achieved in relaxed aj, 2004). Lpc-td andTiLSAPA are the only planners of IPC-4 that
plan (this estimate is computed from the causal structuraddressed the variant &fipeswWorld with timed initial literals;
of the relaxed plan, the duration and scheduling con-TiLsAra did not addres§lMTS-flaw with timed initial literals.

To estimate whether is a time threat for an action node
ar (I < k), we check ifA(my, a;) > Slack(a;, ax) holds,
é(vherem, is the portion of the relaxed plan computed so far,
andA(my, a;) estimates the delay of the start timecgfthat
the addition of the actions im, to G would determine.

Airport-Windows D kag UMTS-Flaw-TimeWindows

T 1e+06

Milliseconds Milliseconds
1e+07 10000

—+_ LPGtd (Speed) (50 solved) ' '

—— LPG-td (Speed) (22 solved)
----&-- SGPlan (27 solved)

—+— LPG-td (Speed) (45 solved)
&~ TilSapa (3 solved)

---A-- SGPlan (43 solved)
---X--- P-MEP (12 solved)

1e+06 asaas

100000

10000

100000

10000

1000

- TilSapa (7 solved) B Bl

o

aa
4 passk
+ .
YNV
pbpLE
1000 ¢ ;
asssk

1000
o

45

10 L L L L L L L L L

30 0 5 50

Figure 3:CPU-times ofLPG-td, P-MEP, SGPLAN, andTILSAPA in three IPC-4 test domains with timed initial literals. On the x-axis we have
the problem names simplified by numbers. On the y-axis, we have the CPU-times in logarithmic scale.

IPC-4 Problems | CPU-time Plan quality
domain solved better (worse) | better (worse)
Airport 90 (86) 86 (4) 58 (5)
PipesWorld | 73 (10) 73 (0) 67 (0)
Sat-Complex| 53 (67) 6 (67) 71 (12)
Sat-Time 53 (67) 6 (64) 59 (35)
UMTS-Flaw | 100 (54) | 100 (0) 82 (0)
UMTS 100 (100) | 0(88) 100 (0)

[Total [81.3(67.8)] 47.2(39.3) | 73.2(6.4)]

Table 1:A comparison of PG-td and the best over the resultsadif
the other IPC-4 planners. Summary results in terms of: % of prob{edelkamp & Hoffmann, 2004 Edelkamp, S., and Hoffmann, J.
lems solved by PG and AllOthers (in brackets); % of problems in
which LPG-td is faster (slower in brackets); % of problems in which

LPG-td produces a plan with shorter makespan (longer in brackets).

5 Conclusions

References

[Blum & Furst, 1997 Blum, A., and Furst, M. 1997. Fast planning
through planning graph analysiartificial Intelligence90.

[Do et al., 2004 Do, M., B., Kambhampati, S., and Zimmerman,
T. 2004. Planning - Scheduling Connections through Exogenous
Events. InProc. of WIPIS-04

[Dechter, et al., 1991 Dechter, R., Meiri, I., and Pearl, J., 1991.
Temporal Constraint Networkgrtificial Intelligence49:61-95.

[Edelkamp, 200 Edelkamp, S. 2004. Extended Critical Paths in
Temporal Planning. IfProceedings of the ICAPS-04 Workshop
on Integrating Planning into Scheduling

2004. PDDL2.2: The Language for the Classic Part of the 4th
International Planning Competition. Technical Report 195, Insti-
tut fur Informatik, Freiburg, Germany.

[Edelkamp, et al., 20Q4In Edelkamp, S., Hoffmann, J., Littman,
M., Younes, H. (Eds.) 2004n Abstract Booklet of the Compet-
ing Planners of ICAPS-04

[Fox & Long, 2003 Fox, M., and Long, D. 2003. PDDL2.1: An

domains where actions have durations and must be ex
cuted during certain time windows. This allows us to deal

with deterministic exogenous events, which is important in

_ JAIR20:61-124.
Fox & Long, 2004 Fox, M. and Long, D. and Halsey, K., 2004.
An Investigation into the Expressive Power of PDDL2.1Phac.

of ECAI-04

many real-world planning domains. Our approach combinesgGerevini & Cristani, 1997 Gerevini, A., and Cristani, M., 1997.
constraint-based temporal reasoning and a recent graph-basedon Finding Solutions in Temporal Constraint NetworksPhoc.
method for planning. We propose a new plan representation of IJCAI-97

and search space, a polynomial algorithm for temporal con[.Gerevini_, etal., 200B Gerevini, A., Saetti, A., and Serina, 1. 2003.
straint reasoning during Search, and some local search tech- Plannlng through Stochastic Local Search and Temporal Action
niques for planning that exploit temporal information. An
analysis of the IPC-4 results show that our planner perform

very well compared to other recent temporal planners. We
believe that our temporal reasoning results can be exploited

also in the context of other approaches to planning.

Like our planner,SAPA uses a relaxed plan heuristic to
guide the searclDo et al., 200 HoweversAPAuUses a time

slack analysis for selecting these actions that is limited to th
actions of the relaxed plan, while our heuristics consider als
the actions of the “real” plan under construction. Other very

recent planners supporting time windows includeroprand

MIPS. Edelkamp proposes a method for handling timed pre-

conditions inmIPs with only one time window Edelkamp,
2004. pT-PopPextends POP-planning with DTPSchwartz
& Pollack, 2004. pT-POP supports more temporal features

thanLpG-td, but it is less efficient, and it does not exploit the
plan representation that we use for achieving tractable temp
ral reasoning during planning. For a more detailed discussion
of related work se€Gerevini, et al., 2005

Graphs.JAIR20:239-290.

gGerevini, et al., 2005 Gerevini, A., Saetti, A., and Serina, |. 2005.

An Approach to Temporal Planning in Domains with Determin-

istic Exogenous Events. Technical Report RT 2005-06-45, DEA,

Universit di Brescia, Italy.

[Laborie & Ghallab, 199F Laborie, P. and Ghallab, M. 1995. Plan-
ning with Sharable Resource ConstrairRsoc. of IJCAI-95

[Muscettola, 1994 Muscettola, N. 1994 HSTS: Integrating Plan-

ning and Schedulingntelligent SchedulingMorgan Kaufmann.

§Schwartz&PoIIack, 2004 Schwartz, P., J. and Pollack, M., E.

2004. Planning with Disjunctive Temporal ConstraintsPhoc.
of WIPIS-04
[Stergiou & Koubarakis, 20Q0Stergiou, K., Koubarakis, M. 2000.
Backtracking algorithms for disjunctions of temporal constraints.
Artificial Intelligence120:81-117.
[Tsamardinos & Pollack, 2003Tsamardinos, |., Pollack, M., E.
2003. Efficient solution tecniques for Disjunctive Temporal Rea-
soning ProblemsArtificial Intelligencel51:43-90.

(gyere, 1983 Vere, S. A. 1983 Planning in time: Windows and

durations for activities and goaldEEE Transactions on PAMI
5(3):246-267.

